

Cisco StadiumVision Mobile SDK Guide
for Apple iOS and Google Android
Release 2.0
July 25, 2014
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Google, Google Play, Android and certain other marks are trademarks of Google Inc.

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in
illustrative content is unintentional and coincidental.

Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android
© 2014 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

C O N T E N T S
Preface 1

Cisco StadiumVision Mobile EVS C-Cast Integration 3

Overview 3

Cisco StadiumVision Mobile API for Apple iOS 5

New Features in Cisco StadiumVision Mobile SDK Release 2.0 5

Introduction to Cisco StadiumVision Mobile API for Apple iOS 6

iOS API Prerequisites 6

Apple iOS SDK Overview 8

Return Status Object 13

NS Notification Events 24

Video Player State Flags 25

Video Player Background Audio 26

Video Player Channel Inactive Callback 26

Receiving Service Up and Down Notifications 27

In-Venue Detection 29

Set the SDK Configuration at Run-Time 30

Scalable File Distribution 30

Starting the SDK 32

Setting the Log Level 32

Getting the Video Channel List 32

Presenting the Video Channel List 33

Playing A Video Channel 33

Seeking Within the Video Buffer 33

Getting The Data Channel List 34

Observing a Data Channel 34

Getting the SDK Version String 34

Shutting Down the SDK (Optional) 35

Default Cisco Video Player View Controller 35

Customized Video Player 35

Cisco Demo Customized Video Player 36

Configuration Files 36

Field of Use Configuration 37
3
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Contents
Wi-Fi Access Point Configuration 37

What the SDK Handles 39

Customer Application Roles 39

Cisco StadiumVision Mobile API for Google Android 41

New Features in Cisco StadiumVision Mobile Release 2.0 Android SDK 41

Introduction to Cisco StadiumVision Mobile API for Google Android 42

Install the tools 43

Build the app 43

Customize the app 43

Cisco StadiumVision Mobile iOS API Class Overview 44

Android OS Activity Overview 45

Cisco StadiumVision Mobile Android API Summary 47

Return Status Object 48

Video Player Activity API Summary 54

Starting the SDK 59

Getting the Video Channel List 59

Presenting the Video Channel List 59

Playing a Video Channel 60

Seeking Within the Video Buffer 60

Setting the Video Dimensions 60

Fullscreen Video Layout 60

Partial-Screen Video Layout 61

Getting the Data Channel List 61

Observing a Data Channel 61

Activity Life-Cycle Notifications 62

StadiumVision Mobile Service Up or Down Indicator 62

In-Venue Detection 64

Set the SDK Configuration at Run-Time 65

Scalable File Distribution 66

Get the SDK Configuration 66

setConfigWithString API Method 67

Get the Available Streamer Servers 68

Additional Statistics 68

Video Player State Notifications 69

Video Player "Channel Inactive" Callback 70

Cisco Demo Customized Video Player 72

Configuration Files 72

WiFi AP Info Configuration (Optional) 73

Client Application Integration Overview 74
4
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Contents
Integration Checklist 74

Customer Application Roles 75

Android Permissions 76

SDK Native Libraries 76
5
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Contents
6
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Preface

About This Guide
This guide describes the Cisco StadiumVision Mobile SDK for third-party developers whose
applications will operate with the Cisco StadiumVision Mobile solution. and supplements the Doxygen
build included with the SDK.

Our implementations of Cisco StadiumVision Mobile SDK, and included sample application may
change over time in response to the changing needs of our partner community. We will maintain
backward compatibility whenever possible but advise you to expect differences in future releases. A list
of changes will be provided for each release to keep API users aware of any necessary code changes that
they will need to make.

Document Revision History

About Cisco StadiumVision Mobile
Cisco StadiumVision Mobile (SVM) enables reliable and scalable delivery of low-delay video and data
streams to WiFi devices at venues. A Venue Operator typically configures and operates SVM, Connected
Stadium Wi-Fi and Connected Stadium components. The mobile app developer is responsible for
obtaining the SVM SDK from Cisco, working with the Venue Operator on configuration dependencies
and integrating the SVM Client.

Table 1 Document Revision History

Date Change Summary

July 18, 2014 Addition of EVS C-Cast Integration content.

June 30, 2014 Revision of FCS draft. Updates to iOS and Android chapter to feature list, and
API updates.

April 30, 2014 Initial version of Cisco StadiumVision Mobile SDK Guide for Apple iOS and
Google Android, Release 2.0.
1
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Preface
Who Should Use This Guide
This guide is a technical resource for application developers who build custom user applications that
extend Cisco StadiumVision Mobile. You should have an advanced level of understanding of web
technology, operation, and terminology and be familiar with Cisco StadiumVision Mobile.

Application developers who use this application programming interface (API) should also have an
understanding of the Objective-C language and Apple iOS, and Google Android application
development.

Obtaining the SDK
Please contact your Cisco account team to become part of the Cisco StadiumVision Mobile SDK partner
program.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional
information, see the monthly What's New in Cisco Product Documentation, which also lists all new and
revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS)
feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds
are a free service and Cisco currently supports RSS Version 2.0.
2
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Cisco StadiumVision M

Cisco StadiumVision Mobile EVS C-Cast
Integration

Revised: September 24, 2014
This module describes the Cisco StadiumVision Mobile SDK Release 2.0 integration with EVS C-Cast.

Overview
EVS C-Cast is a platform for making replay video clips available to client endpoints over an IP network
such as the Internet. The traditional way of scaling C-Cast content delivery to a large number of clients
is by using a Content Delivery Network (CDN). The CDN caches the content closer to the client, and
thus avoids the need for every client to reach back and retrieve the content from the C-Cast Central
server. This offloads the C-Cast Central server and reduces the amount of duplicate content that has to
traverse the network.

Multicast and SFD
When used for offering replays to mobile devices at a live event in a stadium the scaling challenge is
different. The bottleneck in a stadium is the wifi network that serves tens of thousands of fans with
mobile devices. In this scenario a CDN is unable to help, and other scaling options are needed. Cisco
StadiumVision Mobile Scalable File Distribution (SFD) is one such option. SFD uses multicast over wifi
to scale distribution of the Ccast video files. Multicast works much like over the air broadcast TV where
your local TV station sends out a single signal that anyone in the area can receive with an antenna on the
roof. From a load perspective it makes no difference to the TV broadcaster if ten subscribers or ten
thousand subscribers are watching. Cisco StadiumVision Mobile SFD works in a similar ways by
sending the files as a single multicast transmission, and any number of mobile devices in the stadium
can listen to that signal, receive the file and cache it in local storage for later use.

Timeline File
From the perspective of the C-Cast mobile app there is very little difference between the CDN and Cisco
StadiumVision Mobile SFD scenarios. In both cases the exact same Ccast XML timeline file provides
the app with the info it needs to make replays available to the user. And in both cases the timeline file
references the exact same media files. The only difference between the two scenarios is the transport
mechanism used to deliver the files to the mobile device. And this difference is largely, but not
completely, hidden by the Cisco StadiumVision Mobile SDK. To obtain the EVS C-Cast API, contact
3
obile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile EVS C-Cast Integration
Overview
James Stellphlug (j.stellpflug@evs.com) with a short note stating you are developing an app to consume
C-Cast clips in a Cisco StadiumVision Mobile venue. The steps below describe a high level workflow of
how an Cisco StadiumVision Mobile powered C-Cast app gains access to the XML timeline and media
files.

1. Register a callback to be notified when a file channel becomes available, using
addFileChannelDelegate.

2. Register to receive the channel notification using

 [svm addFileChannelObserver:self forChannelName:@"something"]

3. (Optional) Listen for file channel list updates and potentially register using

- (void)onFileChannelListUpdated:(NSMutableDictionary *)fileChannelList {}

4. Handle the file reception (movies/thumbnails/timeline) using

- (void)onFile:(NSData *)file withChannelName:(NSString *)channelName {}

5. Check if a file channel is already available, using getFileChannelListArray

6. If a channel is already available, or when a callback notification is received, register a file channel
observer, using addFileChannelObserver

7. Check if a file with the name ccast-timeline.xml is already available, using
getFileDistributionLocalFilename

8. If ccast-timeline.xml is not yet available wait for additional files to arrive, using onFile(). Each time
onFile() is called do a corresponding check with getFileDistributionLocalFilename to see if the new
file is ccast-timeline.xml

9. Once ccast-timeline.xml has been received parse it using the steps in chapter 5 (How to build the
media path) of the Ccast API spec, and build the media path for all media files

10. For each file media path remove the path prefix so that only the filename remains. I.e.
http://www.mydomain.com/videos/abc/def/ghi/abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u
8 becomes abcdefghijklmnopqrstuvwxyz123456_hls-ipad.m3u8

11. For each filename cycle through onFile() and getFileDistributionLocalFilename until all files have
been received.

12. Be prepared for ccast-timeline.xml to change at any time. Repeat steps 6-8 whenever it changes.
4
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Cisco StadiumVision M

Cisco StadiumVision Mobile API for Apple iOS

Revised: July 10, 2014
This module describes the Cisco StadiumVision Mobile SDK Release 2.0 for Apple iOS, and contains
the following sections:

• New Features in Cisco StadiumVision Mobile SDK Release 2.0, page 5

• Introduction to Cisco StadiumVision Mobile API for Apple iOS, page 6

• iOS API Prerequisites, page 6

• Apple iOS SDK Overview, page 8

• Client Application Integration Overview, page 8

• Cisco StadiumVision Mobile iOS API Class Overview, page 9

• Video View Controller Inheritance, page 10

• Cisco StadiumVision Mobile Application Classes, page 11

• Cisco StadiumVision Mobile iOS API Summary, page 12

• Cisco StadiumVision Mobile iOS API, page 13

New Features in Cisco StadiumVision Mobile SDK Release 2.0
Note the following for release 2.0 of the Cisco StadiumVision Mobile SDK:

• None of the release 1.3 APIs have changed for release 2.0.

• The Cisco StadiumVision Mobile SDK release 2.0 is backwards compatible with release 1.3, and
can be imported into your project without any software changes.

New SDK Features

• Scalable file distribution

• Statistics collection enhancements
5
obile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Introduction to Cisco StadiumVision Mobile API for Apple iOS
Introduction to Cisco StadiumVision Mobile API for Apple iOS
The iOS SDK is provided as a set of static libraries, header files, and an a sample iOS app (with a
complete Xcode project). This API uses Objective-C classes and method calls to access the
StadiumVision Mobile data distribution and video playback functionality within the StadiumVision
Mobile iOS SDK library.

Refer to the The Cisco StadiumVision Mobile Release Notes, Release 2.0 for the iOS version supported
in the Cisco StadiumVision Mobile Release 2.0 SDK.

iOS Model View Controller (MVC) Design Pattern
The Model View Controller (MVC) design pattern separates aspects of an application into three distinct
parts and defines how the three communicate. Figure 2-1 illustrates the Apple iOS MVC. As the name
implies, the application is divided into three distinct parts: Model, View and Controller. The main
purpose for MVC is reusability where you can reuse the same model for different views.

Figure 2-1 MVC Design Pattern

iOS API Prerequisites
Build Environment Requirements

Table 3 lists the various iOS SDK build environment requirements.
6
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

http://www.cisco.com/c/en/us/td/docs/Sports_Entertainment/StadiumVision/Mobile/release/notes/2_0/SV_Mobile_Relnotes_2_0.html

Chapter Cisco StadiumVision Mobile API for Apple iOS
iOS API Prerequisites
Note Application developers will need to link against the libstdc++ library in their build. They will also need
to use the "-ObjC" linker flag to import all of the iOS "categories" from the iOS SDK. Both of the
required linker flags can be added in Xcode using Build Settings->Linking->Other Linker Flags->Add.
The required Xcode "Other Linker Flags" settings are shown in Figure 2-2:

Figure 2-2 Xcode Other Linker Flags

Figure 2-3 shows the Xcode build settings that apply to both the project and target settings. Figure 2-4
shows the settings for generating position dependent and position independent code.

Figure 2-3 Xcode Build Settings

Table 3 Apple iOS Build Environment Requirements

Tool Version Description URL

Mac OSX 10.8.4 or
later

A Mac is required to build an
iOS application which
includes the StadiumVision
Mobile iOS SDK.

http://www.apple.com

Xcode 5.0 or later Apple development IDE and
tool kit.

http://developer.apple.com/xcode
7
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 2-4 Xcode Build Settings—Position Dependent and Independent Code Generation

Apple iOS SDK Overview
The Cisco StadiumVision Mobile iOS SDK contains the following components:

• A set of static libraries, header files, and an a sample iOS app (with a complete Xcode project)

• Customizable iOS SDK video player

Client Application Integration Overview
Figure 2-5 illustrates the high-level view of the Cisco StadiumVision iOS API libraries and common
framework components. The left side of the graphic represents how to modify the sample application,
and the right represents how the SDK is packaged.
8
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 2-5 Cisco StadiumVision Mobile iOS SDK Components

Cisco StadiumVision Mobile iOS API Class Overview
The singleton "StadiumVisionMobile" class provides the top-level API to start, configure, and stop the
framework. Video View Controller classes are provided to play the video channels and allow for
customer customization. Figure 2-6 illustrates the Cisco StadiumVision Mobile API classes.
9
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 2-6 Cisco StadiumVision Mobile iOS API Classes

Video View Controller Inheritance
The iOS "UIViewController" and "UIView" classes are used as base classes. The customer application
can extend the Cisco StadiumVision Mobile classes. Figure 2-7 illustrates the UIViewController and
UIView classes.

SVMDataObserver

SVMWifiInfo SVMStatus

SVMDeviceInfo

SVMChannel

SVMVideoView

SVMVideoViewController

SVMVideoChannelListObserver

SVMWifiInfoDelegate

SVMVDataChannelListObserver

StadiumVisionMobile

SVMFileObserver SVMAudioChannelListObserver SVMFileChannelListObserver

SVMAudioManager
10
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 2-7 Cisco StadiumVision Mobile Video Classes

Cisco StadiumVision Mobile Application Classes
The Cisco StadiumVision Mobile application classes:

• Extends and customizes the SVMVideoViewController class

• Adds a UI overlay for controlling video playback (play, stop, close)

• Adds a UI overlay for displaying Cisco StadiumVision Mobile stats

• Handles gestures to display UI overlays with the MyVideoViewController class

Figure 2-8 Cisco StadiumVision Mobile Sample Application Classes
11
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Cisco StadiumVision Mobile iOS API Summary
Table 2-1 summarizes the iOS API library. Following the summary are detailed tables for each API call.

Table 2-1 Cisco StadiumVision Mobile iOS API Summary

Return Type API Method Name API Method Description

StadiumVisionMobile* sharedInstance Gets a reference to the API singleton class
used for all API calls

NSDictionary* getConfig Gets the SDK configuration at run-time

NSArray* getStreamerArray Gets an array of detected SVM Streamer
servers as 'SVMStreamer' objects

SVMStatus* start Starts the StadiumVision Mobile SDK

SVMStatus* shutdown Stops the StadiumVision Mobile SDK

SVMStatus* addVideoChannelListDelegate Registers a callback delegate to receive all
video channel list updates

SVMStatus* removeVideoChannelListDelegate Unregisters the callback delegate from
receiving the video channel list updates

SVMStatus addDataChannelListDelegate Registers a callback delegate to receive all
data channel list updates

SVMStatus* removeDataChannelListDelegate Unregisters the callback delegate from
receiving the data channel list updates

SVMStatus* addDataChannelObserver Registers an observer class to receive data for
a particular data channel

SVMStatus* removeDataChannelObserver Unregisters an observer class from receiving
data for a particular data channel

SVMStatus* addDataChannelObserver:forChannel: Registers an observer class to receive all data
updates for a particular data channel

SVMStatus* addDataChannelObserver:forChannelName: Registers an observer class to receive all data
updates for a particular data channel name

SVMStatus* removeDataChannelObserver:forChannel: Unregisters an observer class from receiving
any data updates for a particular data channel

SVMStatus* removeDataChannelObserver:forChannelName: Unregisters an observer class from receiving
any data updates for a particular data channel

SVMStatus* getVideoChannelListArray Returns a snapshot array of the currently
available video channels.

SVMStatus* getDataChannelListArray Returns a snapshot array of the currently
avaialable data channels.

NSDictionary stats Gets an NSDictionary of current
StadiumVision Mobile SDK stats.

SVMStatus* version Gets the StadiumVision Mobile version string.

SVMStatus* setConfig Sets the SDK configuration at run time.

SVMStatus* setConfigWithString Sets the SDK configuration at run time with
the config JSON string.
12
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Cisco StadiumVision Mobile iOS API
The following sections and tables describe each API call in more detail, including example usage:

Return Status Object

Each API call returns a SVMStatus object whenever applicable. Table 2-2 lists the SVMStatus object
fields. This section contains the following API calls and tables:

• SVMStatus class

• sharedInstance

• Start

• addVideoChannelListDelegate

• setLogLevel

• removeVideoChannelListDelegate

• addDataChannelListDelegate

• removeDataChannelListDelegate

• addDataChannelListDelegate

• removeDataChannelListDelegate

• addDataChannelObserver

• removeDataChannelObserver

• setConfig

• setConfigWithString

• allowPlaybackWhenViewDisappears

• getConfig

• onData

• Stats

• Stats API Hash Keys and Descriptions

• getVideoChannelListArray

• getDataChannelListArray

• wifiInfo

• wifiInfo Object Properties

• version
13
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-2 SVMStatus class

Table 2-3 sharedInstance

Type BOOL NSString

Property isOk errorString

Description
Boolean indicating whether the API call was
successful or not.

If the API call was not successful (isOk == NO),
this string describes the error.

Example Usage

// make an api call
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
SVMStatus status = svm.start();
// if an error occurred
if (status.isOk == NO) {
// display the error description
NSLog(@"Error occurred: %@" + status.errorString);

Method Signature (StadiumVisionMobile*) sharedInstance

Prerequisites N/A

Notes

Class method that returns a reference to the StadiumVision
Mobile API singleton class. The returned
"StadiumVisionMobile" object reference is used for all
subsequent StadiumVision Mobile API calls.

Result N/A
14
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-4 Start

Table 2-5 addVideoChannelListDelegate

Table 2-6 setLogLevel

Table 2-7 removeVideoChannelListDelegate

Table 2-8 addDataChannelListDelegate

Method Signature (SVMStatus*)start

Prerequisites N/A

Notes

This method starts the StadiumVision Mobile SDK. This will
kick-off and start any required StadiumVision Mobile
background threads and component managers.

Result N/A

Method Signature
(SVMStatus*) addVideoChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
video channel list updates from the StadiumVision Mobile
SDK.

Result N/A

Method Signature

StadiumVisionMobile *svm = [StadiumVisionMobile
sharedInstance];
[svm setLogLevel:SVM_API_LOG_DEBUG]

Prerequisites N/A

Notes
Sets the logging output level of the SDK, with the "DEBUG"
level being more verbose than the "INFO" level.

Result SVMStatus*

Method Signature
(SVMStatus*) addVideoChannelListDelegate:

(id)delegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any video channel list updates from the
StadiumVision Mobile SDK.

Result N/A

Method Signature (SVMStatus*) addDataChannelListDelegate: (id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
data channel list updates from the StadiumVision Mobile
SDK.

Result N/A
15
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-9 removeDataChannelListDelegate

Table 2-10 addDataChannelListDelegate

Table 2-11 removeDataChannelListDelegate

Table 2-12 addDataChannelObserver

Method Signature
(SVMStatus*) removeDataChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any data channel list updates from the
StadiumVision Mobile SDK.

Result N/A

Method Signature
(SVMStatus*) addDataChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
data channel list updates from the StadiumVision Mobile
SDK.

Result N/A

Method Signature
(SVMStatus*) removeDataChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any data channel list updates from the
StadiumVision Mobile SDK.

Result N/A

Method Signature

(SVMStatus*) addDataChannelObserver:
(id<SVMDataObserver>)delegate
forChannel: (SVMChannel*)channel
(SVMStatus*)
addDataChannelObserver:(id<SVMDataObserver>)delegate
forChannelName: (NSString*)channelName

The following example enables reception of the data
announcements:

SVMChannel *selectedChannel1 = [dataChannelList
objectAtIndex:0];
 [svm addDataChannelObserver:self
forChannelName:selectedChannel1.name];

Prerequisites N/A

Notes
This method registers the given delegate class to receive all
data for the given data channel object.

Result N/A
16
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-13 removeDataChannelObserver

Table 2-14 setConfig

Table 2-15 setConfigWithString

Table 2-16 allowPlaybackWhenViewDisappears

Table 2-17 getConfig

Method Signature

(SVMStatus*) removeDataChannelObserver:
(id<SVMDataObserver>)delegate
forChannel: (SVMChannel*)channel

Prerequisites N/A

Notes
This method unregisters the given delegate class from
receiving any data for the given data channel name.

Result N/A

Method Signature
(SVMStatus*)setConfig:(NSDictionary*)runtimeConfigDict
;

Prerequisites N/A

Notes This method sets the SDK configuration at run-time.

Result N/A

Method Signature (SVMStatus*)setConfigWithString:(NSString*)jsonConfig;

Prerequisites N/A

Notes This method sets the SDK configuration at run-time.

Result N/A

Method Signature
(SVMStatus
*)allowPlaybackWhenViewDisappears:(BOOL)isAllowed;

Prerequisites N/A

Notes

Provides a mode that allows the video player to continue
rendering the audio and video channels when the video player
view has lost focus.

Result N/A

Method Signature (NSDictionary*)getConfig;

Prerequisites N/A

Notes This method fetches the SDK configuration.

Result N/A
17
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-18 onData

Table 2-19 Stats

Method Signature
(void) onData:(NSData*)data
withChannelName:(NSString*)channelName

Prerequisites N/A

Notes

This method is implemented by the customer app to support
the "SVMDataObserver" protocol. This delegate method is
used as a callback from the StadiumVision Mobile SDK.
Each callback from the SDK to the customer app provides a
received data message on the given data channel. The data
channel message is delivered as an array of bytes (NSData).

Results N/A

Method Signature (NSDictionary*) stats

Prerequisites N/A

Notes

This method returns the StadiumVision Mobile SDK stats as
a dictionary of name / value pairs.
Stats are currently only available for the video channel (not
data channels).

Result N/A
18
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-20 Stats API Hash Keys and Descriptions

Stats Hash Key Stats Description

announcement_session_id The video session announcement ID

announcement_session_title The session announcement name

announcementsMalformed Number of malformed channel announcement packets
received

announcementsNotAllowed Number of announcements where the Streamer is not allowed

announcementsReceived Number of total channel announcements received

channelsAdded Number of times a channel was added to the channel list

channelsPruned Number of times a channel was pruned from the channel list

invalidJsonAnnouncements Number of announcements with an invalid JSON body

licenseMismatchAnnouncements Number of license key mismatches

listenerIgmpRestarts Number of announcement listener IGMP restarts

num_dropped_video_frames The total number of video frames dropped

num_ts_discontinuities The total number of MPEG2-TS packet discontinuities

protection_windows The total number of protection windows sent

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent).

session_uptime The length of time the session has been active (in seconds)

statsUploadAttempts Number of Reporter stats upload attempts

statsUploadFailures Number of Reporter stats upload failures

statsUploadSuccesses Number of Reporter stats upload successes

total_num_bytes_written The total number of video bytes played

versionMismatchAnnouncements Number of announcement version mismatches

window_error The total number of protection windows with more packets
per window than can be supported by Cisco StadiumVision
Mobile.

window_no_loss The total number of protection windows with no dropped
video packets

window_recovery_failures The total number of protection windows that could not
recover dropped packets. Recovery failure occurs when the
number of received repair packets is less than the number of
dropped video packets

window_recovery_successes The total number of protection windows with recovered
video packets

window_warning The total number of protection windows with more packets
per window than the recommended value
19
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-21 getVideoChannelListArray

Table 2-22 getDataChannelListArray

Table 2-24 and Table 2-25 contain properties are available within the SVMWifiInfo object.

Table 2-24 wifiInfo Object Properties

Table 2-25 version

Method Signature

StadiumVisionMobile *svm = [StadiumVisonMobile
sharedInstance];

NSArray *currentChannels = [svm

getVideoChannelListArray];

Prerequisites N/A

Notes
This method returns an array (NSArray*) of the currently
available video channels (array of “SVMChannel” objects).

Result NSArray* of SVMChannel objects

Method Signature

StadiumVisionMobile *svm = [StadiumVisonMobile
sharedInstance];
NSArray *currentChannels = [svm
getDataChannelListArray];

Prerequisites N/A

Notes
This method returns an array (NSArray*) of the currently
available data channels (array of “SVMChannel” objects)

Result NSArray* of SVMChannel objects

Table 2-23 wifiInfo

Method Signature (SVMWifiInfo*) wifiInfo

Prerequisites N/A

Notes

This method returns the current WiFi network connection
information. This information gets collected in the statistics
information that gets uploaded to the Reporter server.

Result N/A

Stats Hash Key Stats Description

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent).

session_uptime The length of time the session has been active (in seconds)

announcement_session_id The video session announcement ID

Method Signature (NSString*) version

Prerequisites N/A
20
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
The 'SVMVideoVideoController' class can be extended and customized. The
SVMVideoVideoController API methods are listed in Table 2-26. This section contains the following
API calls and tables:

• Video View Controller API Summary

• setRenderVideoView

• playVideo Channel

• getConfig

• getStreamerArray

• seekRelative

• seekAbsolute

• playLive

Table 2-26 Video View Controller API Summary

Table 2-27 setRenderVideoView

Notes
This method returns the Cisco StadiumVision Mobile SDK
version string.

Result N/A

Method Signature (NSString*) version

Return Type API Method Name API Method Description

void setRenderVideoView Sets the iOS UI video view where video frames will get
rendered

SVMStatus playVideoChannel Starts playback of a particular video channel, changing
channels on subsequent calls

SVMStatus seekRelative Moves the video playback buffer pointer relative to the
current video playback buffer offset position

SVMStatus seekAbsolute Moves the video playback buffer pointer relative to the
starting "live" video playback buffer offset position

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the
current playback buffer offset position

SVMStatus playLive Moves the video playback buffer pointer to the head ("live")
offset position in the video playback buffer

Method Signature (void)setRenderVideoView: (UIView*)aVideoView;

Prerequisites N/A

Notes

This method sets the target iOS video view (SVMVideoView)
that will be used by the StadiumVision Mobile SDK to render
video frames.

Result N/A
21
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-28 playVideo Channel

Table 2-29 getConfig

Table 2-30 getStreamerArray

Method Signature (void)playVideoChannel:(SVMChannel*)channel;

Prerequisites N/A

Notes

This method plays the given video channel object.
When subsequently called with a different video channel
object, the video view controller will automatically stop the
currently playing channel and start playback of the new
channel

Result N/A

Method Signature (NSDictionary*)getConfig

Prerequisites N/A

Notes
This method returns the current SDK configuration as an
NSDictionary object.

Result NSDictionary*

Method Signature (NSArray*)getStreamerArray

Prerequisites N/A

Notes

This method returns an array of Streamer servers detected by
the SVM SDK; with each Streamer entry represented as an
'SVMStreamer' object in the array.

Result NSArray*
22
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-31 seekRelative

Table 2-32 seekAbsolute

Method Signature (void) seekRelative: (NSInteger)durationMs;

Prerequisites N/A

Notes

• This method moves the video playback buffer pointer
within the video history buffer for the given amount of
time (in milliseconds) relative to its current position.

• The StadiumVision Mobile SDK currently buffers 30
seconds of previously played video data that can be used
for playing previously recorded video data.

• A negative duration value rewinds the video play-head
within the video history buffer.

• A positive duration value forwards the video play-head
towards the latest "live" video data in the video history
buffer.

• Should a duration be given (positive or negative) that is
larger than the available size of the video history buffer,
then the StadiumVision Mobile SDK move the video
play-head as far as possible within the video history
buffer.

Result N/A

Method Signature (void) seekAbsolute: (NSUInteger)durationMs;

Prerequisites N/A

Notes

• This method moves the video playback buffer pointer
within the video history buffer for the given amount of
time (in milliseconds) relative to the latest "live" video
data.

• The StadiumVision Mobile SDK currently buffers 30
seconds of previously played video data that can be used
for playing previously recorded video data

• A positive duration value moves the video play-head
away from the latest "live" video data in the video history
buffer.

• Should a duration be given that is larger than the
available size of the video history buffer, then the
StadiumVision Mobile SDK move the video play-head to
the end of the video history buffer.

Result N/A
23
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-33 playLive

NS Notification Events

The StadiumVision Mobile SDK broadcasts the following iOS NSNotification events for use by the
client application (listed in Table 2-34).

Table 2-34 NSNotification Event Properties

The following source code registers to receive the Cisco video notifications:

#include "StadiumVisionMobile.h"
// register to handle the video buffering events
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoEvent:)
 name:kSVMVideoEventNotification
 object:nil];

The following source code handles the Cisco video notifications:

#include "StadiumVisionMobile.h"

// video event notification handler

Method Signature (void) playLive;

Prerequisites N/A

Notes

• This method forwards the video play-head to the starting
"live" position at the beginning of the video data buffer.

• This convenience method acts as a wrapper for the
"seekAbsolute" API method; making "playLive()"
equivalent to "seekAbsolute(0)".

Result N/A

Event Constant Description

kSVMVideoEventNotification Constant defining the video event generated by the
StadiumVision Mobile SDK

kSVMEventTypeVideoBufferingActive Constant defining the "Video Buffering" type of video event

kSVMEventTypeVideoBufferingInactive Constant defining the "Video Not Buffering" type of video
event

kSVMVideoOpenState Occurs when the video player initially opens the video
channel session

kSVMVideoPlayState Occurs when the video player starts playing the video
channel

kSVMVideoRewindState Occurs when the video player rewinds (seeks backwards)
within the video history buffer

kSVMVideoLiveState Occurs when the video player moves the play-head to the
beginning "live" position

kSVMVideoStopState Occurs when the video player stop video playback

kSVMVideoCloseState Occurs when the video player closes the video channel
session
24
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
 (void)onVideoEvent:(NSNotification*)notification {
 // get the passed "SVMEvent" object
 SVMEvent *event = [notification object];

 // determine the video event type
 switch (event.type) {
 case kSVMEventTypeVideoBufferingActive:
 // activate the UI "buffering" indicator
 break;
 case kSVMEventTypeVideoBufferingInactive:
 // deactivate the UI "buffering" indicator
 break;
 }
}

The following example shows how to subscribe to receive the video player broadcast notifications:

// subscribe to receive video channel state change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoChannelStateChanged:)
 name:kSVMVideoPlayerChannelStateChange
 object:nil];

The following example shows how to parse the video player broadcast notifications for (1) the video
channel name and (2) the video channel state:

// get the video channel state dictionary from the notification
NSDictionary *stateDict = [notify userInfo];

// get the video channel name
NSString *videoChannelName = [stateDict objectForKey:kSVMVideoPlayerChannelNameKey];

// get the video channel state
NSString *videoChannelState = [stateDict objectForKey:kSVMVideoPlayerChannelStateKey];

// determine the video channel state
if ([videoChannelState isEqualToString:kSVMVideoPlayState] == YES) {
 // video player is now playing
 NSLog(@"### VIDEO PLAYER: PLAYING");
} else if ([videoChannelState isEqualToString:kSVMVideoStopState] == YES) {
 // video player is now stopped
 NSLog(@"### VIDEO PLAYER: STOPPED");
}

Video Player State Flags

The SVM video player class ("SVMVideoViewController") provides a set of state flags that the inherited
video player class (ie: "MyVideoViewController") can use to monitor the current video player state:

• BOOL isPlaying;

• BOOL isOpen;

• BOOL isAppActive;

• BOOL isVisible;

• BOOL isBackgroundPlaybackAllowed;

Table 2-35 provides a description of each state flag provided by the StadiumVision Mobile video player
("SVMVideoViewController"):
25
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-35 Video Player State Flags

Video Player Background Audio

Starting Cisco StadiumVision Mobile SDK Release 1.3, the SVM video player
("SVMVideoViewController") provides a mode that allows the video player to continue rendering the
audio and video channels when the video player view has lost focus. This mode allows the audio to still
be played even when the user navigates away from the video player screen (view controller) to a different
app screen; causing the video player to be hidden.

The background audio mode is disabled in the "SVMVideoViewController" by default.

The following example shows how to set the "SVMVideoViewController" mode that allows the video
player to continue rendering audio and video when the "SVMVideoViewController" loses focus (is not
visible):

// create the video view controller
self.videoViewController = [[MyVideoViewController alloc] init];

// allow the video player to continue playing when the video view disappears
[self.videoViewController allowPlaybackWhenViewDisappears:YES];

Video Player Channel Inactive Callback

To detect that a currently playing video channel has become invalid (due to Streamer server admin
changes), the SVM video player ("SVMVideoViewController") provides a callback to tell the video
player sub-class (ie: "MyVideoViewController") that the currently playing channel is no longer valid.

When a channel becomes invalid, playback of the video channel is automatically stopped.

To receive these callbacks, the "onCurrentChannelInvalid" method must be overridden by the
'SVMVideoViewController' sub-class (ie: "MyViewViewController"). The following example shows the
method signature and implementation of this overridden callback method:

// OVERRIDDEN by the 'SVMVideoViewController' sub-class; indicates that the current
channel is invalid
- (void)onCurrentChannelInvalid
{
 NSLog(@"Current channel is no longer valid: dismissing video view controller");

State Flag Description

isOpen Boolean flag indicating that the video player has opened a
session for video channel playback

isPlaying Boolean flag indicating when the video player is currently
playing a video channel

isBackgroundPlaybackAllowed Boolean flag indicating if the video player is allowed to
continue rendering the audio and video channels when the
video player view has lost focus
("allowPlaybackWhenViewDisappears")

isVisible Boolean flag indicating when the video player view is visible.
This is useful when the video player is allowed to continue
playing the audio / video channels when the video player has
lost focus ("allowPlaybackWhenViewDisappears")

isAppActive Boolean flag indicating when the container iOS app is in the
foreground
26
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
 // dismiss this modal video view controller
 [self dismissModalViewControllerAnimated:YES];
}

Receiving Service Up and Down Notifications

The Release 2.0 of the Cisco StadiumVision Mobile SDK includes a mechanism to determine if the Cisco
StadiumVision Mobile service is available or not. The SDK provides an indicator to the application
indicating if the StadiumVision Mobile service is up or down. This indication should be used by the
application to indicate to the user whether the StadiumVision Mobile service is available or not. Service
is declared 'down' by the SDK when any of the following are true:

• The SVM SDK detects that the video quality is poor

• The SVM SDK detects that no valid, licensed channel are available

• The mobile device's WiFi interface is disabled

Poor video quality can occur when the user is receiving a weak WiFi signal; causing data loss. There are
two different ways that the iOS app can get the "Service State" from the SVM SDK:

• Register to receive the "Service Up / Down" notifications

• Fetch the current service state from the SDK on-demand

When the app receives the "Service Down" notification, the SDK will supply a bitmap containing the
reasons why the service wasdeclared as 'down' by the SDK. The 'reasons' bitmap is given in Table 3:

The following example shows how to register to receive the "Service Up / Down" notifications from the
StadiumVision Mobile SDK:

#import "StadiumVisionMobile.h"

// subscribe to receive service state up / down change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onServiceStateChanged:)
 name:kSVMServiceStateChangedNotification
 object:nil];

// handle the received service state notifications
- (void)onServiceStateChanged:(NSNotification*)notify
{
 // get the service state dictionary from the notification
 NSDictionary *serviceStateDict = [notify userInfo];

 // get the service state integer value
 NSNumber *serviceStateNumber = [serviceStateDict
objectForKey:kSVMServiceStateObjectKey];
 NSUInteger serviceState = [serviceStateNumber unsignedIntegerValue];

Table 3 Service Down Reason Notification

Service Down Reason Constant

Poor video quality networking conditions
detected

kSVMServiceDownReasonPoorQuality

WiFi connection is down kSVMServiceDownReasonWiFiDown

No valid SVM channels have been detected kSVMServiceDownReasonNoChannels
27
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
 // if the service state is down
 if (serviceState == kSVMServiceStateDown) {
 // service state is down
 NSLog(@"*** SERVICE STATE: DOWN");

 // get the service state down reasons bitmap
 NSNumber *reasonsNumber = [serviceStateDict
objectForKey:kSVMServiceStateChangeReasonsObjectKey];
 NSUInteger reasonsBitmap = [reasonsNumber unsignedIntegerValue];

 // determine the reason(s) why the service state went down
 if (reasonsBitmap & kSVMServiceDownReasonSDKNotRunning) {
 NSLog(@"SERVICE DOWN: SVM SDK was stopped");
 } else if (reasonsBitmap & kSVMServiceDownReasonWiFiDown) {
 NSLog(@"SERVICE DOWN: WiFi connection is down");
 } else if (reasonsBitmap & kSVMServiceDownReasonNoChannels) {
 NSLog(@"SERVICE DOWN: No valid licensed SVM channels available");
 } else if (reasonsBitmap & kSVMServiceDownReasonPoorQuality) {
 NSLog(@"SERVICE DOWN: Poor quality conditions detected");
 }

 // show the service down message
 [self showServiceDownMessage];
 } else if (serviceState == kSVMServiceStateUp) {
 // service state is up
 NSLog(@"*** SERVICE STATE: UP");
 }
}

Getting the Current Service Up or Down State On Demand

The "getServiceState" API method can be used to fetch the current service state from the SDK. The
method signature of the "getServiceState" API call is given below:

// api call to fetch the current svm 'service state' on-demand
- (SVMServiceState)getServiceState;

The following example show how to fetch the current service state from the SVM SDK using the
"getServiceState" API call:

#import "StadiumVisionMobile.h"

// get the svm api context
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// get the current svm service state
SVMServiceState state = [svm getServiceState];

// determine the current service state
if (serviceState == kSVMServiceStateUp) {
 // service state is up
 NSLog(@"*** SERVICE STATE: UP");
} else if (serviceState == kSVMServiceStateDown) {
 // service state is down
 NSLog(@"*** SERVICE STATE: DOWN");
}
28
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
In-Venue Detection

Cisco StadiumVision Mobile SDK Release 1.3 provides a mechanism to detect whether the mobile
device is connected within the SVM-enabled venue or not. There are two different ways that the iOS app
can get this "In-Venue Detection" state from the SVM SDK:

1. Register to receive the "In-Venue Detection" notifications

2. Fetch the current "In-Venue" state from the SDK on-demand

Receiving In-Venue Detection Notifications

The following example shows how to register to receive the "Service Up / Down" notifications from the
SVM SDK:

// subscribe to receive in-venue connection change notifications
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVenueConnectionChanged:)
 name:kSVMVenueConnectionUpdateNotification
 object:nil];

// handle the venue connection changed event
- (void)onVenueConnectionChanged:(NSNotification*)notify
{
 // get the in-venue detection dictionary from the notification
 NSDictionary *inVenueDetectionDict = [notify userInfo];

 // get the in-venue detection value
 NSNumber *inVenueDetectionNumber = [inVenueDetectionDict
objectForKey:kSVMVenueConnectionStateObjectKey];
 BOOL isConnectedToVenue = [inVenueDetectionNumber boolValue];

 // log whether we are inside the venue
 NSLog(@"###### Venue Connection Updated: %@", (isConnectedToVenue ? @"INSIDE" :
@"OUTSIDE"));
}

Get the Current In-Venue State On-Demand

The "isConnectedToVenue" API method can be used to fetch the current in-venue state from the SDK.
The method signature of the "isConnectedToVenue" API call is given below:

// returns whether the device is connected to the licensed SVM venue or not
- (BOOL)isConnectedToVenue;

The following example shows how to fetch the current service state from the SVM SDK using the
"getServiceState" API call:

// get a reference to the svm api
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];

// get whether the device is currently connected to the SVM licensed venue
BOOL isConnectedToVenue = [svm isConnectedToVenue];

// log whether the device is currently connected to the SVM licensed venue
NSLog(@"###### Venue Connection State: %@", (isConnectedToVenue ? @"INSIDE" :
@"OUTSIDE"));
29
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Set the SDK Configuration at Run-Time

Previously, the Cisco StadiumVision Mobile SDK could only be configured by using a JSON-formatted
config file ("cisco_svm.cfg") bundled within the iOS app. Starting with Release 2.0, the application can
now set the SDK configuration at run-time through an API method. This allows the application to
dynamically configure the SDK. For example, the application can fetch the SDK configuration
information from a network connection, and then pass that configuration to the SDK.

Two different methods are provided for setting the SDK configuration at run-time:

• "setConfig"

• "setConfigWithString"

The following example shows how to set the SDK configuration using the "setConfig" API
method:
#import "StadiumVisionMobile.h"
// get the stadiumvision mobile api instance
StadiumVisionMobile *svmInstance = [StadiumVisionMobile sharedInstance];
// create the config dictionary with the set of licensing keys
NSMutableDictionary *configDict = [[[NSMutableDictionary alloc] init] autorelease];
NSMutableDictionary *licenseDict = [[[NSMutableDictionary alloc] init] autorelease];
[licenseDict setObject:@"MyVenueNameKey" forKey:@"venueName"];
[licenseDict setObject:@"MyContentOwnerKey" forKey:@"contentOwner"];
[licenseDict setObject:@"MyAppDeveloperKey" forKey:@"appDeveloper"];
[configDict setObject:licenseDict forKey:@"license"];
// update the stadiumvision mobile configuration
[svmInstance setConfig:configDict];

Scalable File Distribution

The Cisco StadiumVision Mobile SDK libraries will support file channels that are easily accessible to
the mobile client application.

Table 4 lists the Cisco StadiumVision Mobile scalable file distribution API.

Table 4 Scalable File Distribution and Service API Summary

API Return Type
File Service API Method
Name Method Description

SVMStatus * addFileChannelListDele
gate

Registers a callback delegate to receive all file
channel list updates

SVMStatus* removeFileChannelList
Delegate

Unregisters the callback delegate from receiving
the file channel list updates

NSArray *
getFileChannelListArra
y

Returns a snapshot array of the currently
avaialable file channels

SVMStatus*
addFileChannelObserve
r

 Registers an observer class to receive data for a
particular file channel

SVMStatus *
removeFileChannelObse
rver

Unregisters an observer class from receiving file
for a particular file channel
30
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
SVMStatus*
addFileChannelObserve
r:forChannel

Registers an observer class to receive all file
updates for a particular file channel

SVMStatus*
addFileChannelObserve
r:forChannelName

Registers an observer class to receive all file
updates for a particular file channel name

SVMStatus *
removeFileChannelObse
rver:forChannel

Unregisters an observer class from receiving any
file updates for a particular file channel

SVMStatus *
removeFileChannelObse
rver:forChannelName

Unregisters an observer class from receiving any
file updates for a particular file channel name

NSMutableDiction
ary *

getFileDistributionTable

 Gets File distribution table details

NSString *
getFileDistributionLocal
Filename

 Get local filesystem filename for any object given
its URI and the file channel

NSString *
getFileDistributionLocal
Filename:forChannel

 Get local filesystem filename for any object given
its URI and the file channel

NSString *
getFileDistributionLocal
Filename:forChannelNa
me

 Get local filesystem filename for any object given
its URI and the file channel name

Table 4 Scalable File Distribution and Service API Summary (continued)

API Return Type
File Service API Method
Name Method Description
31
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
SDK Workflow
This section describes the Cisco StadiumVision Mobile SDK workflow, and contains the following
sections:

• Starting the SDK, page 32

• Setting the Log Level, page 32

• Getting the Video Channel List, page 32

• Presenting the Video Channel List, page 33

• Playing A Video Channel, page 33

• Seeking Within the Video Buffer, page 33

• Getting The Data Channel List, page 34

• Observing a Data Channel, page 34

• Getting the SDK Version String, page 34

• Shutting Down the SDK (Optional), page 35

Starting the SDK

The StadiumVision Mobile SDK needs to be started at the application initialization by calling the "start"
API method as in the following example:

#import "StadiumVisionMobile.h"
// get a reference to the StadiumVision Mobile API
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// start the StadiumVision Mobile SDK
[svm start];

Setting the Log Level

Sets the logging output level of the SDK, with the “DEBUG” level being more verbose than the “INFO”
level. An example follows:

// start method sets logs to INFO by default
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
[svm start];

// set the desired log level
[svm setLogLevel:SVM_API_LOG_DEBUG];

Getting the Video Channel List

The client application registers to receive callback whenever the video channel list is updated, as in the
following example:

// register to receive video channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addVideoChannelListDelegate:self];

The StadiumVision Mobile SDK will callback the client application with any video channel list updates.

#import "StadiumVisionMobile.h"
// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>
// video channel handler (array of 'SVMChannel' objects)
32
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
 -(void)onVideoChannelListUpdated:(NSArray*)channelList;

Presenting the Video Channel List

Table 2-36 lists the "SVMChannel" video channel objects containing all of the information needed to
display the channel list to the user.

Table 2-36 SVMChannel object properties

Playing A Video Channel

The example below demonstrates these actions:

• Selects a channel from the locally saved channel list

• Presents the video view controller modally

• Commands the video view controller to play the selected channel

#import "StadiumVisionMobile"

// get the user-selected video channel object
SVMChannel *selectedChannel = [videochannelList objectAtIndex:0];

NSLog(@"Selected Video Channel = %@", selectedChannel.name);

// create the video view controller
MyVideoViewController *myVC = [[MyVideoViewController alloc] init];

// present the modal video view controller
myVC.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
[self presentModalViewController:myVC animated:YES];

// play the selected video channel
[myVC playVideoChannel:selectedChannel];

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in the device RAM. The following example jumps
backwards 20 seconds in the video buffer (instant replay).

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// rewind 20 seconds
[svm rewindForDuration:-20000];

"SVMChannel" Property Property Description

"name” The name of the video channel

"bandwidthKbps” The nominal video stream bandwidth (in kbps)

"sessionNum” The session number of the channel

"channelText” The complete text description of the video channel

“venueName” The name of the venue

“contentOwner” The name of the content owner

“appDeveloper” The name of the application developer
33
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
The example below jumps back to the top of the video buffer ("live" video playback):

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// play at the "live" video offset
[svm playLive];

Getting The Data Channel List

In the following example, the client application registers to receive callback whenever the data channel
list is updated.

// register to receive data channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addDataChannelListDelegate:self];

In this example, the StadiumVision Mobile SDK will callback the client application with any data
channel list updates:

#import "StadiumVisionMobile.h"

// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>

// data channel handler (array of 'SVMChannel' objects)
 (void)onDataChannelListUpdated:(NSArray*)channelList;

Observing a Data Channel

In the following example, the registered class needs to implement the "SVMDataObserver" protocol:

#import "SVMDataObserver.h"
@interface DataChannelViewController : UIViewController <SVMDataObserver>

In this example, the "onData:withChannelName" method is called to push the received data to the
registered class:

-(void)onData:(NSData*)data withChannelName:(NSString *)channelName {
 // convert the data bytes into a string
 NSString *dataStr = [[NSString alloc] initWithBytes:[data bytes]
 length:[data length]
 encoding:NSUTF8StringEncoding];

 // display the data bytes and associated channel name
 NSLog(@"ChannelListViewController: onData callback: "
 "channelName = %@, data = %@", channelName, dataStr);

 [dataStr release];}

Getting the SDK Version String

The example below gets the StadiumVision Mobile SDK version string:

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// get the sdk version string
NSString *sdkVersion = [svm version];
34
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Shutting Down the SDK (Optional)

The StadiumVision Mobile SDK automatically shuts-down and restarts based upon the iOS life-cycle
notifications (NSNotifications). The client iOS application does not need to explicitly stop and restart
the StadiumVision Mobile SDK. This 'shutdown' API is provided in case a customer use-case requires
an explicit SDK shutdown.

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// shutdown the StadiumVision Mobile SDK
[svm shutdown];

Video Player View Controller Customization
This section describes how to customize the video player, and contains the following sections:

• Default Cisco Video Player View Controller, page 35

• Customized Video Player, page 35

• Cisco Demo Customized Video Player, page 36

Default Cisco Video Player View Controller

The default Cisco video player has the following features:

• Implemented as a separate iOS "UIViewController"

• Support for fullscreen and partial-screen video views

• Video frames rendered using an iOS "UIView" and OpenGL layer (CAEAGLLayer)

• Customizable by extending the "SVMVideoViewController" class

• The Cisco demo app uses a customized video player

Customized Video Player

To customize the video player, extend the "SVMVideoViewController" base class as in the following
example:

#import "SVMVideoViewController.h";

@interface MyVideoViewController : SVMVideoViewController {
}

35
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 2-9 Video Player Customization

Cisco Demo Customized Video Player

The demo customized video player has the following properties:

• Implemented as "MyVideoViewController"

• Extends the "SVMVideoViewController" class

• Handles all video overlays and gestures

• Single-tap gesture and "Back", "Rewind" / "Live" overlay buttons

• Two-finger double-tap gesture and stats overlay

• Uses the "MyVideoViewController~iphone.xib" to layout the screen

• Located in the "Customer App / App UI Resources / UI XML Files" Xcode project folder

The video view shown in Interface Builder is connected to the "videoView" property and is of class type
"MyVideoView".

Configuration
This section describes the required configuration files. and contains the following sections:

• Configuration Files, page 36

• Field of Use Configuration, page 37

• Wi-Fi Access Point Configuration, page 37

Configuration Files

There are three configuration files that must be bundled with any iOS app using the StadiumVision
Mobile SDK, as listed in the following table:
36
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 2-37 Configuration Files

Field of Use Configuration

There are three "field-of-use" (also known as the triplet key) properties in the "cisco_svm.cfg"
configuration file that need to be configured for each StadiumVision Mobile application: These three
fields must match the channel settings in the Cisco StadiumVision Mobile Streamer for the channels to
be accessible by the application:

• Venue Name

• Content Owner

• App Developer

An example set of fields in the "cisco_svm.cfg" file is shown below:

{
 "license": {
 "venueName": "Stadium-A",
 "contentOwner": "Multi-Tenant Team-B",
 "appDeveloper": "Vendor-C"
 }
}

Wi-Fi Access Point Configuration

The "cisco_svm.cfg" configuration file can optionally include an array of WiFi AP information that will
be used by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example WiFi
AP info entry in the "cisco_svm.cfg" configuration file:

{
 "network": {
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

Integration Checklist
The following list outlines integration steps for using the Cisco StadiumVision Mobile SDK.

1. Supported iOS version

– Set the app's iOS version target set to iOS v4.0 or above

Configuration File Name Description

"cisco_svm.cfg” The Cisco StadiumVision Mobile SDK configuration file that contains the "Field-of-Use"
para meters and some optional WiFi network debugging information

"vompPlay.cfg” Video decoder configuration file that contains the tuned decoding parameters. These
settings should never be changed. Any changes could result in poor video or audio
playback.

“voVidDec.dat” Video decoder license file.
37
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
2. Copy configuration files

– Copy the "cisco_svm.cfg" and vompPlay.cfg" config files, and the "voVidDec.dat" license file
into the Xcode project.

3. Copy libraries

– Copy the "libStadiumVisionMobile.a" and "libvoCTS.a" static libraries into the Xcode project.

4. Set the Xcode Project "Build Settings"

– Add the "-ObjC" flag to the "Other Linker Flags" build setting. This ensures all Objective-C
categories are loaded from the StadiumVision Mobile static library.

– Add the "-lstdc++" flag to the "Other Linker Flags" build setting. This ensures that the C++
video decoder library is properly linked to the final app build.

5. Include Required iOS Libraries by adding frameworks in the target build phases pane of the Xcode
project, under "Link Binary With Libraries" section, as shown in Figure 2-10.

Figure 2-10 Adding frameworks in Xcode

Required iOS Libraries

• UIKit.framework

• Foundation.framework

• CoreGraphics.framework

• AudioToolbox.framework

• OpenGLES.framework

• QuartzCore.framework

• CFNetwork.framework

• SystemConfiguration.framework

• MobileCoreServices.framework
38
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
• libz.dylib

What the SDK Handles

The StadiumVision Mobile SDK automatically handles the following events:

• Dynamic video channel discovery and notification

• Dynamic data channel discovery and notification

• Automatic SDK shutdown / restart in response to WiFi up / down events

• Automatic SDK shutdown / restart in response to iOS life-cycle events

• Management of multicast network data threads

• On-demand management of video / audio decoding threads

• Automatic statistics reporting to the StadiumVision Mobile Reporter server

Customer Application Roles

Figure 2-11 illustrates the roles of the customer application. The application must specify:

• Getting the list of video channels

• Displaying the list of video channels

• Handling user gestures for selecting video channels

• Adding video overlays and layouts

• Handling user gestures to control video overlays
39
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 2-11 Customer Application Responsibilities

SVMVideoViewController
class

MyVideoViewController

StadiumVisionMobile
class

- Start the framework
- Get video channels
- Shutdown the framework

- Handles all video
 playback details
- Provides noti?cations
 to the sub-class

VideoChannelList
ViewController

Customer
App

StadiumVision
Mobile SDK

Chan 1
Chan 2

Chan 3

Get Video
Channels

Playback
Noti?cations

Launch
Video
Player

Overlay

Play Channel,
Seek, Dismiss
40
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Cisco StadiumVision M

Cisco StadiumVision Mobile API for Google
Android

Revised: July 25, 2014
This module describes the Cisco StadiumVision Mobile SDK Release 2.0 for Google Android, and
contains the following sections:

• New Features in Cisco StadiumVision Mobile Release 2.0 Android SDK, page 41

• Introduction to Cisco StadiumVision Mobile API for Google Android, page 42

• Android API Prerequisites, page 42

• Android SDK Overview, page 44

• Cisco StadiumVision Mobile Android API, page 48

• SDK Workflow, page 58

• Video Player Customization, page 71

• Configuration, page 72

• Integration, page 74

New Features in Cisco StadiumVision Mobile Release 2.0
Android SDK

Note the following for release 2.0 of the Cisco StadiumVision Mobile SDK:

• None of the release 1.3 APIs have changed for release 2.0.

• The Cisco StadiumVision Mobile SDK release 2.0 is backwards compatible with release 1.3, and
can be imported into your project without any software changes.

New Features in Release 2.0

• Audio only channel

• Scalable file distribution

• Statistics collection enhancements
41
obile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google
Android

The Cisco StadiumVision Mobile API uses Android and Java classes and method calls to access the
StadiumVision Mobile data distribution and video playback functionality within the StadiumVision
Mobile Android SDK library.

Refer to The Cisco StadiumVision Mobile Release Notes, Release 2.0 for the Android version supported
in the Cisco StadiumVision Mobile Release 2.0 SDK.

This document contains the following sections:

• Android API Prerequisites, page 42

• Android SDK Overview, page 44

• Cisco StadiumVision Mobile Android API, page 48

• SDK Workflow, page 58

• Video Player Customization, page 71

• Configuration, page 72

• Integration, page 74

Android API Prerequisites
Table 3-1 lists the various Android SDK build environment requirements.

Table 3-1 Build Environment Requirements

Tool Version Description URL

Mac or Windows
PC

— — —

Eclipse 3.7.1 or later Eclipse "Classic" for Mac OSX (64-bit) http://www.eclipse.org/downloads/
42
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

http://www.cisco.com/c/en/us/td/docs/Sports_Entertainment/StadiumVision/Mobile/release/notes/2_0/SV_Mobile_Relnotes_2_0.html

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Getting Started With The Android Demo App
The Cisco StadiumVision Mobile SDK that we provide to app developers includes the source code for
an Android demo app. The purpose of the app is demonstrate what is possible, an to enable a new app
developer to quickly get a working app up and running.

Install the tools

Step 1 Download the Android Developer Tools ADT.

Step 2 Follow these instructions to set up ADT on your computer.

Step 3 Launch the Eclipse application and when prompted select a folder to use as your workspace.

Step 4 Launch the Android SDK Manager from the Window dropdown menu.

Step 5 Open the Android 2.2 (API 8) folder and check the SDK Platform box. Uncheck everything else and then
install the selected package.

Build the app

Step 1 Download the StadiumVisionMobileSample-Android-xxxx.tar.bz2 SDK and demo app package.

Step 2 Extract the downloaded package into a directory.

Step 3 Import the demo app project into Eclipse as follows:

a. In Eclipse go to File=>Import

b. Then go to General=>Existing Projects into Workspace, and select Next.

c. Set the Select root directory to the folder where you unpacked the SDK, and then click Finish.

d. Restart Eclipse from File=>Restart.

Step 4 Right click on CiscoStadiumVisionMobile in the left Package Explorer window, and select Android
Tools=>Export Signed Application Package.

Step 5 Click Next when the Project Checks window appears.

Step 6 Select Create new keystore, then browse to a folder where you wish to store the key store file. Click Next.

Step 7 Fill in the Key Creation form. There are no right or wrong answers. Click Next.

Step 8 Browse to the folder where you wish to place the apk file, then click Finish.

Step 9 Download the apk file to your Android device by placing it on a web server, emailing it, SD card, USB
flash key, etc.

Step 10 Now install the apk on your device.

Customize the app

Here are some of the first items you may want to customize in the demo app:

Change the text for the app icon:

• In the the file "res/values/strings.xml" change "SVM Demo" to "My SVM App"

Change the name space so your custom app can be installed side by side with the out of the box demo
app:
43
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
• Edit the file "AndroidManifest.xml":

– Change "package="com.cisco.sv"" to "package="com.cisco.svm.foo"

– Change "android:name="com.cisco.svm.app.StadiumVisionMobile" to
"android:name="com.cisco.svm.foo"

Note The package name must start with "com." (excluding the quotes).

• Search and replace com.cisco.sv.R with com.cisco.svm.foo.R in all *.java files in src/app/demo.

Android SDK Overview
The Cisco StadiumVision Mobile Android SDK contains the following components:

• A set of static libraries, configuration files, player layout XML files, and a sample Android
application.

• Customizable video player

Cisco StadiumVision Mobile Android API Class Overview

Figure 3-1 describes the three main Android API classes used in Cisco StadiumVision Mobile. The
top-level StadiumVisionMobile class acts as a custom Android application context. An application
context is a structure created within a screen or activity. There is no global state across an Android
application.

Each SDK API method is called using the StadiumVisionMobile class. The SVMVideoPlayerActivity
class is a customizable stand-alone video player.
44
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Figure 3-1 StadiumVision Mobile Class

Android OS Activity Overview

Figure 3-2 depicts the Android OS with regard to Activities. An Activity represents both the screen
layout and controller code. A new Activity is launched by sending an Intent to the Android OS. An intent
is a message to Android OS to launch a particular activity. Extra parameters contained in an Intent and
are passed to an Activity. The back button is a hard device button used to generically display the previous
Activity, and moves back down the Activity stack.
45
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Figure 3-2 Android Activity Overview

Figure 3-3 depicts the Activity inheritance between the Android OS, Cisco StadiumVision Mobile, and
the client application.
46
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Figure 3-3 Android Video Player Activity Inheritance

Cisco StadiumVision Mobile Android API Summary

Table 3-2 summarizes the Android API library. Following the summary are detailed tables for each API
call.

Table 3-2 Cisco StadiumVision Mobile Android API Summary

Return Type API Method Name API Method Description

SVMStatus start Starts the StadiumVision Mobile SDK

SVMChannel[] getVideoChannelArray Get the array of available video channels

ArrayList<SVMChannel> getVideoChannelArrayList Get the array list of available video channels

SVMChannel[] getDataChannelArray Get the array of available data channels

ArrayList<SVMChannel> getDataChannelArrayList Get the array list of available data channels

SVMStatus addDataChannelObserver Registers an observer class to receive data for a particular
data channel

SVMStatus removeDataChannelObserver Unregisters an observer class from receiving data for a
particular data channel
47
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Cisco StadiumVision Mobile Android API
The following tables describe each API call in more detail, including example usage.

Return Status Object

Each API call returns an ‘SVMStatus’ object whenever applicable. Table 3-2 lists the SVMStatus object
fields. This section contains the following API calls and tables:

• SVMStatus Object

• getVideoChannelArray

• getDataChannelArrayList

• getVideoChannelArray

• onData

• getStats

• getStats

• getStats API Hash Keys and Stats Description

• onPause

• onPause

HashMap<String,String> getStats Gets a HashMap of the current StadiumVision Mobile SDK
stats

void onPause Forwards each Android Activity's 'onPause' life-cycle
notification to the StadiumVision Mobile SDK

void onResume Forwards each Android Activity's 'onResume' life-cycle
notification to the StadiumVision Mobile SDK

SVMWifiInfo getWifiInfo Gets the current WiFi connection info

SVMBatteryInfo getBatteryInfo Gets the current battery info for the device

String[] getLogLevelArray Gets an array of the available StadiumVision Mobile SDK
logging levels

ArrayList<String> getLogLevelArrayList Gets an array list of the available StadiumVision Mobile
SDK logging levels

SVMStatus setLogLevel Set the StadiumVision Mobile SDK logging level

String getLocalIpAddress Convenience method to get the local device's IP address

String getDeviceUUID Gets the unique StadiumVision Mobile identifier for this
device

String getSessionUUID Gets the unique StadiumVision Mobile identifier for this
application session

String sdkVersion Property that contains the StadiumVision Mobile SDK
version

Table 3-2 Cisco StadiumVision Mobile Android API Summary (continued)

Return Type API Method Name API Method Description
48
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
• onPause

• getBatteryInfo

• getLogLevelArrayList

• setLogLevel

• getLocalIpAddress

• getLocalIpAddress

• getDeviceUUID

• getAppSessionUUID

Table 3-3 SVMStatus Object

Type BOOL String

Property ok error

Description

Boolean indicating whether
the API call was successful or
not.

If the API call was not successful (ok =false), this string
describes the error.

Example Usage

// make an api call
SVMStatus status = StadiumVisionMobile.start();
// if an error occurred
if (status.ok == false) {
// display the error description
Log.e(TAG, "Error occurred: " + status.error);

Table 3-4 Start

Method Signature public static SVMStatus start();

Prerequisites N/A

Notes

This method starts the StadiumVision Mobile SDK. This will
kick-off and start any required StadiumVision Mobile
background threads and component managers.

Result N/A

Table 3-5 getVideoChannelArray

Method Signature public static SVMChannel[] getVideoChannelArray();

Prerequisites N/A

Notes
This method returns a Java array of available video channels
as 'SVMChannel' objects.

Result N/A
49
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 3-6 addDataChannelObserver

Method Signature
public static ArrayList<SVMChannel>
getDataChannelArrayList();

Prerequisites N/A

Notes
This method returns a Java ArrayList of available data
channels as 'SVMChannel' objects (using Java generics).

Result N/A

Table 3-7 getDataChannelArrayList

Method Signature
public static ArrayList<SVMChannel>
getDataChannelArrayList();

Prerequisites N/A

Notes
This method registers the given observer class to receive data
for the given 'SVMChannel' data channel object.

Result N/A

Table 3-8 onData

Method Signature public void onData(String channelName, byte[] data)

Prerequisites N/A

Notes

This method is implemented by the customer app and is used
as a callback from the StadiumVision Mobile SDK. Each
callback from the SDK to the customer app provides a
received data message on the given data channel. The data
channel message is delivered as a byte array.

Result N/A

Table 3-9 removeDataChannelObserver

Method Signature

public static SVMStatus
removeDataChannelObserver(String dataChannelName,

ISVMDataObserver observer);

Prerequisites N/A

Notes
This method unregisters the given observer class to receive
data for the given 'SVMChannel' data channel object.

Result N/A
50
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 3-10 lists the hash keys and stats description for the getStats API.

Table 3-10 getStats

Method Signature public static HashMap<String, String> getStats();

Prerequisites N/A

Notes
This method returns the StadiumVision Mobile SDK stats as
a hash of name / value pairs.

Result N/A

Table 3-11 getStats API Hash Keys and Stats Description

Stats Hash Key Stats Description

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent)

session_uptime The length of time the session has been active (in seconds)

announcement_session_id The video session announcement ID

announcement_session_title The session announcement name

total_num_bytes_written The total number of video bytes played

num_ts_discontinuities The total number of MPEG2-TS packet discontinuities

num_dropped_video_frames The total number of video frames dropped

protection_windows The total number of protection windows sent

window_no_loss The total number of protection windows with no dropped
video packets

window_recovery_successes The total number of protection windows with recovered
video packets

window_recovery_failures The total number of protection windows that could not
recover dropped packets. Recovery failure occurs when the
number of received repair packets is less than the number of
dropped video packets

window_warning The total number of protection windows with more packets
per window than the recommended value

window_error The total number of protection windows with more packets
per window than can be supported by StadiumVision Mobile.
51
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 3-12 onPause

Method Signature public static void onPause();

Prerequisites N/A

Notes

• This method must be called by each individual client app
Activity's "onPause()" method to inform the
StadiumVision Mobile SDK of when a client app Activity
has stopped.

• Forwarding each client app Activity's "onPause()"
life-cycle event allows the StadiumVision Mobile SDK to
declare the client Android app as "active" and potentially
restart all of the internal component managers and threads
that use the device's CPU and networking resources.

Result N/A

Table 3-13 onResume

Method Singature public static void onResume();

Prerequisites N/A

Notes

• This method must be called by each individual client app
Activity’s "onResume()" method to inform the
StadiumVision Mobile SDK of when a client app
Activity has started.

• Forwarding each client app Activity's "onResume()"
life-cycle event allows the StadiumVision Mobile SDK
to declare the client Android app as "inactive" and
shutdown all CPU and networking resources used by the
StadiumVision Mobile SDK.

Result N/A

Table 3-14 getWifiInfo

Method Signature public static SVMWifiInfo getWifiInfo();

Prerequisites N/A

Notes

• This method returns the current WiFi network
connection information.

• This information gets collected in the statistics
information that gets uploaded to the Reporter server.

Result N/A
52
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 3-15 getBatteryInfo

Method Signature public static SVMBatteryInfo getBatteryInfo();

Prerequisites N/A

Notes

• This method returns the current device battery
information.

• This information gets collected in the statistics
information that gets uploaded to the Reporter server (if
stats collection is enabled).

Result N/A

Table 3-16 getLogLevelArray

Method Signature public static String[] getLogLevelArray();

Prerequisites N/A

Notes
This method provides a Java array of available logging levels
that can be applied to any component.

Result N/A

Table 3-17 getLogLevelArrayList

Method Signature
public static ArrayList<String>
getLogLevelArrayList();

Prerequisites N/A

Notes
This method provides a Java ArrayList of available logging
levels that can be applied to any component.

Result N/A

Table 3-18 setLogLevel

Method Signature public static SVMStatus setLogLevel(LogLevel level);

Prerequisites N/A

Notes

This method sets the global logging level for the entire
StadiumVision Mobile SDK, with all internal components
getting their logging level set to the same level.

Result N/A

Table 3-19 getLocalIpAddress

Method Signature public static String getLocalIpAddress();

Prerequisites N/A
53
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Video Player Activity API Summary

The SVMVideoPlayerActivity class can be extended and customized. Table 3-22 lists the
SVMVideoPlayerActivity API methods, and contains the following tables:

• Video Player Activity API Summary

• setVideoSurfaceView

Notes This method returns this device's local IP address.

Result N/A

Table 3-20 getDeviceUUID

Method Signature public static String getDeviceUUID();

Prerequisites N/A

Notes

• This method returns the device UUID that was generated
by the StadiumVision Mobile SDK and saved in the app's
shared preferences.

• Android does not provide a consistent and reliable device
UUID across all of the Android OS versions supported
by the StadiumVision Mobile SDK, so a generated
device UUID is used instead.

Result N/A

Table 3-21 getAppSessionUUID

Method Signature public static String getAppSessionUUID();

Prerequisites N/A

Notes

• This method returns the app session UUID that is
generated by the StadiumVision Mobile SDK.

• This UUID uniquely identifies each time the
StadiumVision Mobile SDK is started and is used for
consistent statistics collection and reporting.

Result N/A

Table 3-22 sdkVersion

Method Signature public static String sdkVersion;

Prerequisites N/A

Notes
This class property contains StadiumVision Mobile SDK
version string.

Result N/A

Table 3-19 getLocalIpAddress (continued)

Method Signature public static String getLocalIpAddress();
54
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
• seekRelative

• seekAbsolute

• rewindForDuration

• shutdown

• setConfig

• setConfigWithString

• setConfigWithString

• getStreamerArray

• getStreamerArrayList

Table 3-23 Video Player Activity API Summary

Return Type API Method Name API Method Description

SVMStatus setVideoSurfaceView Sets the Android UI “SurfaceView” where video frames will get rendered

SVMStatus playVideoChannel Starts playback of a particular video channel, changing channels on
subsequent calls

SVMStatus seekRelative Seeks the playback buffer pointer relative to the current playback buffer
offset position

SVMStatus seekAbsolute Seeks the playback buffer pointer from the head (“live”) offset position of
the video playback buffer

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the current playback
buffer offset position

SVMStatus playLive Moves the video playback buffer pointer to the head (“live”) offset
position in the video playback buffer

SVMStatus shutdown Shuts-down and dismisses the video player Activity

Table 3-24 setVideoSurfaceView

Method Signature public static String sdkVersion;

Prerequisites N/A

Notes
This class property contains StadiumVision Mobile SDK
version string.

Example Usage

Result N/A

Table 3-25 seekRelative

Method Signature public SVMStatus seekRelative(int durationMs);

Prerequisites N/A
55
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Notes

This method moves the video play-head pointer forward and
backward in time relative to its current position in the video
history buffer.

Result N/A

Table 3-26 seekAbsolute

Method Signature public SVMStatus seekAbsolute(int durationMs);

Prerequisites N/A

Notes

• This method moves the video play-head pointer to
beginning of stream; relative to the “live” position.

• To play most current live video pass in on offset of zero
(0 ms).

• To play most current live video pass in on offset of zero
(0 ms).

• To play video in the past, a positive duration will be used
as an offset for rewinding back in time (relative to the
“live” position).

Result N/A

Table 3-27 rewindForDuration

Method Signature public SVMStatus rewindForDuration(int durationMs);

Prerequisites N/A

Notes

• This method rewinds the video play-head within the
video history buffer for the given amount of time (in
milliseconds)

• Should a duration be given that is larger than the size of
the video history buffer, the StadiumVision Mobile SDK
will rewind the video play-head as far as possible

• This convenience method acts as a wrapper for the
“seekRelative” API method; making the given
“durationMs” value negative before calling
“seekRelative”. For example,
“rewindForDuration(20000)” is equivalent to
“seekRelative(-20000)”.

Result N/A

Table 3-25 seekRelative (continued)

Method Signature public SVMStatus seekRelative(int durationMs);
56
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 3-28 playLive

Method Signature public SVMStatus playLive();

Prerequisites N/A

Notes

• This method forwards the video play-head to the starting
“live” position at the beginning of the video data buffer

• This convenience method acts as a wrapper for the
“seekAbsolute” API method; making “playLive()”
equivalent to “seekAbsolute(0)”.

Result N/A

Table 3-29 shutdown

Method Signature public SVMStatus shutdown();

Prerequisites N/A

Notes

This method stops video playback of the currently playing
video channel by stopping the native player, native decoder,
and terminating this Android Activity.

Result N/A

Table 3-30 setConfig

Method Signature
public static SVMStatus setConfig(JSONObject
givenJsonConfig)

Prerequisites N/A

Notes

This method sets the SVM SDK configuration at run-time
using a populated 'JSONObject' object. This method will
override any configuration properties set with the
'cisco_svm.cfg' configuration file.

Result NSDictionary*

Table 3-31 setConfigWithString

Method Signature
public static SVMStatus setConfigWithString(String
jsonConfigStr)

Prerequisites N/A

Notes

This method sets the SVM SDK configuration at run-time
using a JSON-formatted 'String' object. This method will
override any configuration properties set with the
'cisco_svm.cfg' configuration file.

Result NSDictionary*
57
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
SDK Workflow
This section describes the SDK workflow, and contains the following sections:

• Starting the SDK, page 59

• Getting the Video Channel List, page 59

• Presenting the Video Channel List, page 59

• Playing a Video Channel, page 60

• Seeking Within the Video Buffer, page 60

• Setting the Video Dimensions, page 60

• Fullscreen Video Layout, page 60

• Partial-Screen Video Layout, page 61

• Getting the Data Channel List, page 61

• Observing a Data Channel, page 61

• Activity Life-Cycle Notifications, page 62

• StadiumVision Mobile Service Up or Down Indicator, page 62

Table 3-32 getConfig

Method Signature public static JSONObject getConfig()

Prerequisites N/A

Notes
This method returns the current SDK configuration as a
'JSONObject' object.

Result NSDictionary*

Table 3-33 getStreamerArray

Method Signature public static SVMStreamer getStreamerArray()

Prerequisites N/A

Notes

This method returns an array of Streamer servers detected by
the SVM SDK; with each Streamer entry represented as an
'SVMStreamer' object in the array.

Result NSArray*

Table 3-34 getStreamerArrayList

Method Signature public static ArrayList getStreamerArrayList()

Prerequisites N/A

Notes

This method returns an 'ArrayList' of Streamer servers
detected by the SVM SDK; with each Streamer entry
represented as an 'SVMStreamer' object in the array.

Result NSArray*
58
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
• In-Venue Detection, page 64

• Set the SDK Configuration at Run-Time, page 65

• Scalable File Distribution, page 66

• Get the SDK Configuration, page 66

• setConfigWithString API Method, page 67

• Get the Available Streamer Servers, page 68

• Additional Statistics, page 68

• Video Player State Notifications, page 69

• Cisco Demo Customized Video Player, page 72

Starting the SDK

Start the StadiumVision Mobile SDK from the application’s main Android launch Activity, as shown in
the following example.

import com.cisco.svm.app.StadiumVisionMobile;

// app’s launch activity ‘onCreate’ notification
void onCreate() {

 // call the parent method
 super.onCreate();

 // start the StadiumVision Mobile SDK
 StadiumVisionMobile.start();
}

Getting the Video Channel List

The StadiumVision Mobile SDK dynamically receives all of the available channels (via WiFi multicast).
The client application gets an array of channel objects (SVMChannel[]) through the
“getVideoChannelArray” API call, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

// get the list of available video channels
SVMChannel[] channels = StadiumVisionMobile.getVideoChannelArray();

// display some channel information
Log.d(TAG, “Channel Name = “ + channels[0].name);
Log.d(TAG, “Channel Bandwidth = “ + channels[0].bandwidthKbps);
Log.d(TAG, “Channel Body Text = “ + channels[0].bodyText);

Presenting the Video Channel List

Each “SVMChannel” video channel object contains all of the information needed to display the channel
list to the user. The SVMChannelObject properties and descriptions are shown in Table 3-34.
59
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Playing a Video Channel

The following example shows playing a video channel, and performs the following actions:

• Selects a channel from the locally saved channel list

• Starts video playback of the channel by launching the custom video player Activity
(“MyVideoPlayer”)

Note The “SVMChannel” object is parcelable (instances can be written to and restored from a parcel).

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in device RAM. The following example shows jumping
backwards 20 seconds in the video buffer (instant replay):

public class MyVideoPlayerActivity extends SVMVideoPlayerActivity {

 // seek backwards 20 seconds in the video buffer
 super.seekRelative(-20000);
}

The following example shows jumping back to the top of the video buffer (“live” video playback):

public class MyVideoPlayerActivity extends SVMVideoPlayerActivity {

 // seek to the top of the video buffer (0 ms offset)
 super.seekAbsolute(0);
}

Setting the Video Dimensions

The video region is rendered within a SurfaceView. The video region is configured using standard
Android layout XML files. The video region can be set to full screen or to specific pixel dimensions

Fullscreen Video Layout

The XML layout file below shows how to configure the video ‘SurfaceView’ to fill the entire screen, as
shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/black">

Table 3-35 SVMChannel Object Properties

“SVMChannel” Property Property Description

“name” The name of the video channel

“bandwidthKbps” The data bandwidth consumed by the video channel (in kbps)

“sessionNum” The session number of the channel

“channelText” The complete text description of the video channel
60
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 <SurfaceView
 android:id="@+id/videoSurfaceView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_centerInParent="true">
 </SurfaceView>

</RelativeLayout>

Partial-Screen Video Layout

The XML layout file below shows how to configure the video ‘SurfaceView’ to specific pixel region, as
shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/black">

 <SurfaceView
 android:id="@+id/videoSurfaceView"
 android:layout_width=”320px"
 android:layout_height=”240px"
 android:layout_centerInParent="true">
 </SurfaceView>

</RelativeLayout>

Getting the Data Channel List

The StadiumVision Mobile SDK dynamically receives all of the available data channels (via WiFi
multicast). The client application gets an array of channel objects (SVMChannel[]) through the
“getDataChannelArray” API call, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

// get the list of available data channels
SVMChannel[] channels = StadiumVisionMobile.getDataChannelArray();

// display some channel information
Log.d(TAG, “Channel Name = “ + channels[0].name);
Log.d(TAG, “Channel Bandwidth = “ + channels[0].bandwidthKbps);
Log.d(TAG, “Channel Body Text = “ + channels[0].bodyText);

Observing a Data Channel

Any data channel can be observed by registering a class to receive callbacks for all data received on that
channel. The registered class needs to implement the “ISVMDataObserver” interface, as shown in the
following example:

import com.cisco.svm.data.ISVMDataObserver;

public class MyDataViewerActivity extends Activity implements ISVMDataObserver {
 ...
}

61
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
The “onData” method is called to push the received data to the registered class, as shown in the following
example:

public void onData(String channelName, byte[] data) {
 // display the received data parameters
 Log.d(TAG, "DATA CALLBACK: “ +
 “channel name = " + channelName + “, “ +
 “data length = " + data.length);

}

Activity Life-Cycle Notifications

The client app needs to notify the StadiumVision Mobile SDK of it’s life-cycle notifications. This allows
the StadiumVision Mobile SDK to automatically shutdown and restart as needed. Each client Activity
needs to forward its life-cycle notifications, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

void onPause() {

 // notify the cisco sdk of the life-cycle event

 StadiumVisionMobile.onPause();

}

void onResume() {

 // notify the cisco sdk of the life-cycle event

 StadiumVisionMobile.onResume();

StadiumVision Mobile Service Up or Down Indicator

The Cisco StadiumVision Mobile SDK includes an indicator to the application indicating if the SVM
service is up or down. This indication should be used by the application to indicate to the user whether
the SVM service is available or not. Service is declared 'down' by the SDK when any of the following
are true:

• The SDK detects that the video quality is poor

• The SDK detects that no valid, licensed channel are available

• The mobile device's WiFi interface is disabled

Poor video quality can occur when the user is receiving a weak WiFi signal; causing data loss. There are
two different ways that the app can get the "Service State" from the SDK:

• Register to receive the "Service Up / Down" notifications

• Fetch the current service state from the SDK on-demand

When the app receives the "Service Down" notification, the SDK will supply a bitmap containing the
reasons why the service was declared as 'down' by the SDK. The 'reasons' bitmap is given in
62
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Receiving "Service Up / Down" Notifications

The following example shows how to register and handle the "Service Up / Down" notifications from the
SDK:

import com.cisco.svm.app.StadiumVisionMobile;
import com.cisco.svm.app.StadiumVisionMobile.SVMServiceState;

// define the service state broadcast receiver
private BroadcastReceiver serviceStateReceiver;

// create the service state broadcast receiver
serviceStateReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // get the intent extras
 Bundle bundle = intent.getExtras();

 // get the service state from the bundle
 SVMServiceState serviceState =
(SVMServiceState)bundle.get(StadiumVisionMobile.SVM_SERVICE_STATE_VALUE_TAG);

 // determine the service state
 if (serviceState == SVMServiceState.SVM_SERVICE_STATE_UP) {
 Log.i(TAG, "### SERVICE STATE: UP");
 } else if (serviceState == SVMServiceState.SVM_SERVICE_STATE_DOWN) {
 Log.i(TAG, "### SERVICE STATE: DOWN");

 // get the service state changed reasons bitmap
 int reasons =
bundle.getInt(StadiumVisionMobile.SVM_SERVICE_STATE_CHANGED_REASONS_TAG);

 // determine the reasons that the service state changed
 if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_SDK_NOT_RUNNING) != 0) {
 Log.i(TAG, "Reason for Service State Change: SDK NOT RUNNING");
 } else if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_WIFI_DOWN) != 0) {
 Log.i(TAG, "Reason for Service State Change: WIFI DOWN");
 } else if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_NO_CHANNELS) != 0) {
 Log.i(TAG, "Reason for Service State Change: NO CHANNELS AVAILABLE");
 } else if ((reasons &
StadiumVisionMobile.SVM_SERVICE_STATE_DOWN_REASON_POOR_QUALITY) != 0) {
 Log.i(TAG, "Reason for Service State Change: POOR QUALITY");
 }

Table 3-36 Service Down Notifications

Service Down Reason Constant

Poor video quality networking conditions
detected

StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_POOR_QUALITY

WiFi connection is down StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_WIFI_DOWN

No valid SVM channels have been detected StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_NO_CHANNELS

SDK not running StadiumVisionMobile.SVM_SERVICE_STATE_
DOWN_REASON_SDK_NOT_RUNNING
63
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 }
 }
};

// register to receive the service state intents
IntentFilter serviceStateIntentFilter = new IntentFilter();
serviceStateIntentFilter.addAction(StadiumVisionMobile.SVM_SERVICE_STATE_CHANGED_INTENT_TA
G);
registerReceiver(serviceStateReceiver, serviceStateIntentFilter);

Get the Current "Service Up / Down" State On-Demand

The "getServiceState" API method can be used to fetch the current service state from the SDK. The
following example show how to fetch the current service state from the SDK using the "getServiceState"
API call:

import com.cisco.svm.app.StadiumVisionMobile;
import com.cisco.svm.app.StadiumVisionMobile.SVMServiceState;

// get the current svm service state
SVMServiceState serviceState = StadiumVisionMobile.getServiceState();

// determine the current service state
if (serviceState == SVMServiceState.SVM_SERVICE_STATE_UP) {
 Log.i(TAG, "### SERVICE STATE: UP");
} else if (serviceState == SVMServiceState.SVM_SERVICE_STATE_DOWN) {
 Log.i(TAG, "### SERVICE STATE: DOWN");
}

In-Venue Detection

The Cisco StadiumVision Mobile Release 2.0 SDK provides a mechanism to detect whether the mobile
device is connected within the SVM-enabled venue or not.

There are two different ways that the Android app can get this "In-Venue Detection" state from the SDK:

• Register to receive the "In-Venue Detection" notifications

• Fetch the current "In-Venue" state from the SDK on-demand

Receiving "In-Venue Detection" Notifications

The following example shows how to register and handle the "Service Up / Down" notifications from the
SDK:

import com.cisco.svm.app.StadiumVisionMobile;

// define the 'in-venue status changed' broadcast receiver
private BroadcastReceiver inVenueReceiver;

// handle the venue connection changed event
venueConnectionReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // get the intent action
 String action = intent.getAction();

 // determine whether the device is inside or outside of the venue
 if (action.equals(StadiumVisionMobile.SVM_VENUE_CONNECTED_INTENT_TAG)) {
 Log.i(TAG, "##### App Received 'VENUE-CONNECTED' Notification");
 } else if (action.equals(StadiumVisionMobile.SVM_VENUE_DISCONNECTED_INTENT_TAG)) {
 Log.i(TAG, "##### App Received 'VENUE-DISCONNECTED' Notification");
64
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 }
 }
};

// register to receive the venue connected / disconnected intents
IntentFilter inVenueIntentFilter = new IntentFilter();
inVenueIntentFilter.addAction(StadiumVisionMobile.SVM_VENUE_CONNECTED_INTENT_TAG);
inVenueIntentFilter.addAction(StadiumVisionMobile.SVM_VENUE_DISCONNECTED_INTENT_TAG);
registerReceiver(venueConnectionReceiver, inVenueIntentFilter);

Get the Current "In-Venue" State On-Demand

The "isConnectedToVenue" API method can be used to fetch the current in-venue state from the SDK.
The following example shows how to fetch the current service state from the SDK using the
"isConnectedToVenue" API call:

import com.cisco.svm.app.StadiumVisionMobile;

// get whether the device is currently connected to the SVM licensed venue
boolean isConnectedToVenue = StadiumVisionMobile.isConnectedToVenue();

// log whether the device is currently connected to the SVM licensed venue
Log.i(TAG, "### Connected to the venue: " + (isConnectedToVenue ? "YES" : "NO"));

Set the SDK Configuration at Run-Time

Previously, the Cisco StadiumVision Mobile SDK could only be configured by using a JSON-formatted
config file ("cisco_svm.cfg") bundled within the Android app. Starting with the 1.3 release, the
application can now set the SDK configuration at run-time through an API method. This allows the
application to dynamically configure the SDK. For example, the application can fetch the SDK
configuration information from a network connection, and then pass that configuration to the SDK.

Two different methods are provided for setting the SDK configuration at run-time:

• "setConfig"

The signature of the "setConfig" API method is given below:

// configure the sdk using a JSON object containing the configuration settings
public static SVMStatus setConfig(JSONObject givenJsonConfig)

// configure the sdk using an nsdictionary containing the configuration settings

• "setConfigWithString"

The signature of the "setConfigWithString" API method is given below:

// configure the sdk using a json-formated string containing the configuration
settings
public static SVMStatus setConfigWithString(String jsonConfigStr)

The following example shows how to set the SDK configuration using the "setConfigWithString"
API method:

// create the json config string
String configString =
 @"{"
 " \"license\": {"
 " \"venueName\": \"MyVenueNameKey\","
 " \"contentOwner\": \"MyContentOwnerKey\","
 " \"appDeveloper\": \"MyAppDeveloperKey\""
 " }"
 "}";
65
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Scalable File Distribution

Table 3-37 lists the Cisco StadiumVision Mobile scalable file distribution API.

Get the SDK Configuration

"getConfig" API Method#

The signature of the "getConfig" API method is given below:

// get the current cisco sdk configuration
public static JSONObject getConfig()

The example below fetches the current configuration from the SDK, and then accesses the configuration
values in the configuration JSON object:

// get the sdk configuration dictionary

Table 3-37 Scalable File Distribution and Service API Summary

API Return Type File Service API Method Name Method Description

SVMStatus * addFileChannelListDelegate Registers a callback delegate to receive all
file channel list updates

SVMStatus* removeFileChannelListDelegate Unregisters the callback delegate from
receiving the file channel list updates

NSArray* getFileChannelListArray Returns a snapshot array of the currently
avaialable file channels

SVMStatus* addFileChannelObserver Registers an observer class to receive data
for a particular file channel

SVMStatus * removeFileChannelObserver Unregisters an observer class from
receiving file for a particular file channel

SVMStatus* addFileChannelObserver:forChannel Registers an observer class to receive all
file updates for a particular file channel

SVMStatus* addFileChannelObserver:forChannelName Registers an observer class to receive all
file updates for a particular file channel
name

SVMStatus * removeFileChannelObserver:forChannel Unregisters an observer class from
receiving any file updates for a particular
file channel

SVMStatus * removeFileChannelObserver:forChannelName Unregisters an observer class from
receiving any file updates for a particular
file channel name

NSMutableDictionary * getFileDistributionTable Gets File distribution table details

NSString * getFileDistributionLocalFilename Get local filesystem filename for any
object given its URI and the file channel

NSString * getFileDistributionLocalFilename:forChannel Get local filesystem filename for any
object given its URI and the file channel

NSString * getFileDistributionLocalFilename:forChannelName Get local filesystem filename for any
object given its URI and the file channel
name
66
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
JSONObject configObj = StadiumVisionMobile.getConfig();

// get the license dictionary from the config dictionary
JSONObject licenseObj = null;
try {
 licenseObj = configObj.getJSONObject("license");
} catch (JSONException e) {
 e.printStackTrace();
}

// if the license object is valid
if (licenseObj != null) {
 // get the current set of configured license keys
 String venueName = licenseObj.getString("venueName");
 String contentOwner = licenseObj.getString("contentOwner");
 String appDeveloper = licenseObj.getString("appDeveloper");
}

The following example shows how to set the SDK configuration using the "setConfig" API method:

// create the config json object with the set of licensing keys
JSONObject jsonConfig = new JSONObject();
JSONObject licenseConfig = new JSONObject();
try {
 licenseConfig.put("venueName", "MyVenueNameKey");
 licenseConfig.put("contentOwner", "MyContentOwnerKey");
 licenseConfig.put("appDeveloper", "MyAppDeveloperKey");
 jsonConfig.put("license", licenseConfig);
} catch (JSONException e) {
 // log the error
 Log.e(TAG, "Error building the json config object");
 e.printStackTrace();
}

// update the cisco sdk configuration at run-time
StadiumVisionMobile.setConfig(jsonConfig);

setConfigWithString API Method

The signature of the "setConfigWithString" API method is given below:

// configure the sdk using a json-formated string containing the configuration settings
public static SVMStatus setConfigWithString(String jsonConfigStr)

The following example shows how to set the SDK configuration using the "setConfigWithString" API
method:

// create the cisco sdk json configuration string
String config =
 "{" +
 " \"license\": {" +
 " \"venueName\": \"MyVenueNameKey\"," +
 " \"contentOwner\": \"MyContentOwnerKey\"," +
 " \"appDeveloper\": \"MyAppDeveloperKey\"" +
 " }" +
 "}";

// update the cisco sdk configuration at run-time
StadiumVisionMobile.setConfigWithString(config);
67
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Get the Available Streamer Servers

The Android SDK detects the available Streamer servers and provides an API to get the list of servers.
A venue will typically only have a single Streamer server. The list is presented as an array of
"SVMStreamer" objects.

There are two different methods available that present the "SVMStreamer" objects in either a Java array
or ArrayList collection. The signatures for the two API methods are given below:

// get the detected streamer servers as a java array of "SVMStreamer" objects
public static SVMStreamer[] getStreamerArray()

// get the detected streamer servers as a java ArrayList of "SVMStreamer" objects
public static ArrayList<SVMStreamer> getStreamerArrayList()

Each "SVMStreamer" object contains the following properties listed in Table 3-38.

The following example shows how to get the list of StadiumVision Mobile Streamer servers detected by
the SDK:

// get the list of currently available streamer servers
ArrayList<SVMStreamer> streamerList = StadiumVisionMobile.getStreamerArrayList();

// iterate through the list of streamer objects
for (SVMStreamer nextStreamer: streamerList) {
 // get the properties of the next streamer server object
 String ipAddress = nextStreamer.getIpAddress();
 String statsUploadUrl = nextStreamer.getStatsUploadUrl();
 int statsSampleIntervalMs = nextStreamer.getStatsSampleIntervalMs();
 int statsPublishIntervalMs = nextStreamer.getStatsPublishIntervalMs();
 boolean isAllowed = nextStreamer.isAllowed();
}

Additional Statistics

In the Cisco StadiumVision Mobile Release 2.0 SDK, the existing "stats" API call returns the following
additional categories of stats information:

• Reporter upload stats

• Multicast channel announcement stats

• Licensing stats

The signature of the existing "getStats" API method is given below:

// get the current set of cisco sdk stats as a hashmap

Table 3-38 “SVMStreamer" Object Properties

"SVMStreamer" Property Type Description

"ipAddress" String IP address of the StadiiumVision Mobile streamer server

"isAllowed" boolean Whether this StadiumVision Mobile Sreamer server is
allowed by the user of this SDK

"statsPublishIntervalMs" int SDK stats HTTP upload interval

"statsSampleIntervalMs" int SDK stats sample interval

"statsUploadUrl" String StadiumVision Mobile Reporter stats upload http url
68
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
public static HashMap<String, String> getStats()

The new stats and their associate dictionary keys and description are given in Table 3-38.

Video Player State Notifications

The 1.3 SDK generates broadcast Intent notifications for each of the video player state transitions (listed
in Table 3-39). The application can listen to these notifications and take action based on the video
player's state transitions.

The following example shows how to subscribe to receive the video player Intent broadcast messages,

and then parse the messages for the (1) channel name and (2) video player state:

// create the channel state change broadcast receiver
channelStateReceiver = new BroadcastReceiver() {
 @Override
 public void onReceive(Context context, Intent intent) {
 // get the intent action

Table 3-39 Stats API Dictionary Keys

Dictionary Key Description

"announcementsMalformed" Number of malformed channel announcement packets
received

"announcementsMissed" Number of total channel announcements missed

"announcementsNotAllowed" Number of announcements where the Streamer is not allowed

"announcementsReceived" Number of total channel announcements received

"channelsAdded" Number of times a channel was added to the channel list

"channelsPruned" Number of times a channel was pruned from the channel list

"invalidJsonAnnouncements" Number of announcements with an invalid JSON body

"licenseMismatchAnnouncements" Number of license key mismatches

"statsUploadFailures" Number of Reporter stats upload failures

"statsUploadSuccesses" Number of Reporter stats upload successes

"versionMismatchAnnouncements" Number of announcement version mismatches

“statsUploadAttempts” Number of Reporter stats upload attempts

Table 3-40 Video Player State Notification

Video Player State Notification Description

StadiumVisionMobile.SVM_VIDEO_CLOSED_STATE Occurs when the video player closes the video channel
session

StadiumVisionMobile.SVM_VIDEO_DESTROYED_STATE Occurs when the video player is terminated and destroyed

StadiumVisionMobile.SVM_VIDEO_PAUSED_STATE Occurs when the video player pauses video playback

StadiumVisionMobile.SVM_VIDEO_PLAYING_STATE Occurs when the video player starts playing the video
channel

StadiumVisionMobile.SVM_VIDEO_RESTARTING_STATE Occurs when the video player restarts video playback

StadiumVisionMobile.SVM_VIDEO_STOPPED_STATE Occurs when the video player stops video playback
69
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 String action = intent.getAction();

 // get the intent extras
 Bundle bundle = intent.getExtras();

 // determine the broadcast intent type
 if (action.equals(StadiumVisionMobile.SVM_CHANNEL_STATE_CHANGED_INTENT_TAG)) {
 // get the updated channel name and state info
 String channelName =
(String)bundle.get(StadiumVisionMobile.SVM_CHANNEL_NAME_VALUE_TAG);
 String channelState =
(String)bundle.get(StadiumVisionMobile.SVM_CHANNEL_STATE_VALUE_TAG);

 // determine the channel state
 if (channelState.equals(StadiumVisionMobile.SVM_VIDEO_PLAYING_STATE) == true)
{
 // channel is now playing
 }
 }
 }
};

// create the intent filter
IntentFilter channelStateReceiverIntentFilter = new IntentFilter();
channelStateReceiverIntentFilter.addAction(StadiumVisionMobile.SVM_CHANNEL_STATE_CHANGED_I
NTENT_TAG);

// register the intent filter
context.registerReceiver(channelStateReceiver, channelStateReceiverIntentFilter);

Video Player "Channel Inactive" Callback

To detect that a currently playing video channel has become invalid (due to Streamer server admin
changes), the SVM video player ("SVMVideoPlayerActivity") provides a callback to tell the video
player sub-class (ie: "MyVideoPlayerActivity") that the currently playing channel is no longer valid.

When a channel becomes invalid, playback of the video channel is automatically stopped.

To receive these callbacks, the "onCurrentChannelInvalid" method must be overridden by the
'SVMVideoPlayerActivity' sub-class (ie: "MyVideoPlayerActivity"). The following example shows the
method signature and implementation of this overridden callback method:

@Override
protected void onCurrentChannelInvalid() {
 // call the parent method
 super.onCurrentChannelInvalid();

 /*
 * This "MyVideoPlayerActivity" implements the following app-specific
 * behavior when receiving the 'onCurrentChannelInvalid' callback
 * from the Cisco SVM SDK
 *
 * 1) Stop video player
 * 2) Display a toast message describing why video playback was stopped
 * 3) Dismiss the video player Activity
 */

 // shutdown video playback
 shutdown();

 // display a notification that the channel is no longer valid
70
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 Toast.makeText(this, "\nChannel is no longer valid and the video player has been
stopped\n", Toast.LENGTH_LONG).show();

 // exit this video player activity now
 thisActivity.finish();
}

Video Player Customization
This section describes customizing the video player.

The default Cisco video player has the following features:

• Implemented as a separate Android “Activity”

• Supports fullscreen and partial-screen video views

• Renders video frames using an Android “SurfaceView”

• Customizable by extending the “SVMVideoPlayerActivity” class

• Uses a customized video player

Figure 3-4 Default Cisco Video Player

Figure 3-5 SVMVideoPlayerActivity API

SVMVideoPlayerActivity

MyVideoPlayerActivity

Playback
Noti• cations

Overlay

Play Channel,
Seek, Dismiss
71
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Cisco Demo Customized Video Player

The Cisco demo video player:

• Implemented as “MyVideoPlayerActivity”

• Extends the “SVMVideoPlayerActivity” class

• Handles all video overlays and gestures

• Uses standard Android XML layout files (“layout/player.xml”)

The video player’s XML layout file defines:

• The “SurfaceView” video rendering area

• Any transparent video overlays

• Play / Pause / Rewind button graphic files

• Animations used to show / hide the transport controller

The customized video play extends the “SVMVideoPlayerActivity” base class, as shown below:

import com.cisco.sv.media.SVMVideoPlayerActivity;

public class MyVideoPlayer extends SVMVideoPlayerActivity {
}

You need to register the new custom Activity in “AndroidManifest.xml, as shown below:

<activity android:label="@string/app_name”
 android:name="com.company.MyVideoPlayer”
 android:screenOrientation="landscape"
 android:configChanges="orientation|keyboardHidden"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen”>
</activity>

Configuration
The following section describes the required configuration.

Configuration Files

There are three configuration files that must be bundled with any Android app using the StadiumVision
Mobile SDK (shown in Table 3-41).
72
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
An example set of fields in the “cisco_svm.cfg” file is shown below. These fields must match the channel

settings in the Cisco “Streaming Server” for the channels to be accessible by the application.

{
 "license": {
 "venueName": ”Stadium-A",
 "contentOwner": ”Multi-Tenant Team-B",
 "appDeveloper": ”Vendor-C”
 }
}

WiFi AP Info Configuration (Optional)

The “cisco_svm.cfg” config file can optionally include an array of WiFi AP information that will be used
by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example WiFi AP
info entry in the “cisco_svm.cfg” config file:

{
 "network": {
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

Table 3-41 Configuration Files

Config File Name Description

“cisco_svm.cfg” StadiumVision Mobile SDK configuration file that contains
the “Field-of-Use” parameters and some optional WiFi
network debugging information. The three “field-of-use”
properties in the “cisco_svm.cfg” configuration file that need
to be configured for each StadiumVision Mobile application
are:

• Venue Name

• Content Owner

• App Developer

“vompPlay.cfg” Video decoder config file that contains the tuned decoding
parameters. These settings should never be changed. Any
changes could result in poor video or audio playback.

“voVidDec.dat” Video decoder license file.
73
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Integration

Client Application Integration Overview

This section describes customizing the Cisco StadiumVision Mobile application, and contains the
following subsections:

• Integration Checklist, page 7412

• Customer Application Roles, page 75

• Android Permissions, page 76

• SDK Native Libraries, page 76

Figure 3-6 Cisco StadiumVision Mobile Integration Overview

Integration Checklist

1. Supported Android OS Version

– Set the app’s Android version target to v2.1u1 or above

2. Android App Permissions

– Add the required permissions to “AndroidManifest.xml”

3. Copy Config Files

– Add the config files to the app’s “assets” folder

4. Copy Libraries
74
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
– Add the Java and native libraries to the app’s “libs” folder

5. Set a Video “SurfaceView”

– Add a “SurfaceView” to the player Activity’s layout XML file

6. Life-Cycle Notifications

– Forward life-cycle notifications to the StadiumVision Mobile SDK

7. Android Project Build Paths

– Set the project build path to include the Jar files in “./libs/”

Customer Application Roles

Figure 3-7 illustrates the roles of the customer application. The application must specify:

• Getting the list of video channels

• Displaying the list of video channels

• Handling user gestures for selecting video channels

• Adding video overlays and layouts

• Handling user gestures to control video overlay

Figure 3-7 Customer Application Responsibilities

SVMVideoPlayerActivity

MyVideoPlayerActivity

StadiumVisionMobile

- Provides a top-level
 application context
- Start the framework
- Get video channels
- Shutdown the framework

- Handles all video
 playback details
- Provides noti• cations
 to the sub-class

MyListViewActivity

Customer
App

StadiumVision
Mobile SDK

Chan 1

Chan 2

Chan 3

Get Video
Channels

Playback
Noti• cations

Launch
Video
Player

Overlay

Play Channel,
Seek, Dismiss
75
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Android Permissions

The following Android permissions are needed by the StadiumVision Mobile SDK. Each permission is
set in the “AndroidManifest.xml” file.

<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_MULTICAST_STATE" />

SDK Java Libraries

Each Java JAR library needs to be included in the Android app’s “libs” folder, as shown in the following
example.

• Cisco StadiumVision Mobile Android SDK

• Apache HTTP Client 4.1

• Jackson JSON 1.8.1

./libs/StadiumVisionMobile.jar

./libs/httpclient-4.1.1.jar

./libs/httpcore-4.1.jar

./libs/httpmime-4.1.1.jar

./libs/jackson-core-lgpl-1.8.1.jar

./libs/jackson-mapper-lgpl-1.8.1.jar

SDK Native Libraries

Each library needs to be included in the Android app’s “libs/armeabi” folder.

./libs/armeabi/libsvm-android.a

./libs/armeabi/libvoAACDec.so

./libs/armeabi/libvoAACDec_v7.so

./libs/armeabi/libvoH264Dec.so

./libs/armeabi/libvoH264Dec_v7.so

./libs/armeabi/libvoLiveSrcCTS.so

./libs/armeabi/libvoLiveSrcCTS_v7.so

./libs/armeabi/libvoMMCCRRS.so

./libs/armeabi/libvoMMCCRRS_v7.so

./libs/armeabi/libvoTsParser.so

./libs/armeabi/libvoTsParser_v7.so

./libs/armeabi/libvoVidDec.so

./libs/armeabi/libvojni_svmobile.so

./libs/armeabi/libvojni_vome2_sw_v20.so

./libs/armeabi/libvojni_vome2_sw_v22.so

./libs/armeabi/libvojni_vome2_sw_v23.so

./libs/armeabi/libvojni_vome2_sw_v30.so

./libs/armeabi/libvojni_vome2_sw_v31.so

./libs/armeabi/libvompEngn.so

Android Project Classpath

To add Java JAR files to your Eclipse project, use the following steps:

Step 1 Right-click your project in Eclipse

Step 2 Select “Properties”
76
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Step 3 Select “Java Build Properties”

Step 4 Select “Add JARs”

Step 5 Add each of the Java JAR files listed in Adding Java JAR Files in Eclipse14.

Figure 3-8 Adding Java JAR Files in Eclipse

Your “classpath” file should look like the following example:

<?xml version="1.0" encoding="UTF-8"?>
<classpath>

<classpathentry kind="src" path="src"/>
<classpathentry kind="src" path="gen"/>
<classpathentry kind="con" path="com.android.ide.eclipse.adt.ANDROID_FRAMEWORK"/>
<classpathentry kind="lib" path="libs/httpclient-4.1.1.jar"/>
<classpathentry kind="lib" path="libs/httpcore-4.1.jar"/>
<classpathentry kind="lib" path="libs/httpmime-4.1.1.jar"/>
<classpathentry kind="lib" path="libs/jackson-core-lgpl-1.8.1.jar"/>
<classpathentry kind="lib" path="libs/jackson-mapper-lgpl-1.8.1.jar"/>
<classpathentry kind="lib" path="libs/StadiumVisionMobile.jar"/>
<classpathentry kind="output" path="bin"/>

</classpath>

App Obfuscation Using ProGuard

If you choose to obfuscate your application with ProGuard, consider the following points:

• Use the latest version of ProGuard (which is version 4.7 as of August, 2012)

• If a crash takes place that you would like Cisco to analyze, please run retrace.jar on the stack trace
output with your map file before sending us the un-winded stack trace file.

• Specify our libraries as input jars with “-libraryjars”. See the example below and remember to
modify the paths as needed:

-libraryjars ./libs/httpclient-4.1.1.jar
-libraryjars ./libs/httpcore-4.1.jar
-libraryjars ./libs/httpmime-4.1.1.jar
-libraryjars ./libs/jackson-core-lgpl-1.8.1.jar
-libraryjars ./libs/jackson-mapper-lgpl-1.8.1.jar
-libraryjars ./libs/StadiumVisionMobile.jar
-libraryjars ./libs/StadiumVisionMobileSender.jar

If you extend or implement any of our classes or interfaces please specify that in the config file,, as
shown in the following example:

-keep public class * extends com.cisco.svm.data.ISVMDataObserver
77
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Specify the following in the configuration file, to work with our JARS, as it prevents the
StadiumVision Mobile JARS from being obfuscated:
-keep public class com.xxxxxx.vome.*
 public protected private *;

}

 -keep public class com.cisco.** { public protected private *; }

#for the Jackson library
-keepattributes *Annotation*,EnclosingMethod
-keepnames class org.codehaus.jackson.** { *; }

If ProGuard complains about “joda.org.time” and you have included the library as well as the
configuration options above, you can ignore the warnings with the “–ignorewarnings” flag.

Cisco recommends not obfuscating all the classes that implement or extend the basic Android classes.
The following ProGuard configuration is not meant to be a complete configuration, but rather a
minimum:

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference
-keep public class com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {
 native <methods>;

}
-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet);

}
-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);

}
-keepclassmembers class * extends android.app.Activity {

 public void *(android.view.View);
}
-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);

}
-keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;

}

Channel ListView Activity Example

The following example illustrates the following actions:

• Periodically obtains the list of available video channels

• Updatse the Activity’s ListView with the channel list

• Plays the video channel selected in the ListView

// set the click listener for the list view
channelListView.setOnItemClickListener(new OnItemClickListener() {
public void onItemClick(AdapterView<?> parentView, View clickedView,
 int position, long id) {
 // get the selected video channel
 SVMChannel selectedChannel = videoChannels[position];
78
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android

 Log.d(TAG, "Selected Video Channel = '" + selectedChannel.name);
 // get a reference the StadiumVision Mobile SDK
 StadiumVisionMobile svm = StadiumVisionMobile.getInstance();
 // play the selected video channel with custom video player
 Intent intent = new Intent();
 intent.putExtra("channel", selectedChannel);
 intent.setClass(MyActivity.this, MyVideoPlayer.class);
 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(intent);
 }
});
79
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
80
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

	Preface 1
	Cisco StadiumVision Mobile EVS C-Cast Integration 3
	Cisco StadiumVision Mobile API for Apple iOS 5
	Cisco StadiumVision Mobile API for Google Android 41
	Cisco StadiumVision Mobile EVS C-Cast Integration
	Overview
	Multicast and SFD
	Timeline File

	Cisco StadiumVision Mobile API for Apple iOS
	New Features in Cisco StadiumVision Mobile SDK Release 2.0
	Introduction to Cisco StadiumVision Mobile API for Apple iOS
	iOS Model View Controller (MVC) Design Pattern

	iOS API Prerequisites
	Apple iOS SDK Overview
	Client Application Integration Overview
	Cisco StadiumVision Mobile iOS API Class Overview
	Video View Controller Inheritance
	Cisco StadiumVision Mobile Application Classes
	Cisco StadiumVision Mobile iOS API Summary
	Cisco StadiumVision Mobile iOS API

	Return Status Object
	NS Notification Events
	Video Player State Flags
	Video Player Background Audio
	Video Player Channel Inactive Callback
	Receiving Service Up and Down Notifications
	Getting the Current Service Up or Down State On Demand
	In-Venue Detection
	Receiving In-Venue Detection Notifications
	Get the Current In-Venue State On-Demand
	Set the SDK Configuration at Run-Time
	Scalable File Distribution
	SDK Workflow

	Starting the SDK
	Setting the Log Level
	Getting the Video Channel List
	Presenting the Video Channel List
	Playing A Video Channel
	Seeking Within the Video Buffer
	Getting The Data Channel List
	Observing a Data Channel
	Getting the SDK Version String
	Shutting Down the SDK (Optional)
	Video Player View Controller Customization

	Default Cisco Video Player View Controller
	Customized Video Player
	Cisco Demo Customized Video Player
	Configuration

	Configuration Files
	Field of Use Configuration
	Wi-Fi Access Point Configuration
	Integration Checklist

	What the SDK Handles
	Customer Application Roles
	Cisco StadiumVision Mobile API for Google Android
	New Features in Cisco StadiumVision Mobile Release 2.0 Android SDK
	Introduction to Cisco StadiumVision Mobile API for Google Android
	Android API Prerequisites
	Getting Started With The Android Demo App

	Install the tools
	Build the app
	Customize the app
	Android SDK Overview

	Cisco StadiumVision Mobile Android API Class Overview
	Android OS Activity Overview
	Cisco StadiumVision Mobile Android API Summary
	Cisco StadiumVision Mobile Android API

	Return Status Object
	Video Player Activity API Summary
	SDK Workflow

	Starting the SDK
	Getting the Video Channel List
	Presenting the Video Channel List
	Playing a Video Channel
	Seeking Within the Video Buffer
	Setting the Video Dimensions
	Fullscreen Video Layout
	Partial-Screen Video Layout
	Getting the Data Channel List
	Observing a Data Channel
	Activity Life-Cycle Notifications
	StadiumVision Mobile Service Up or Down Indicator
	Receiving "Service Up / Down" Notifications
	Get the Current "Service Up / Down" State On-Demand
	In-Venue Detection
	Receiving "In-Venue Detection" Notifications
	Get the Current "In-Venue" State On-Demand
	Set the SDK Configuration at Run-Time
	Scalable File Distribution
	Get the SDK Configuration
	setConfigWithString API Method
	Get the Available Streamer Servers
	Additional Statistics
	Video Player State Notifications
	Video Player "Channel Inactive" Callback
	Video Player Customization

	Cisco Demo Customized Video Player
	Configuration

	Configuration Files
	WiFi AP Info Configuration (Optional)
	Integration

	Client Application Integration Overview
	Integration Checklist
	Customer Application Roles
	Android Permissions
	SDK Native Libraries

