
gRPC Network Operations Interface

The Google Remote Procedure Call (gRPC) Network Operations Interface (gNOI) is a suite of microservices,
each corresponding to a set of operations. This module describes the supported gNOI services.

• Information About the gRPC Network Operations Interface, on page 1
• Additional References for the gRPC Network Operations Interface, on page 8
• Feature Information for the gRPC Network Operations Interface, on page 9

Information About the gRPC Network Operations Interface

gNOI Protocol
gNOI defines a set of gRPC-based microservices for executing operational commands on network devices.
The gNMI service defines operations for configuration management, operational state retrieval, and bulk data
collection through streaming telemetry. gNOI only allows the adoption of services that a device supports.
gNOI supports the OS installation service.

gNOI can be used with or without user authentication. User authentication is disabled by default. Use the gnxi
secure-password-auth command to enable user authentication. For information about enabling user
authentication through the OpenConfig model, see https://github.com/YangModels/yang/blob/master/vendor/
cisco/xe/1751/openconfig-system-management.yang.

The gNOI protocol supports the following operations:

• Certificate Management

• Bootstrapping

Certificate Management Service
The Certificate Management Service primarily exports two main RPCs, Install and Rotate, that are used for
the installation of new certificates, and the rotation of existing certificates on a device, respectively.

The following RPCs are supported by the Certificate Management Service:

• Install: Installs a certificate. All certificates are uniquely identified by a certificate ID. The certificate ID
is a string.

gRPC Network Operations Interface
1

https://github.com/YangModels/yang/blob/master/vendor/cisco/xe/1751/openconfig-system-management.yang
https://github.com/YangModels/yang/blob/master/vendor/cisco/xe/1751/openconfig-system-management.yang


• Rotate: Rotates an existing certificate.

• RevokeCertificates: Revokes one or more certificates.

• GetCertificates: Queries all certificates.

• CanGenerateCSR: Queries whether the device can generate a Certificate Signing Request (CSR).

Trustpoints and certificates created through the RPCs mentioned above persist across switchovers and device
reboots.

The following is a sample Certificate Management Service definition:

service CertificateManagement {
rpc Install(stream InstallCertificateRequest)
returns (stream InstallCertificateResponse);

rpc Rotate(stream RotateCertificateRequest)
returns (stream RotateCertificateResponse);

rpc RevokeCertificates(RevokeCertificateRequest)
returns (RevokeCertificateResponse);

rpc GetCertificates(GetCertificateRequest)
returns (GetCertificateResponse);

rpc CanGenerateCSR(CanGenerateCSRRequest)
returns (CanGenerateCSRResponse);

}

Install RPC
The Install RPC adds a new certificate to a device by creating a new CSR request. The new certificate is
associated with a new certificate ID on the device. If the device has a pre-existing certificate with the given
certificate ID, the operation fails.

The Install RPC is a bidirectional streaming RPC. It has an input (InstallCertificateRequest) and an output
(IntsallCertificateResponse) both of which are streaming. If the stream is broken, or any steps in the process
fail, the device rolls back the changes.

The following is an example of the Install RPC definition and messages:

rpc Install(stream InstallCertificateRequest)
returns (stream InstallCertificateResponse);

// Request messages to install new certificates on the target.
message InstallCertificateRequest {
// Request Messages.
oneof install_request {
GenerateCSRRequest generate_csr = 1;
LoadCertificateRequest load_certificate = 2;

}
}
// Request to generate the CSR.
message GenerateCSRRequest {
// Parameters for creating a CSR.
CSRParams csr_params = 1;
// The certificate id with which this CSR will be associated. The target
// configuration should bind an entity which wants to use a certificate to
// the certificate_id it should use.

gRPC Network Operations Interface
2

gRPC Network Operations Interface
Install RPC



string certificate_id = 2;
}
// Parameters to be used when generating a Certificate Signing Request.
message CSRParams {
// The type of certificate which will be associated for this CSR.
CertificateType type = 1;

// Minimum size of the key to be used by the target when generating a
// public/private key pair.
uint32 min_key_size = 2;

// If provided, the target must use the provided key type. If the target
// cannot use the algorithm specified in the key_type, it should cancel the
// stream with an Unimplemented error.
KeyType key_type = 3;

// --- common set of parameters applicable for any type of certificate --- //
string common_name = 4; // e.g "device.corp.google.com"
string country = 5; // e.g "US"
string state = 6; // e.g "CA"
string city = 7; // e.g "Mountain View"
string organization = 8; // e.g "Google"
string organizational_unit = 9; // e.g "Security"
string ip_address = 10;
string email_id = 11;

}
// A certificate.
message Certificate {
// Type of certificate.
CertificateType type = 1;

// Actual certificate.
// The exact encoding depends upon the type of certificate.
// for X509, this should be a PEM encoded Certificate.
bytes certificate = 2;

}

message LoadCertificateRequest {
// The certificate to be Loaded on the target.
Certificate certificate = 1;

// The key pair to be used with the certificate. This is provided in the event
// that the target cannot generate a CSR (and the corresponding public/private
// keys).
KeyPair key_pair = 2;

// Certificate Id of the above certificate. This is to be provided only when
// there is an externally generated key pair.
string certificate_id = 3;

// Optional pool of CA certificates to be used for authenticating the client.
repeated Certificate ca_certificate = 4;

}

// A message representing a pair of public/private keys.
message KeyPair {
bytes private_key = 1;
bytes public_key = 2;

}

// Response Messages from the target for the InstallCertificateRequest.
message InstallCertificateResponse {
// Response messages.
oneof install_response {

gRPC Network Operations Interface
3

gRPC Network Operations Interface
Install RPC



GenerateCSRResponse generated_csr = 1;
LoadCertificateResponse load_certificate = 2;

}
}

// GenerateCSRResponse contains the CSR associated with the Certificate ID
// supplied in the GenerateCSRRequest. When a Certificate is subsequently
// installed on the target in the same streaming RPC session, it must be
// associated to that Certificate ID.
//
// An Unimplemented error will be returned if the target cannot generate a CSR
// as per the request. In this case, the caller must generate its own key pair.
message GenerateCSRResponse {
CSR csr = 1;

}

// A Certificate Signing Request.
message CSR {
// Type of certificate.
CertificateType type = 1;

// Bytes representing the CSR.
// The exact encoding depends upon the type of certificate requested.
// for X509: This should be the PEM encoded CSR.
bytes csr = 2;

}

After the target device is up and gNOI is in default state, the controller (a third-party implementation) uses
the Install RPC to install a certificate that is signed by a Certificate Authority (CA). The certificate is uniquely
identified by a certificate ID. This ID is used as the trustpoint name in the Public Key Infrastructure (PKI)
configuration. The installation will fail, if you try to install a certificate that has an existing certificate ID.

The following section describes how a CSR is generated by a device:

1. The device generates a self-signed certificate through the Install RPC. The controller does not require a
copy of this certificate because in encrypted mode (or gNMI default state) the controller does not validate
the certificate presented by the target device. This is the default state.

2. The controller requests the device to generate a CSR, sends the CSR to the CA, and gets the signed
certificate back from the CA.

3. The signed certificate is installed into the device along with the CA certificates used to sign the certificate.
The CA certificate is present in the ca_certificates bundle, and is required by the PKI to install the device
certificate.

4. The gNMI or the gNOI service restarts using the newly installed certificate that is now in the provisioned
state.

Rotate RPC
The Rotate RPC renews an existing certificate; a certificate that is already installed. If a certificate is not
already installed, the Rotate RPC fails. A certificate that is not in use can be rotated, but the client cannot test
it.

The following is a sample Rotate RPC definition:

rpc Rotate(stream RotateCertificateRequest)
returns (stream RotateCertificateResponse);

// Request messages to rotate existing certificates on the target.

gRPC Network Operations Interface
4

gRPC Network Operations Interface
Rotate RPC



message RotateCertificateRequest {
// Request Messages.
oneof rotate_request {
GenerateCSRRequest generate_csr = 1;
LoadCertificateRequest load_certificate = 2;
FinalizeRequest finalize_rotation = 3;

}
}

// A Finalize message is sent to the target to confirm the Rotation of
// the certificate and that the certificate should not be rolled back when
// the RPC concludes. The certificate must be rolled back if the target returns
// an error after receiving a Finalize message.
message FinalizeRequest {
}

message RotateCertificateResponse {
// Response messages.
oneof rotate_response {
GenerateCSRResponse generated_csr = 1;
LoadCertificateResponse load_certificate = 2;

}
}

The Rotate RPC differs from the Install RPC in the following ways:

• PKI has to save or cache the old certificate and the CA certificate when installing a new certificate (for
the purpose of rollback).

• The controller creates a new connection to test whether the renewed certificate works, and in case of
success, finalizes the certificate rotation.

Revoke RPC
This RPC is used to revoke one or more certificates, each uniquely identified by a certificate ID. Revocation
of a certificate results in the corresponding trustpoint to be removed from the Cisco IOS XE configuration.
If the corresponding trustpoints are currently in use, or if the trustpoints do not exist, revocation of the
certificates may fail.

A RevokeCertificate RPC may have certificates revoked successfully or unsuccessfully. On the target device,
revocation is a simple delete operation; the actual revocation with the CA is done by the client. If the client
revokes a certificate that is in use, new connections fail, but the existing connections are unaffected.

The following is a sample RevokeCertificate RPC:

// An RPC to revoke specific certificates.
// If a certificate is not present on the target, the request should silently
// succeed. Revoking a certificate should render the existing certificate
// unusable by any endpoints.
rpc RevokeCertificates(RevokeCertificatesRequest)
returns (RevokeCertificatesResponse);

message RevokeCertificatesRequest {
// Certificates to revoke.
repeated string certificate_id = 1;

}

message RevokeCertificatesResponse {
// List of certificates successfully revoked.

gRPC Network Operations Interface
5

gRPC Network Operations Interface
Revoke RPC



repeated string revoked_certificate_id = 1;

// List of errors why certain certificates could not be revoked.
repeated CertificateRevocationError certificate_revocation_error = 2;

}

// An error message indicating why a certificate id could not be revoked.
message CertificateRevocationError {
string certificate_id = 1;
string error_message = 2;

}

GetCertificate RPC
This RPC queries all certificate IDs.

The response to the query contains the following information:

• Certificate information for all the certificates that are identified by a certificate ID.

• The list of endpoints, for example, tunnels, daemons, and so on, that use this certificate.

Endpoints are not supported.Note

Responses do not contain the ca_certificate bundle.Note

The following is a sample GetCertificate RPC:

// An RPC to get the certificates on the target.
rpc GetCertificates(GetCertificatesRequest) returns (GetCertificatesResponse);

// The request to query all the certificates on the target.
message GetCertificatesRequest {
}

// Response from the target about the certificates that exist on the target what
// what is using them.
message GetCertificatesResponse {
repeated CertificateInfo certificate_info = 1;

}

message CertificateInfo {
string certificate_id = 1;
Certificate certificate = 2;

// List of endpoints using this certificate.
repeated Endpoint endpoints = 3;

// System modification time when the certificate was installed/rotated in
// nanoseconds since epoch.
int64 modification_time = 4;

}

gRPC Network Operations Interface
6

gRPC Network Operations Interface
GetCertificate RPC



// An endpoint represents an entity on the target which can use a certificate.
message Endpoint {
// Type of endpoint that can use a cert. This list is to be extended based on
// conversation with vendors.
enum Type {
EP_UNSPECIFIED = 0;
EP_IPSEC_TUNNEL = 1;
EP_DAEMON = 2;

}
Type type = 1;

// Human readable identifier for an endpoint.
string endpoint = 2;

}

CanGenerateCSR RPC
This RPC queries whether a device can generate a CSR for a specific key type, certificate type, and key size.
The supported key type is Rivet, Shamir, and Adelman (RSA), and the supported certificate type is X.509.

When this RPC request is made for installing a completely new certificate as part of the Install RPC, the device
must ensure that the certificate ID is new and no entities on the device are bound to this certificate ID. If any
existing certificate matches the certificate ID, this request fails.

When this RPC request is made for rotating an existing certificate as part of the Rotate RPC, the device must
ensure that the certificate ID is already available. If the certificate rotation proceeds to load the certificate, it
must associate the new certificate with the previously created certificate ID.

The following is a sample CanGenerateCSR RPC:

// An RPC to ask a target if it can generate a Certificate.
rpc CanGenerateCSR(CanGenerateCSRRequest) returns (CanGenerateCSRResponse);

// A request to ask the target if it can generate key pairs.
message CanGenerateCSRRequest {
KeyType key_type = 1;
CertificateType certificate_type = 2;
uint32 key_size = 3;

}

// Algorithm to be used for generation the key pair.
enum KeyType {
// 1 - 500, for known types.
// 501 and onwards for private use.
KT_UNKNOWN = 0;
KT_RSA = 1;

}

// Types of certificates.
enum CertificateType {
// 1 - 500 for public use.
// 501 onwards for private use.
CT_UNKNOWN = 0;
CT_X509 = 1;

}

// Response from the target about whether it can generate a CSR with the given
// parameters.
message CanGenerateCSRResponse {
bool can_generate = 4;

gRPC Network Operations Interface
7

gRPC Network Operations Interface
CanGenerateCSR RPC



}

Mutual Authentication
Mutual authentication is a two-way authentication; two parties authenticate each other at the same time. To
enable mutual-authentication, use the gnmi-yang secure-peer-verify-trustpoint command. If this command
is not enabled, the authentication service validates the gNMI client against all the existing trustpoints and the
contents of the trustpool.

Rotation of the CA certificates for mutual authentication requires the client to present a new bundle to the
target device, and the old bundle to be removed. However, the CA certificates reside in a trustpool, and cannot
be selectively deleted from the trustpool.

Bootstrapping with Certificate Service
After installing gNOI certificates, bootstrapping is used to configure or operate a target device. When a target
device does not have any pre-existing certificates, bootstrapping allows the installing of certificates by using
the gNOI CertificateManagement Service. After the certificate installation, the device is capable of establishing
secure gNOI or gNMI connections. This process assumes a pre-existing secure environment.

To enable gNMI bootstrapping, use the gnxi secure-init command.

The gNOI Certificate Management Service must be installed before bootstapping.Note

The gNOI CertificateManagement Service has two states. These states are supported by both the gNOI service
and the gNMI service.

• Default/Encrypted: gNOI and gNMI on the device use a self-signed (default) certificate that the client
does not verify; the certificate does not require authentication. In this state, only the gNOI certificate
service is enabled on the target device.

• Provisioned: gNOI and gNMI on the device use an installed certificate that is verified by the client, and
the client presents its certificate, which the device verifies against its certificate store. The device verifies
the client certificate only if mutual authentication is enabled.

Additional References for the gRPC Network Operations
Interface

Related Documents

Document TitleRelated Topic

https://developer.cisco.com/site/ios-xe/DevNet

https://github.com/openconfig/gnoigNOI

gRPC Network Operations Interface
8

gRPC Network Operations Interface
Mutual Authentication

https://developer.cisco.com/site/ios-xe/
https://github.com/openconfig/gnoi


Technical Assistance

LinkDescription

http://www.cisco.com/supportThe Cisco Support website provides extensive online resources, including
documentation and tools for troubleshooting and resolving technical issues
with Cisco products and technologies.

To receive security and technical information about your products, you can
subscribe to various services, such as the Product Alert Tool (accessed from
Field Notices), the Cisco Technical Services Newsletter, and Really Simple
Syndication (RSS) Feeds.

Access to most tools on the Cisco Support website requires a Cisco.com user
ID and password.

Feature Information for the gRPC Network Operations Interface
The following table provides release information about the feature or features described in this module. This
table lists only the software release that introduced support for a given feature in a given software release
train. Unless noted otherwise, subsequent releases of that software release train also support that feature.

Use Cisco Feature Navigator to find information about platform support and Cisco software image support.
To access Cisco Feature Navigator, go to www.cisco.com/go/cfn. An account on Cisco.com is not required.

Table 1: Feature Information for the gRPC Network Operations Interface

Feature InformationReleaseFeature Name

The gNOI Certificate Management Service
provides RPCs to install, rotate, get certificate,
revoke certificate, and generate certificate
signing request.

In Cisco IOS XE Amsterdam 17.3.1, this
feature was implemented on the following
platforms:

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

Cisco IOS XE Amsterdam
17.3.1

gNOICertificateManagement

gRPC Network Operations Interface
9

gRPC Network Operations Interface
Feature Information for the gRPC Network Operations Interface

http://www.cisco.com/support
http://www.cisco.com/go/cfn


Feature InformationReleaseFeature Name

After installing gNOI certificates,
bootstrapping is used to configure or operate
a target device. gNMI bootstrapping is enabled
by using the gnxi-secure-init command and
disabled by using the
secure-allow-self-signed-trustpoint
command.

In Cisco IOS XE Amsterdam 17.3.1, this
feature was implemented on the following
platforms:

• Cisco Catalyst 9200 Series Switches

• Cisco Catalyst 9300 Series Switches

• Cisco Catalyst 9400 Series Switches

• Cisco Catalyst 9500 Series Switches

• Cisco Catalyst 9600 Series Switches

Cisco IOS XE Amsterdam
17.3.1

gNOI Bootstrapping with
Certificate Service

gRPC Network Operations Interface
10

gRPC Network Operations Interface
Feature Information for the gRPC Network Operations Interface


	gRPC Network Operations Interface
	Information About the gRPC Network Operations Interface
	gNOI Protocol
	Certificate Management Service
	Install RPC
	Rotate RPC
	Revoke RPC
	GetCertificate RPC
	CanGenerateCSR RPC

	Mutual Authentication
	Bootstrapping with Certificate Service

	Additional References for the gRPC Network Operations Interface
	Feature Information for the gRPC Network Operations Interface


