

Cisco StadiumVision Mobile SDK Guide
for Apple iOS and Google Android
Release 1.2.0
March 28, 2013
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Any Internet Protocol (IP) addresses and phone numbers used in this document are not intended to be actual addresses and phone numbers. Any examples, command display
output, network topology diagrams, and other figures included in the document are shown for illustrative purposes only. Any use of actual IP addresses or phone numbers in
illustrative content is unintentional and coincidental.

Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android
© 2013 Cisco Systems, Inc. All rights reserved.

http://www.cisco.com/go/trademarks

C O N T E N T S
Preface 5

About This Guide 5

About Cisco StadiumVision Mobile 5

Who Should Use This Guide 6

Obtaining Source Code 6

Obtaining Documentation and Submitting a Service Request 6

C H A P T E R 1 Cisco StadiumVision Mobile API for Apple iOS 1-1

Introduction to Cisco StadiumVision Mobile API for Apple iOS 1-1

iOS Model View Controller (MVC) Design Pattern 1-1

iOS API Prerequisites 1-2

Apple iOS SDK Overview 1-2

Client Application Integration Overview 1-3

Cisco StadiumVision Mobile iOS API Class Overview 1-3

Video View Controller Inheritance 1-4

Cisco StadiumVision Mobile Application Classes 1-5

Cisco StadiumVision Mobile iOS API Summary 1-5

Cisco StadiumVision Mobile iOS API 1-6

Return Status Object 1-6

NS Notification Events 1-15

SDK Workflow 1-16

Starting the SDK 1-16

Setting the Log Level 1-16

Getting the Video Channel List 1-16

Presenting the Video Channel List 1-16

Playing A Video Channel 1-17

Seeking Within the Video Buffer 1-17

Getting The Data Channel List 1-17

Observing a Data Channel 1-18

Getting the SDK Version String 1-18

Shutting Down the SDK (Optional) 1-18

Video Player View Controller Customization 1-19

Default Cisco Video Player View Controller 1-19

Customized Video Player 1-19
1
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Contents
Cisco Demo Customized Video Player 1-19

Configuration 1-20

Configuration Files 1-20

Field of Use Configuration 1-20

Wi-Fi Access Point Configuration 1-20

CIntegration Checklist 1-21

What the SDK Handles 1-22

Customer Application Roles 1-22

C H A P T E R 2 Cisco StadiumVision Mobile API for Google Android 2-1

Introduction to Cisco StadiumVision Mobile API for Google Android 2-1

Android API Prerequisites 2-1

Android SDK Overview 2-1

Cisco StadiumVision Mobile iOS API Class Overview 2-2

Android OS Activity Overview 2-2

Cisco StadiumVision Mobile Android API Summary 2-4

Cisco StadiumVision Mobile Android API 2-5

Return Status Object 2-5

Video Player Activity API Summary 2-10

SDK Workflow 2-13

Starting the SDK 2-13

Getting the Video Channel List 2-13

Presenting the Video Channel List 2-14

Playing a Video Channel 2-14

Seeking Within the Video Buffer 2-14

Setting the Video Dimensions 2-14

Fullscreen Video Layout 2-15

Partial-Screen Video Layout 2-15

Getting the Data Channel List 2-15

Observing a Data Channel 2-16

Activity Life-Cycle Notifications 2-16

Video Player Customization 2-16

Cisco Demo Customized Video Player 2-18

Configuration 2-18

Configuration Files 2-18

WiFi AP Info Configuration (Optional) 2-19

Integration 2-19

Client Application Integration Overview 2-19

Integration Checklist 2-20

Customer Application Roles 2-20
2
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Contents
Android Permissions 2-21

SDK Native Libraries 2-22
3
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Contents
4
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Preface

Revised: March 28, 2013

Table 1 Document Revision History

About This Guide
This guide describes the Cisco StadiumVision Mobile SDK for third-party developers whose
applications will operate with the Cisco StadiumVision Mobile solution. These APIs are a mechanism
to insert, retrieve, update, and remove data.

This document covers the Cisco StadiumVision SDKs, which supports both both Apple iOS and Google
Android mobile operating systems.

Our implementations of Cisco StadiumVision Mobile SDK, and included sample application may
change over time in response to the changing needs of our partner community. We will maintain
backward compatibility whenever possible but advise you to expect differences in future releases. A list
of changes will be provided for each release to keep API users aware of any necessary code changes that
they will need to make.

About Cisco StadiumVision Mobile
Cisco StadiumVision Mobile (SVM) enables reliable and scalable delivery of low-delay video and data
streams to WiFi devices at venues. A Venue Operator typically configures and operates SVM, Connected
Stadium Wi-Fi and Connected Stadium components. The mobile app developer is responsible for
obtaining the SVM SDK from Cisco, working with the Venue Operator on configuration dependencies
and integrating the SVM Client.

Date Change Summary

March 28, 2013 Initial version of Cisco StadiumVision Mobile
SDK Guide for Apple iOS and Google Android,
Release 1.2
5
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Preface
Who Should Use This Guide
This guide is a technical resource for application developers who build custom user applications that
extend Cisco StadiumVision Mobile. You should have an advanced level of understanding of web
technology, operation, and terminology and be familiar with Cisco StadiumVision Mobile.

Application developers who use this application programming interface (API) should also have an
understanding of the Objective-C language and Apple iOS, and Google Android application
development.

Obtaining Source Code
Please contact your Cisco account team to become part of the StadiumVision Mobile SDK partner
program.

Obtaining Documentation and Submitting a Service Request
For information on obtaining documentation, submitting a service request, and gathering additional
information, see the monthly What's New in Cisco Product Documentation, which also lists all new and
revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Subscribe to the What's New in Cisco Product Documentation as a Really Simple Syndication (RSS)
feed and set content to be delivered directly to your desktop using a reader application. The RSS feeds
are a free service and Cisco currently supports RSS Version 2.0.
6
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Cisco StadiumVision M

C H A P T E R 1

Cisco StadiumVision Mobile API for Apple iOS

Revised: March 28, 2013

Introduction to Cisco StadiumVision Mobile API for Apple iOS
The iOS SDK is provided as a set of static libraries, header files, and an a sample iOS app (with a
complete Xcode project). This API uses Objective-C classes and method calls to access the
StadiumVision Mobile data distribution and video playback functionality within the StadiumVision
Mobile iOS SDK library.

The Cisco StadiumVision Mobile client application supports Apple iOS 5.0 or later.

iOS Model View Controller (MVC) Design Pattern
The Model View Controller (MVC) design pattern separates aspects of an application into three distinct
parts and defines how the three communicate. Figure 1-1 illustrates the Apple iOS MVC. As the name
implies, the application is divided into three distinct parts: Model, View and Controller. The main
purpose for MVC is reusability where you can reuse the same model for different views.
1-1
obile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
iOS API Prerequisites
Figure 1-1 MVC Design Pattern

iOS API Prerequisites
Build Environment Requirements

Table 1-1 lists the various iOS SDK build environment requirements.

Note Application developers will need to link against the libstd++ library in their build. This can be done by
modifying the Build Settings->Linking->Other Linker Flags-> Add "-lstdc++" in Xcode.

Apple iOS SDK Overview
The Cisco StadiumVision Mobile iOS SDK contains the following components:

 • A set of static libraries, header files, and an a sample iOS app (with a complete Xcode project)

 • Customizable iOS SDK video player

Table 1-1 Apple iOS Table 2.Build Environment Requirements

Tool Version Description URL

Mac OSX 10.7 or later A Mac is required to build an
iOS application which
includes the StadiumVision
Mobile iOS SDK.

http://www.apple.com

Xcode 4.5.1 or later Apple development IDE and
tool kit.

http://developer.apple.com/xcode
1-2
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Client Application Integration Overview
Figure 1-2 illustrates the high-level view of the Cisco StadiumVision iOS API libraries and common
framework components. The left side of the graphic represents how to modifythe sample application,
and the right reprsents how the SDK is packaged.

Figure 1-2 Cisco StadiumVision Mobile iOS SDK Components

Cisco StadiumVision Mobile iOS API Class Overview
The singleton "StadiumVisionMobile" class provides the top-level API to start, configure, and stop the
framework. Video View Controller classes are provided to play the video channels and allow for
customer customization. Figure 1-3 illustrates the StadiumVision Mobile API classes.
1-3
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 1-3 Cisco StadiumVision Mobile iOS API Classes

Video View Controller Inheritance
The iOS "UIViewController" and "UIView" classes are used as base classes. The customer application
can extend the Cisco StadiumVision Mobile classes. Figure 1-4 illustrates the UIViewController and
UIView classes.

Figure 1-4 Cisco StadiumVision Mobile Video Classes

SVMDataObserver

SVMWifiInfo SVMStatus

SVMDeviceInfo

SVMChannel

SVMVideoView

SVMVideoViewController

SVMVideoChannelListObserver

SVMWifiInfoDelegate

SVMVDataChannelListObserver

StadiumVisionMobile
1-4
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Cisco StadiumVision Mobile Application Classes
The Cisco StadiumVision Mobile application classes:

 • Extends and customizes the SVMVideoViewController class

 • Adds a UI overlay for controlling video playback (play, stop, close)

 • Adds a UI overlay for displaying StadiumVision Mobile stats

 • Handles gestures to display UI overlays with the MyVideoViewController class

Figure 1-5 Cisco StadiumVision Mobile Sample Application Classes

Cisco StadiumVision Mobile iOS API Summary
Table 1-2 summarizes the iOS API library. Following the summary are detailed tables for each API call.

Table 1-2 Cisco StadiumVision Mobile iOS API Summary

Return Type API Method Name API Method Description

StadiumVisionMobile* sharedInstance Gets a reference to the API singleton class used
for all API calls

SVMStatus* start Starts the StadiumVision Mobile SDK

SVMStatus* shutdown Stops the StadiumVision Mobile SDK

SVMStatus* addVideoChannelListDelegate Registers a callback delegate to receive all video
channel list updates

SVMStatus* removeVideoChannelListDelegate Unregisters the callback delegate from receiving
the video channel list updates

SVMStatus* addDataChannelListDelegate Registers a callback delegate to receive all data
channel list updates

SVMStatus* removeDataChannelListDelegate Unregisters the callback delegate from receiving
the data channel list updates
1-5
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Cisco StadiumVision Mobile iOS API
The following tables describe each API call in more detail, including example usage.

Return Status Object

Each API call returns a SVMStatus object whenever applicable. Table 1-3 lists the SVMStatus object
fields.

Table 1-3 SVMStatus class

SVMStatus* addDataChannelObserver Registers an observer class to receive data for a
particular data channel

SVMStatus* removeDataChannelObserver Unregisters an observer class from receiving data
for a particular data channel

SVMStatus* addDataChannelObserver:forChannel: Registers an observer class to receive all data
updates for a particular data channel

SVMStatus* addDataChannelObserver:forChannel
Name:

Registers an observer class to receive all data
updates for a particular data channel name

SVMStatus* removeDataChannelObserver:forChan
nel:

Unregisters an observer class from receiving any
data updates for a particular data channel

SVMStatus* removeDataChannelObserver:forChan
nelName:

Unregisters an observer class from receiving any
data updates for a particular data channel

SVMStatus* getVideoChannelListArray Returns a snapshot array of the currently
avaialable video channels.

SVMStatus* getDataChannelListArray Returns a snapshot array of the currently
avaialable data channels.

NSDictionary stats Gets an NSDictionary of curernt StadiumVision
Mobile SDK stats.

SVMStatus* version Gets the StadiumVision Mobile version string.

Return Type API Method Name API Method Description

Type BOOL NSString

Property isOk errorString

Description
Boolean indicating whether the API call was
successful or not.

If the API call was not successful (isOk == NO),
this string describes the error.

Example Usage

// make an api call
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
SVMStatus status = svm.start();
// if an error occurred
if (status.isOk == NO) {
// display the error description
NSLog(@"Error occurred: %@" + status.errorString);
1-6
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-4 sharedInstance

Method Signature (StadiumVisionMobile*) sharedInstance

Prerequisites N/A

Notes

Class method that returns a reference to the StadiumVision
Mobile API singleton class. The returned
"StadiumVisionMobile" object reference is used for all
subsequent StadiumVision Mobile API calls.

Result N/A
1-7
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-5 Start

Table 1-6 addVideoChannelListDelegate

Table 1-7 setLogLevel

Table 1-8 removeVideoChannelListDelegate

Table 1-9 addDataChannelListDelegate

Method Signature (SVMStatus*)start

Prerequisites N/A

Notes

This method starts the StadiumVision Mobile SDK. This will
kick-off and start any required StadiumVision Mobile
background threads and component managers.

Result N/A

Method Signature
(SVMStatus*) addVideoChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
video channel list updates from the StadiumVision Mobile
SDK.

Result N/A

Method Signature

StadiumVisionMobile *svm = [StadiumVisionMobile
sharedInstance];
[svm setLogLevel:SVM_API_LOG_DEBUG]

Prerequisites N/A

Notes
Sets the logging output level of the SDK, with the "DEBUG"
level being more verbose than the "INFO" level.

Result SVMStatus*

Method Signature
(SVMStatus*) addVideoChannelListDelegate:

(id)delegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any video channel list updates from the
StadiumVision Mobile SDK.

Result N/A

Method Signature (SVMStatus*) addDataChannelListDelegate: (id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
data channel list updates from the StadiumVision Mobile
SDK.

Result N/A
1-8
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-10 removeDataChannelListDelegate

Table 1-11 addDataChannelListDelegate

Table 1-12 removeDataChannelListDelegate

Table 1-13 addDataChannelObserver

Method Signature removeDataChannelListDelegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any data channel list updates from the
StadiumVision Mobile SDK.

Example Usage
(SVMStatus*) removeDataChannelListDelegate:
(id)delegate

Result N/A

Method Signature
(SVMStatus*) addDataChannelListDelegate:
(id)delegate

Prerequisites N/A

Notes

This method registers the given delegate class to receive all
data channel list updates from the StadiumVision Mobile
SDK.

Result N/A

Method Signature
(SVMStatus*) removeDataChannelListDelegate:

(id)delegate

Prerequisites N/A

Notes

This method unregisters the given delegate class from
receiving any data channel list updates from the
StadiumVision Mobile SDK.

Result N/A

Method Signature

(SVMStatus*) addDataChannelObserver:
(id<SVMDataObserver>)delegate
forChannel: (SVMChannel*)channel
(SVMStatus*)
addDataChannelObserver:(id<SVMDataObserver>)delegate
forChannelName: (NSString*)channelName

The following example enables reception of the data
announcements:

SVMChannel *selectedChannel1 = [dataChannelList
objectAtIndex:0];
 [svm addDataChannelObserver:self
forChannelName:selectedChannel1.name];

Prerequisites N/A

Notes
This method registers the given delegate class to receive all
data for the given data channel object.

Result N/A
1-9
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-14 removeDataChannelObserver

Table 1-15 onData

Table 1-16 Stats

Table 1-17 Stats API Hash Keys and Descriptions

Method Signature

(SVMStatus*) removeDataChannelObserver:
(id<SVMDataObserver>)delegate
forChannel: (SVMChannel*)channel

Prerequisites N/A

Notes
This method unregisters the given delegate class from
receiving any data for the given data channel name.

Result N/A

Method Signature
(void) onData:(NSData*)data
withChannelName:(NSString*)channelName

Prerequisites N/A

Notes

This method is implemented by the customer app to support
the "SVMDataObserver" protocol. This delegate method is
used as a callback from the StadiumVision Mobile SDK.
Each callback from the SDK to the customer app provides a
received data message on the given data channel. The data
channel message is delivered as an array of bytes (NSData).

Results N/A

Method Signature (NSDictionary*) stats

Prerequisites N/A

Notes

This method returns the StadiumVision Mobile SDK stats as
a dictionary of name / value pairs.
Stats are currently only available for the video channel (not
data channels).

Result N/A

Stats Hash Key Stats Description

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent).

session_uptime The length of time the session has been active (in seconds)

announcement_session_id The video session announcement ID

announcement_session_title The session announcement name

total_num_bytes_written The total number of video bytes played

num_ts_discontinuities The total number of MPEG2-TS packet discontinuities

num_dropped_video_frames The total number of video frames dropped

protection_windows The total number of protection windows sent
1-10
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-18 getVideoChannelListArray

Table 1-19 getDataChannelListArray

Table 1-20 wifiInfo

The following tables contain properties are available within the SVMWifiInfo object.

window_no_loss The total number of protection windows with no dropped
video packets

window_recovery_successes The total number of protection windows with recovered
video packets

window_recovery_failures The total number of protection windows that could not
recover dropped packets. Recovery failure occurs when the
number of received repair packets is less than the number of
dropped video packets

window_warning The total number of protection windows with more packets
per window than the recommended value

window_error The total number of protection windows with more packets
per window than can be supported by Cisco StadiumVision
Mobile.

Method Signature

StadiumVisionMobile *svm = [StadiumVisonMobile
sharedInstance];

NSArray *currentChannels = [svm

getVideoChannelListArray];

Prerequisites N/A

Notes
This method returns an array (NSArray*) of the currently
available video channels (array of “SVMChannel” objects).

Result NSArray* of SVMChannel objects

Method Signature

StadiumVisionMobile *svm = [StadiumVisonMobile
sharedInstance];
NSArray *currentChannels = [svm
getDataChannelListArray];

Prerequisites N/A

Notes
This method returns an array (NSArray*) of the currently
available data channels (array of “SVMChannel” objects)

Result NSArray* of SVMChannel objects

Method Signature (SVMWifiInfo*) wifiInfo

Prerequisites N/A

Notes

This method returns the current WiFi network connection
information. This information gets collected in the statistics
information that gets uploaded to the Reporter server.

Result N/A

Stats Hash Key Stats Description
1-11
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-21 wifiInfo Object Properties

Table 1-22 version

The 'SVMVideoVideoController' class can be extended and customized. The
SVMVideoVideoController API methods are listed in Table 1-23.

Table 1-23 Video View Controller API Summary

Table 1-24 Video View API Summary

Stats Hash Key Stats Description

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent).

session_uptime The length of time the session has been active (in seconds)

announcement_session_id The video session announcement ID

Method Signature (NSString*) version

Prerequisites N/A

Notes
This method returns the StadiumVision Mobile SDK version
string.

Result N/A

Return Type API Method Name API Method Description

void setRenderVideoView Sets the iOS UI video view where video frames will get
rendered

SVMStatus playVideoChannel Starts playback of a particular video channel, changing
channels on subsequent calls

SVMStatus seekRelative Moves the video playback buffer pointer relative to the
current video playback buffer offset position

SVMStatus seekAbsolute Moves the video playback buffer pointer relative to the
starting "live" video playback buffer offset position

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the
current playback buffer offset position

SVMStatus playLive Moves the video playback buffer pointer to the head ("live")
offset position in the video playback buffer

Return Type API Method Name API Method Description

void setRenderVideoView Sets the iOS UI video view where video frames will get rendered

SVMStatus playVideoChannel Starts playback of a particular video channel, changing channels on
subsequent calls

SVMStatus seekRelative Moves the video playback buffer pointer relative to the current video
playback buffer offset position

SVMStatus seekAbsolute Moves the video playback buffer pointer relative to the starting "live"
video playback buffer offset position
1-12
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-25 setRenderVideoView

Table 1-26 playVideo Channel

Table 1-27 seekRelative

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the current
playback buffer offset position

SVMStatus playLive Moves the video playback buffer pointer to the head ("live") offset
position in the video playback buffer

Method Signature (void)setRenderVideoView: (UIView*)aVideoView;

Prerequisites N/A

Notes

This method sets the target iOS video view (SVMVideoView)
that will be used by the StadiumVision Mobile SDK to render
video frames.

Result N/A

Method Signature (void)playVideoChannel:(SVMChannel*)channel;

Prerequisites N/A

Notes

This method plays the given video channel object.
When subsequently called with a different video channel
object, the video view controller will automatically stop the
currently playing channel and start playback of the new
channel

Result N/A

Method Signaure (void) seekRelative: (NSInteger)durationMs;

Prerequisites N/A

Return Type API Method Name API Method Description
1-13
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-28 seekAbsolute

Notes

 • This method moves the video playback buffer pointer
within the video history buffer for the given amount of
time (in milliseconds) relative to its current position.

 • The StadiumVision Mobile SDK currently buffers 30
seconds of previously played video data that can be used
for playing previously recorded video data.

 • A negative duration value rewinds the video play-head
within the video history buffer.

 • A positive duration value forwards the video play-head
towards the latest "live" video data in the video history
buffer.

 • Should a duration be given (positive or negative) that is
larger than the available size of the video history buffer,
then the StadiumVision Mobile SDK move the video
play-head as far as possible within the video history
buffer.

Result N/A

Method Signature (void) seekAbsolute: (NSUInteger)durationMs;

Prerequisites N/A

Notes

 • This method moves the video playback buffer pointer
within the video history buffer for the given amount of
time (in milliseconds) relative to the latest "live" video
data.

 • The StadiumVision Mobile SDK currently buffers 30
seconds of previously played video data that can be used
for playing previously recorded video data

 • A positive duration value moves the video play-head
away from the latest "live" video data in the video history
buffer.

 • Should a duration be given that is larger than the
available size of the video history buffer, then the
StadiumVision Mobile SDK move the video play-head to
the end of the video history buffer.

Result N/A

Method Signaure (void) seekRelative: (NSInteger)durationMs;
1-14
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Table 1-29 playLive

NS Notification Events
The StadiumVision Mobile SDK broadcasts the following iOS NSNotification events for use by the
client application.

Table 1-30 NSNotification Event Properties

The following source code registers to receive the Cisco video notifications:

#include "StadiumVisionMobile.h"
// register to handle the video buffering events
[[NSNotificationCenter defaultCenter] addObserver:self
 selector:@selector(onVideoEvent:)
 name:kSVMVideoEventNotification
 object:nil];

The following source code handles the Cisco video notifications:

#include "StadiumVisionMobile.h"

// video event notification handler
 (void)onVideoEvent:(NSNotification*)notification {
 // get the passed "SVMEvent" object
 SVMEvent *event = [notification object];

 // determine the video event type
 switch (event.type) {
 case kSVMEventTypeVideoBufferingActive:
 // activate the UI "buffering" indicator
 break;
 case kSVMEventTypeVideoBufferingInactive:
 // deactivate the UI "buffering" indicator
 break;
 }
}

Method Signature (void) playLive;

Prerequisites N/A

Notes

 • This method forwards the video play-head to the starting
"live" position at the beginning of the video data buffer.

 • This convenience method acts as a wrapper for the
"seekAbsolute" API method; making "playLive()"
equivalent to "seekAbsolute(0)".

Result N/A

Event Constant Description

kSVMVideoEventNotification Constant defining the video event generated by the
StadiumVision Mobile SDK

kSVMEventTypeVideoBufferingActive Constant defining the "Video Buffering" type of video event

kSVMEventTypeVideoBufferingInactive Constant defining the "Video Not Buffering" type of video
event
1-15
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
SDK Workflow

Starting the SDK

The StadiumVision Mobile SDK needs to be started at the application initialization by calling the "start"
API method as in the following example:

#import "StadiumVisionMobile.h"
// get a reference to the StadiumVision Mobile API
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// start the StadiumVision Mobile SDK
[svm start];

Setting the Log Level

Sets the logging output level of the SDK, with the “DEBUG” level being more verbose than the “INFO”
level. An example follows:

// start method sets logs to INFO by default
StadiumVisionMobile *svm = [StadiumVisionMobile sharedInstance];
[svm start];

// set the desired log level
[svm setLogLevel:SVM_API_LOG_DEBUG];

Getting the Video Channel List

The client application registers to receive callback whenever the video channel list is updated, as in the
following example:

// register to receive video channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addVideoChannelListDelegate:self];

The StadiumVision Mobile SDK will callback the client application with any video channel list updates.

#import "StadiumVisionMobile.h"
// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>
// video channel handler (array of 'SVMChannel' objects)
 -(void)onVideoChannelListUpdated:(NSArray*)channelList;

Presenting the Video Channel List

Each "SVMChannel" video channel object contains all of the information needed to display the channel
list to the user.

Table 1-31 SVMChannel object properties

"SVMChannel" Property Property Description

"name” The name of the video channel

"bandwidthKbps” The nominal video stream bandwidth (in kbps)

"sessionNum” The session number of the channel

"channelText” The complete text description of the video channel

“venueName” The name of the venue.
1-16
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Playing A Video Channel

The example below demonstrates these actions:

 • Selects a channel from the locally saved channel list

 • Presents the video view controller modally

 • Commands the video view controller to play the selected channel

#import "StadiumVisionMobile"

// get the user-selected video channel object
SVMChannel *selectedChannel = [videochannelList objectAtIndex:0];

NSLog(@"Selected Video Channel = %@", selectedChannel.name);

// create the video view controller
MyVideoViewController *myVC = [[MyVideoViewController alloc] init];

// present the modal video view controller
myVC.modalTransitionStyle = UIModalTransitionStyleCrossDissolve;
[self presentModalViewController:myVC animated:YES];

// play the selected video channel
[myVC playVideoChannel:selectedChannel];

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in the device RAM. The following example jumps
backwards 20 seconds in the video buffer (instant replay).

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// rewind 20 seconds
[svm rewindForDuration:-20000];

The example below jumps back to the top of the video buffer ("live" video playback):

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// play at the "live" video offset
[svm playLive];

Getting The Data Channel List

In the following example, the client application registers to receive callback whenever the data channel
list is updated.

// register to receive data channel list updates
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
[svm addDataChannelListDelegate:self];

In this example, the StadiumVision Mobile SDK will callback the client application with any data
channel list updates:

#import "StadiumVisionMobile.h"

contentOwner The name of the content owner.

appDeveloper The name of the application developer.

"SVMChannel" Property Property Description
1-17
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
// implement the "SVMChannelListObserver" protocol
@interface MyViewController : UIViewController <SVMChannelListObserver>

// data channel handler (array of 'SVMChannel' objects)
 (void)onDataChannelListUpdated:(NSArray*)channelList;

Observing a Data Channel

In the following example, the registered class needs to implement the "SVMDataObserver" protocol:

#import "SVMDataObserver.h"
@interface DataChannelViewController : UIViewController <SVMDataObserver>

In this example, the "onData:withChannelName" method is called to push the received data to the
registered class:

-(void)onData:(NSData*)data withChannelName:(NSString *)channelName {
 // convert the data bytes into a string
 NSString *dataStr = [[NSString alloc] initWithBytes:[data bytes]
 length:[data length]
 encoding:NSUTF8StringEncoding];

 // display the data bytes and associated channel name
 NSLog(@"ChannelListViewController: onData callback: "
 "channelName = %@, data = %@", channelName, dataStr);

 [dataStr release];}

Getting the SDK Version String

The example below gets the StadiumVision Mobile SDK Version string:

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];
// get the sdk version string
NSString *sdkVersion = [svm version];

Shutting Down the SDK (Optional)

The StadiumVision Mobile SDK automatically shuts-down and restarts based upon the iOS life-cycle
notifications (NSNotifications). The client iOS application does not need to explicitly stop and restart
the StadiumVision Mobile SDK. This 'shutdown' API is provided in case a customer use-case requires
an explicit SDK shutdown.

#import "StadiumVisionMobile"

// get a reference to the api object
StadiumVisionMobile *svm = [StadiumVisonMobile sharedInstance];

// shutdown the StadiumVision Mobile SDK
[svm shutdown];
1-18
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Video Player View Controller Customization

Default Cisco Video Player View Controller

The default Cisco video player has the following features:

 • Implemented as a separate iOS "UIViewController"

 • Support for fullscreen and partial-screen video views

 • Video frames rendered using an iOS "UIView" and OpenGL layer (CAEAGLLayer)

 • Customizable by extending the "SVMVideoViewController" class

 • The Cisco demo app uses a customized video player

Customized Video Player

To customize the video player, extend the "SVMVideoViewController" base class as in the following
example:

#import "SVMVideoViewController.h";

@interface MyVideoViewController : SVMVideoViewController {
}

Figure 1-6 Video Player Customization

Cisco Demo Customized Video Player

The demo customized video player has the following properties:

 • Implemented as "MyVideoViewController"

 • Extends the "SVMVideoViewController" class

 • Handles all video overlays and gestures

 • Single-tap gesture and "Back", "Rewind" / "Live" overlay buttons
1-19
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
 • Two-finger double-tap gesture and stats overlay

 • Uses the "MyVideoViewController~iphone.xib" to layout the screen

 • Located in the "Customer App / App UI Resources / UI XML Files" Xcode project folder

The video view shown in Interface Builder is connected to the "videoView" property and is of class type
"MyVideoView".

Configuration

Configuration Files

There are three configuration files that must be bundled with any iOS app using the StadiumVision
Mobile SDK, as listed in the following table:

Table 1-32 Configuration Files

Field of Use Configuration

There are three "field-of-use" (also known as the triplet key) properties in the "cisco_svm.cfg"
configuration file that need to be configured for each StadiumVision Mobile application: These fields
must match the channel settings in the Cisco StadiumVision Mobile Streamer for the channels to be
accessible by the application.

 • Venue Name

 • Content Owner

 • App Developer

An example set of fields in the "cisco_svm.cfg" file is shown below:

{
 "license": {
 "venueName": "Stadium-A",
 "contentOwner": "Multi-Tenant Team-B",
 "appDeveloper": "Vendor-C"
 }
}

Wi-Fi Access Point Configuration

The "cisco_svm.cfg" configuration file can optionally include an array of WiFi AP information that will
be used by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example WiFi
AP info entry in the "cisco_svm.cfg" configuration file:

{
 "network": {

Configuration File Name Description

"cisco_svm.cfg” StadiumVision Mobile SDK configuration file that contains the "Field-of-Use"
parameters and some optional WiFi network debugging information

"vompPlay.cfg” Video decoder configuration file that contains the tuned decoding parameters. These
settings should never be changed. Any changes could result in poor video or audio
playback.
1-20
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

CIntegration Checklist

The following list outlines integration steps for using the Cisco StadiumVision Mobile SDK.

1. Supported iOS version

 – Set the app's iOS version target set to iOS v4.0 or above

2. Copy configuration files

 – Copy the "cisco_svm.cfg" and vompPlay.cfg" config files, and the "voVidDec.dat" license file
into the Xcode project.

3. Copy libraries

 – Copy the "libStadiumVisionMobile.a" and "libvoCTS.a" static libraries into the Xcode project.

4. Set the Xcode Project "Build Settings"

 – Add the "-ObjC" flag to the "Other Linker Flags" build setting. This ensures all Objective-C
categories are loaded from the StadiumVision Mobile static library.

 – Add the "-lstdc++" flag to the "Other Linker Flags" build setting. This ensures that the C++
video decoder library is properly linked to the final app build.

5. Include Required iOS Libraries by adding frameworks in the target build phases pane of the Xcode
project, under "Link Binary With Libraries" section, as shown in Figure 1-7.

Figure 1-7 Adding frameworks in Xcode
1-21
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Required iOS Libraries

 • UIKit.framework

 • Foundation.framework

 • CoreGraphics.framework

 • AudioToolbox.framework

 • OpenGLES.framework

 • QuartzCore.framework

 • CFNetwork.framework

 • SystemConfiguration.framework

 • MobileCoreServices.framework

 • libz.dylib

What the SDK Handles

The StadiumVision Mobile SDK automatically handles the following events:

 • Dynamic video channel discovery and notification

 • Dynamic data channel discovery and notification

 • Automatic SDK shutdown / restart in response to WiFi up / down events

 • Automatic SDK shutdown / restart in response to iOS life-cycle events

 • Management of multicast network data threads

 • On-demand management of video / audio decoding threads

 • Automatic statistics reporting to the StadiumVision Mobile Reporter server

Customer Application Roles

Figure 1-8 illustrates the roles of the customer application. The application must specify:

 • Getting the list of video channels

 • Displaying the list of video channels

 • Handling user gestures for selecting video channels

 • Adding video overlays and layouts

 • Handling user gestures to control video overlays
1-22
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
Figure 1-8 Customer Application Responsibilities

SVMVideoViewController
class

MyVideoViewController

StadiumVisionMobile
class

- Start the framework
- Get video channels
- Shutdown the framework

- Handles all video
 playback details
- Provides noti?cations
 to the sub-class

VideoChannelList
ViewController

Customer
App

StadiumVision
Mobile SDK

Chan 1
Chan 2

Chan 3

Get Video
Channels

Playback
Noti?cations

Launch
Video
Player

Overlay

Play Channel,
Seek, Dismiss
1-23
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 1 Cisco StadiumVision Mobile API for Apple iOS
Apple iOS SDK Overview
1-24
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Cisco StadiumVision M

C H A P T E R 2

Cisco StadiumVision Mobile API for Google
Android

March 28, 2013

Introduction to Cisco StadiumVision Mobile API for Google
Android

The Cisco StadiumVision Mobile API uses Android and Java classes and method calls to access the
StadiumVision Mobile data distribution and video playback functionality within the StadiumVision
Mobile Android SDK library.

The Cisco StadiumVision Mobile client application supports Android 2.1 or later.

Android API Prerequisites

Build Environment Requirments

Table 2-1 lists the various Android SDK build environment requirements.

Table 2-1 Build Environment Requirements

Android SDK Overview
The Cisco StadiumVision Mobile Android SDK contains the following components:

 • A set of static libraries, configuration files, player layout XML files, and a sample Android
application.

 • Customizable video player

Tool Version Description URL

Mac or Windows
PC

Eclipse 3.7.1 (Indigo) Eclipse "Classic" for Mac OSX (64-bit) http://www.eclipse.org/downloads/
2-1
obile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Cisco StadiumVision Mobile iOS API Class Overview

Figure 2-1 describes the three main Android API classes used in Cisco StadiumVision Mobile. The
top-level StadiumVisionMobile class acts as a custom Android application context. An application
context is a structure created within a screen or activity. There is no global state across an Android
application.

Each SDK API method is called using the StadiumVisionMobileMETHOD-NAME class. The
SVMVideoPlayerActivity class is a customizable stand-alone video player.

Figure 2-1 StadiumVision Mobile Class

Android OS Activity Overview

Figure 2-2 depicts the Android OS with regard to Activities. An Activity represents both the screen
layout and controller code. A new Activity is launched by sending an Intent to the Android OS. An intent
is a message to Android OS to launch a particular activity. Extra parameters contained in an Intent and
are passed to an Activity. The back button is a hard device button used to generically display the previous
Activity, and moves back down the Activity stack.
2-2
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Figure 2-2 Android Activity Overview

Figure 2-3 depicts the Activity inheritance between the Android OS, Cisco StadiumVision Mobile, and
the client application.
2-3
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Figure 2-3 Android Video Player Activity Inheritance

Cisco StadiumVision Mobile Android API Summary

Table 2-2 summarizes the Android API library. Following the summary are detailed tables for each API
call.

Table 2-2 Cisco StadiumVision Mobile Android API Summary

Return Type API Method Name API Method Description

SVMStatus start Starts the StadiumVision Mobile SDK

SVMChannel[] getVideoChannelArray Get the array of available video channels

ArrayList<SVMChannel> getVideoChannelArrayList Get the array list of available video channels

SVMChannel[] getDataChannelArray Get the array of available data channels

ArrayList<SVMChannel> getDataChannelArrayList Get the array list of available data channels

SVMStatus addDataChannelObserver Registers an observer class to receive data for a particular
data channel

SVMStatus removeDataChannelObserver Unregisters an observer class from receiving data for a
particular data channel
2-4
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Cisco StadiumVision Mobile Android API
The following tables describe each API call in more detail, including example usage.

Return Status Object

Each API call returns an ‘SVMStatus’ object whenever applicable. Table 2-3 lists the SVMStatus object
fields.

Table 2-3 SVMStatus Object

HashMap<String,String> getStats Gets a HashMap of the current StadiumVision Mobile SDK
stats

void onPause Forwards each Android Activity's 'onPause' life-cycle
notification to the StadiumVision Mobile SDK

void onResume Forwards each Android Activity's 'onResume' life-cycle
notification to the StadiumVision Mobile SDK

SVMWifiInfo getWifiInfo Gets the current WiFi connection info

SVMBatteryInfo getBatteryInfo Gets the current battery info for the device

String[] getLogLevelArray Gets an array of the available StadiumVision Mobile SDK
logging levels

ArrayList<String> getLogLevelArrayList Gets an array list of the available StadiumVision Mobile
SDK logging levels

SVMStatus setLogLevel Set the StadiumVision Mobile SDK logging level

String getLocalIpAddress Convenience method to get the local device's IP address

String getDeviceUUID Gets the unique StadiumVision Mobile identifier for this
device

String getSessionUUID Gets the unique StadiumVision Mobile identifier for this
application session

String sdkVersion Property that contains the StadiumVision Mobile SDK
version

Return Type API Method Name API Method Description

Type BOOL String

Property ok error

Description

Boolean indicating whether
the API call was successful or
not.

If the API call was not successful (ok =false), this string
describes the error.

Example Usage

// make an api call
SVMStatus status = StadiumVisionMobile.start();
// if an error occurred
if (status.ok == false) {
// display the error description
Log.e(TAG, "Error occurred: " + status.error);
2-5
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-4 Start

Table 2-5 getVideoChannelArray

Table 2-6 getDataChannelArrayList

Table 2-7 addDataChannelObserver

Figure 2-4 onData

Method Signature public static SVMStatus start();

Prerequisites N/A

Notes

This method starts the StadiumVision Mobile SDK. This will
kick-off and start any required StadiumVision Mobile
background threads and component managers.

Result N/A

Method Signature public static SVMChannel[] getVideoChannelArray();

Prerequisites N/A

Notes
This method returns a Java array of available video channels
as 'SVMChannel' objects.

Result N/A

Method Signature
public static ArrayList<SVMChannel>
getDataChannelArrayList();

Prerequisites N/A

Notes
This method returns a Java ArrayList of available data
channels as 'SVMChannel' objects (using Java generics).

Result N/A

Method Signature
public static ArrayList<SVMChannel>
getDataChannelArrayList();

Prerequisites N/A

Notes
This method registers the given observer class to receive data
for the given 'SVMChannel' data channel object.

Result N/A

Method Signature public void onData(String channelName, byte[] data)

Prerequisites N/A

Notes

This method is implemented by the customer app and is used
as a callback from the StadiumVision Mobile SDK. Each
callback from the SDK to the customer app provides a
received data message on the given data channel. The data
channel message is delivered as a byte array.

Result N/A
2-6
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-8 removeDataChannelObserver

Table 2-9 getStats

Table 2-10 lists the hash keys and stats description for the getStats API.

Table 2-10 getStats API Hash Keys and Stats Description

Method Signature

public static SVMStatus
removeDataChannelObserver(String dataChannelName,

ISVMDataObserver observer);

Prerequisites N/A

Notes
This method unregisters the given observer class to receive
data for the given 'SVMChannel' data channel object.

Result N/A

Method Signature public static HashMap<String, String> getStats();

Prerequisites N/A

Notes
This method returns the StadiumVision Mobile SDK stats as
a hash of name / value pairs.

Result N/A

Stats Hash Key Stats Description

session_link_indicator The health of the WiFi network connection. Ranges from 0
(poor) to 10 (excellent)

session_uptime The length of time the session has been active (in seconds)

announcement_session_id The video session announcement ID

announcement_session_title The session announcement name

total_num_bytes_written The total number of video bytes played

num_ts_discontinuities The total number of MPEG2-TS packet discontinuities

num_dropped_video_frames The total number of video frames dropped

protection_windows The total number of protection windows sent

window_no_loss The total number of protection windows with no dropped
video packets

window_recovery_successes The total number of protection windows with recovered
video packets

window_recovery_failures The total number of protection windows that could not
recover dropped packets. Recovery failure occurs when the
number of received repair packets is less than the number of
dropped video packets
2-7
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-11 onPause

Table 2-12 onResume

Table 2-13 getWifiInfo

window_warning The total number of protection windows with more packets
per window than the recommended value

window_error The total number of protection windows with more packets
per window than can be supported by StadiumVision Mobile.

Method Signature public static void onPause();

Prerequisites N/A

Notes

 • This method must be called by each individual client app
Activity's "onPause()" method to inform the
StadiumVision Mobile SDK of when a client app Activity
has stopped.

 • Forwarding each client app Activity's "onPause()"
life-cycle event allows the StadiumVision Mobile SDK to
declare the client Android app as "active" and potentially
restart all of the internal component managers and threads
that use the device's CPU and networking resources.

Result N/A

Method Singature public static void onResume();

Prerequisites N/A

Notes

 • This method must be called by each individual client app
Activity’s "onResume()" method to inform the
StadiumVision Mobile SDK of when a client app
Activity has started.

 • Forwarding each client app Activity's "onResume()"
life-cycle event allows the StadiumVision Mobile SDK
to declare the client Android app as "inactive" and
shutdown all CPU and networking resources used by the
StadiumVision Mobile SDK.

Result N/A

Method Signature public static SVMWifiInfo getWifiInfo();

Prerequisites N/A

Notes

 • This method returns the current WiFi network
connection information.

 • This information gets collected in the statistics
information that gets uploaded to the Reporter server.

Result N/A

Stats Hash Key Stats Description
2-8
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-14 getBatteryInfo

Table 2-15 getLogLevelArray

Table 2-16 getLogLevelArrayList

Table 2-17 setLogLevel

Table 2-18 getLocalIpAddress

Method Signature public static SVMBatteryInfo getBatteryInfo();

Prerequisites N/A

Notes

 • This method returns the current device battery
information.

 • This information gets collected in the statistics
information that gets uploaded to the Reporter server (if
stats collection is enabled).

Result N/A

Method Signature public static String[] getLogLevelArray();

Prerequisites N/A

Notes
This method provides a Java array of available logging levels
that can be applied to any component.

Result N/A

Method Signature
public static ArrayList<String>
getLogLevelArrayList();

Prerequisites N/A

Notes
This method provides a Java ArrayList of available logging
levels that can be applied to any component.

Result N/A

Method Signature public static SVMStatus setLogLevel(LogLevel level);

Prerequisites N/A

Notes

This method sets the global logging level for the entire
StadiumVision Mobile SDK, with all internal components
getting their logging level set to the same level.

Result N/A

Method Signature public static String getLocalIpAddress();

Prerequisites N/A

Notes This method returns this device's local IP address.

Result N/A
2-9
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-19 getDeviceUUID

Table 2-20 getAppSessionUUID

Table 2-21 sdkVersion

Video Player Activity API Summary

The SVMVideoPlayerActivity class can be extended and customized. Table 2-22 lists the
SVMVideoPlayerActivity API methods.

Method Signature public static String getDeviceUUID();

Prerequisites N/A

Notes

 • This method returns the device UUID that was generated
by the StadiumVision Mobile SDK and saved in the app's
shared preferences.

 • Android does not provide a consistent and reliable device
UUID across all of the Android OS versions supported
by the StadiumVision Mobile SDK, so a generated
device UUID is used instead.

Result N/A

Method Signature public static String getAppSessionUUID();

Prerequisites N/A

Notes

 • This method returns the app session UUID that is
generated by the StadiumVision Mobile SDK.

 • This UUID uniquely identifies each time the
StadiumVision Mobile SDK is started and is used for
consistent statistics collection and reporting.

Result N/A

Method Signature public static String sdkVersion;

Prerequisites N/A

Notes
This class property contains StadiumVision Mobile SDK
version string.

Result N/A
2-10
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-22 Video Player Activity API Summary

Table 2-23 setVideoSurfaceView

Table 2-24 seekRelative

Return Type API Method Name API Method Description

SVMStatus setVideoSurfaceView Sets the Android UI “SurfaceView” where video frames will get rendered

SVMStatus playVideoChannel Starts playback of a particular video channel, changing channels on
subsequent calls

SVMStatus seekRelative Seeks the playback buffer pointer relative to the current playback buffer
offset position

SVMStatus seekAbsolute Seeks the playback buffer pointer from the head (“live”) offset position of
the video playback buffer

SVMStatus rewindForDuration Rewinds the video playback buffer pointer relative to the current playback
buffer offset position

SVMStatus playLive Moves the video playback buffer pointer to the head (“live”) offset
position in the video playback buffer

SVMStatus shutdown Shuts-down and dismisses the video player Activity

Method Signature public static String sdkVersion;

Prerequisites N/A

Notes
This class property contains StadiumVision Mobile SDK
version string.

Example Usage

Result N/A

Method Signature public SVMStatus seekRelative(int durationMs);

Prerequisites N/A

Notes

This method moves the video play-head pointer forward and
backward in time relative to its current position in the video
history buffer.

Result N/A
2-11
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-25 seekAbsolute

Table 2-26 rewindForDuration

Method Signature public SVMStatus seekAbsolute(int durationMs);

Prerequisites N/A

Notes

 • This method moves the video play-head pointer to
beginning of stream; relative to the “live” position.

 • To play most current live video pass in on offset of zero
(0 ms).

 • To play most current live video pass in on offset of zero
(0 ms).

 • To play video in the past, a positive duration will be used
as an offset for rewinding back in time (relative to the
“live” position).

Result N/A

Method Signature public SVMStatus rewindForDuration(int durationMs);

Prerequisites N/A

Notes

 • This method rewinds the video play-head within the
video history buffer for the given amount of time (in
milliseconds)

 • Should a duration be given that is larger than the size of
the video history buffer, the StadiumVision Mobile SDK
will rewind the video play-head as far as possible

 • This convenience method acts as a wrapper for the
“seekRelative” API method; making the given
“durationMs” value negative before calling
“seekRelative”. For example,
“rewindForDuration(20000)” is equivalent to
“seekRelative(-20000)”.

Result N/A
2-12
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Table 2-27 playLive

Table 2-28 shutdown

SDK Workflow

Starting the SDK

Start the StadiumVision Mobile SDK from the application’s main Android launch Activity, as shown in
the following example.

import com.cisco.svm.app.StadiumVisionMobile;

// app’s launch activity ‘onCreate’ notification
void onCreate() {

 // call the parent method
 super.onCreate();

 // start the StadiumVision Mobile SDK
 StadiumVisionMobile.start();
}

Getting the Video Channel List

The StadiumVision Mobile SDK dynamically receives all of the available channels (via WiFi multicast).
The client application gets an array of channel objects (SVMChannel[]) through the
“getVideoChannelArray” API call, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

// get the list of available video channels
SVMChannel[] channels = StadiumVisionMobile.getVideoChannelArray();

// display some channel information

Method Signature public SVMStatus playLive();

Prerequisites N/A

Notes

 • This method forwards the video play-head to the starting
“live” position at the beginning of the video data buffer

 • This convenience method acts as a wrapper for the
“seekAbsolute” API method; making “playLive()”
equivalent to “seekAbsolute(0)”.

Result N/A

Method Signature public SVMStatus shutdown();

Prerequisites N/A

Notes

This method stops video playback of the currently playing
video channel by stopping the native player, native decoder,
and terminating this Android Activity.

Result N/A
2-13
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Log.d(TAG, “Channel Name = “ + channels[0].name);
Log.d(TAG, “Channel Bandwidth = “ + channels[0].bandwidthKbps);
Log.d(TAG, “Channel Body Text = “ + channels[0].bodyText);

Presenting the Video Channel List

Each “SVMChannel” video channel object contains all of the information needed to display the channel
list to the user. The SVMChannelObject properties and descriptions are shown in Table 2-29.

Table 2-29 SVMChannel Object Properties

Playing a Video Channel

The following example shows playing a video channel, and performs the following actions:

 • Selects a channel from the locally saved channel list

 • Starts video playback of the channel by launching the custom video player Activity
(“MyVideoPlayer”)

Note The “SVMChannel” object is parcelable (instances can be written to and restored from a parcel).

Seeking Within the Video Buffer

The last 30 seconds of played video is stored in device RAM. The following example shows jumping
backwards 20 seconds in the video buffer (instant replay):

public class MyVideoPlayerActivity extends SVMVideoPlayerActivity {

 // seek backwards 20 seconds in the video buffer
 super.seekRelative(-20000);
}

The following example shows jumping back to the top of the video buffer (“live” video playback):

public class MyVideoPlayerActivity extends SVMVideoPlayerActivity {

 // seek to the top of the video buffer (0 ms offset)
 super.seekAbsolute(0);
}

Setting the Video Dimensions

The video region is rendered within a SurfaceView. The video region is configured using standard
Android layout XML files. The video region can be set to full screen or to specific pixel dimensions

“SVMChannel” Property Property Description

“name” The name of the video channel

“bandwidthKbps” The data bandwidth consumed by the video channel (in kbps)

“sessionNum” The session number of the channel

“channelText” The complete text description of the video channel
2-14
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Fullscreen Video Layout

The XML layout file below shows how to configure the video ‘SurfaceView’ to fill the entire screen, as
shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/black">

 <SurfaceView
 android:id="@+id/videoSurfaceView"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:layout_centerInParent="true">
 </SurfaceView>

</RelativeLayout>

Partial-Screen Video Layout

The XML layout file below shows how to configure the video ‘SurfaceView’ to specific pixel region, as
shown in the following example:

<?xml version="1.0" encoding="utf-8"?>
<RelativeLayout
 xmlns:android="http://schemas.android.com/apk/res/android"
 android:layout_width="fill_parent"
 android:layout_height="fill_parent"
 android:background="@drawable/black">

 <SurfaceView
 android:id="@+id/videoSurfaceView"
 android:layout_width=”320px"
 android:layout_height=”240px"
 android:layout_centerInParent="true">
 </SurfaceView>

</RelativeLayout>

Getting the Data Channel List

The StadiumVision Mobile SDK dynamically receives all of the available data channels (via WiFi
multicast). The client application gets an array of channel objects (SVMChannel[]) through the
“getDataChannelArray” API call, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

// get the list of available data channels
SVMChannel[] channels = StadiumVisionMobile.getDataChannelArray();

// display some channel information
Log.d(TAG, “Channel Name = “ + channels[0].name);
Log.d(TAG, “Channel Bandwidth = “ + channels[0].bandwidthKbps);
Log.d(TAG, “Channel Body Text = “ + channels[0].bodyText);
2-15
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Observing a Data Channel

Any data channel can be observed by registering a class to receive callbacks for all data received on that
channel. The registered class needs to implement the “ISVMDataObserver” interface, as shown in the
following example:

import com.cisco.svm.data.ISVMDataObserver;

public class MyDataViewerActivity extends Activity implements ISVMDataObserver {
 ...
}

The “onData” method is called to push the received data to the registered class, as shown in the following
example:

public void onData(String channelName, byte[] data) {
 // display the received data parameters
 Log.d(TAG, "DATA CALLBACK: “ +
 “channel name = " + channelName + “, “ +
 “data length = " + data.length);

}

Activity Life-Cycle Notifications

The client app needs to notify the StadiumVision Mobile SDK of it’s life-cycle notifications. This allows
the StadiumVision Mobile SDK to automatically shutdown and restart as needed. Each client Activity
needs to forward its life-cycle notifications, as shown in the following example:

import com.cisco.svm.app.StadiumVisionMobile;

void onPause() {

 // notify the cisco sdk of the life-cycle event

 StadiumVisionMobile.onPause();

}

void onResume() {

 // notify the cisco sdk of the life-cycle event

 StadiumVisionMobile.onResume();

Video Player Customization
This section describes customizing the video player.

Default Cisco Video Player

The default Cisco video player has the following features:

 • Implemented as a separate Android “Activity”

 • Supports fullscreen and partial-screen video views
2-16
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 • Renders video frames using an Android “SurfaceView”

 • Customizable by extending the “SVMVideoPlayerActivity” class

 • Uses a customized video player

Figure 2-5 Default Cisco Video Player

Customized Video Player

The customized video play extends the “SVMVideoPlayerActivity” base class, as shown below:

import com.cisco.sv.media.SVMVideoPlayerActivity;

public class MyVideoPlayer extends SVMVideoPlayerActivity {
}

Figure 2-6 SVMVideoPlayerActivity API

You need to register the new custom Activity in “AndroidManifest.xml, as shown below:

<activity android:label="@string/app_name”
 android:name="com.company.MyVideoPlayer”
 android:screenOrientation="landscape"
 android:configChanges="orientation|keyboardHidden"
 android:theme="@android:style/Theme.NoTitleBar.Fullscreen”>
</activity>

SVMVideoPlayerActivity

MyVideoPlayerActivity

Playback
Noti• cations

Overlay

Play Channel,
Seek, Dismiss
2-17
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Cisco Demo Customized Video Player

The Cisco demo video player:

 • Implemented as “MyVideoPlayerActivity”

 • Extends the “SVMVideoPlayerActivity” class

 • Handles all video overlays and gestures

 • Uses standard Android XML layout files (“layout/player.xml”)

The video player’s XML layout file defines:

 • The “SurfaceView” video rendering area

 • Any transparent video overlays

 • Play / Pause / Rewind button graphic files

 • Animations used to show / hide the transport controller

Configuration
The following section describes the required configuration.

Configuration Files

There are three configuration files that must be bundled with any Android app using the StadiumVision
Mobile SDK.

Table 2-30 Configuration Files

Config File Name Description

“cisco_svm.cfg” StadiumVision Mobile SDK configuration file that contains
the “Field-of-Use” parameters and some optional WiFi
network debugging information. The three “field-of-use”
properties in the “cisco_svm.cfg” configuration file that need
to be configured for each StadiumVision Mobile application
are:

 • Venue Name

 • Content Owner

 • App Developer

“vompPlay.cfg” Video decoder config file that contains the tuned decoding
parameters. These settings should never be changed. Any
changes could result in poor video or audio playback.

“voVidDec.dat” Video decoder license file.
2-18
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
An example set of fields in the “cisco_svm.cfg” file is shown below.These fields must match the channel
settings in the Cisco “Streaming Server” for the channels to be accessible by the application.

{
 "license": {
 "venueName": ”Stadium-A",
 "contentOwner": ”Multi-Tenant Team-B",
 "appDeveloper": ”Vendor-C”
 }
}

WiFi AP Info Configuration (Optional)

The “cisco_svm.cfg” config file can optionally include an array of WiFi AP information that will be used
by the StadiumVision Mobile SDK for statistics reporting if available. Below is an example WiFi AP
info entry in the “cisco_svm.cfg” config file:

{
 "network": {
 "wifiApInfo": [
 {
 "name": "Press Box Booth 5",
 "bssid": "04:C5:A4:09:55:70"
 }
]
 }
}

Integration

Client Application Integration Overview

This section describes customizing the StadiumVision Mobile application, and contains the following
subsections:

 • Cisco StadiumVision Mobile Android API Summary, page 2-412

 • Integration Checklist, page 2-20

 • Customer Application Roles, page 2-20
2-19
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Figure 2-7 Cisco StadiumVision Mobile Integration Overview

Integration Checklist

1. Supported Android OS Version

 – Set the app’s Android version target to v2.1u1 or above

2. Android App Permissions

 – Add the required permissions to “AndroidManifest.xml”

3. Copy Config Files

 – Add the config files to the app’s “assets” folder

4. Copy Libraries

 – Add the Java and native libraries to the app’s “libs” folder

5. Set a Video “SurfaceView”

 – Add a “SurfaceView” to the player Activity’s layout XML file

6. Life-Cycle Notifications

 – Forward life-cycle notifications to the StadiumVision Mobile SDK

7. Android Project Build Paths

 – Set the project build path to include the Jar files in “./libs/”

Customer Application Roles

Figure 2-8 illustrates the roles of the customer application. The application must specify:
2-20
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 • Getting the list of video channels

 • Displaying the list of video channels

 • Handling user gestures for selecting video channels

 • Adding video overlays and layouts

 • Handling user gestures to control video overlay

Figure 2-8 Customer Application Responsibilities

Android Permissions

The following Android permissions are needed by the StadiumVision Mobile SDK. Each permission is
set in the “AndroidManifest.xml” file.

<uses-permission android:name="android.permission.WAKE_LOCK" />
<uses-permission android:name="android.permission.WRITE_EXTERNAL_STORAGE" />
<uses-permission android:name="android.permission.INTERNET" />
<uses-permission android:name="android.permission.ACCESS_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_STATE" />
<uses-permission android:name="android.permission.CHANGE_WIFI_MULTICAST_STATE" />

SDK Java Libraries

Each Java JAR library needs to be included in the Android app’s “libs” folder, as shown in the following
example.

 • Cisco StadiumVision Mobile Android SDK

 • Apache HTTP Client 4.1

SVMVideoPlayerActivity

MyVideoPlayerActivity

StadiumVisionMobile

- Provides a top-level
 application context
- Start the framework
- Get video channels
- Shutdown the framework

- Handles all video
 playback details
- Provides noti• cations
 to the sub-class

MyListViewActivity

Customer
App

StadiumVision
Mobile SDK

Chan 1

Chan 2

Chan 3

Get Video
Channels

Playback
Noti• cations

Launch
Video
Player

Overlay

Play Channel,
Seek, Dismiss
2-21
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 • Jackson JSON 1.8.1

./libs/StadiumVisionMobile.jar

./libs/httpclient-4.1.1.jar

./libs/httpcore-4.1.jar

./libs/httpmime-4.1.1.jar

./libs/jackson-core-lgpl-1.8.1.jar

./libs/jackson-mapper-lgpl-1.8.1.jar

SDK Native Libraries

Each library needs to be included in the Android app’s “libs/armeabi” folder.

./libs/armeabi/libsvm-android.a

./libs/armeabi/libvoAACDec.so

./libs/armeabi/libvoAACDec_v7.so

./libs/armeabi/libvoH264Dec.so

./libs/armeabi/libvoH264Dec_v7.so

./libs/armeabi/libvoLiveSrcCTS.so

./libs/armeabi/libvoLiveSrcCTS_v7.so

./libs/armeabi/libvoMMCCRRS.so

./libs/armeabi/libvoMMCCRRS_v7.so

./libs/armeabi/libvoTsParser.so

./libs/armeabi/libvoTsParser_v7.so

./libs/armeabi/libvoVidDec.so

./libs/armeabi/libvojni_svmobile.so

./libs/armeabi/libvojni_vome2_sw_v20.so

./libs/armeabi/libvojni_vome2_sw_v22.so

./libs/armeabi/libvojni_vome2_sw_v23.so

./libs/armeabi/libvojni_vome2_sw_v30.so

./libs/armeabi/libvojni_vome2_sw_v31.so

./libs/armeabi/libvompEngn.so

Android Project Classpath

To add Java JAR files to your Eclipse project, use the following steps:

Step 1 Right-click your project in Eclipse

Step 2 Select “Properties”

Step 3 Select “Java Build Properties”

Step 4 Select “Add JARs”

Step 5 Add each of the Java JAR files listed in Adding Java JAR Files in Eclipse14.
2-22
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
Figure 2-9 Adding Java JAR Files in Eclipse

Your “classpath” file should look like the following example:

<?xml version="1.0" encoding="UTF-8"?>
<classpath>

<classpathentry kind="src" path="src"/>
<classpathentry kind="src" path="gen"/>
<classpathentry kind="con" path="com.android.ide.eclipse.adt.ANDROID_FRAMEWORK"/>
<classpathentry kind="lib" path="libs/httpclient-4.1.1.jar"/>
<classpathentry kind="lib" path="libs/httpcore-4.1.jar"/>
<classpathentry kind="lib" path="libs/httpmime-4.1.1.jar"/>
<classpathentry kind="lib" path="libs/jackson-core-lgpl-1.8.1.jar"/>
<classpathentry kind="lib" path="libs/jackson-mapper-lgpl-1.8.1.jar"/>
<classpathentry kind="lib" path="libs/StadiumVisionMobile.jar"/>
<classpathentry kind="output" path="bin"/>

</classpath>

App Obfuscation Using ProGuard

If you choose to obfuscate your application with ProGuard, consider the following points:

 • Use the latest version of ProGuard (which is version 4.7 as of August, 2012)

 • If a crash takes place that you would like Cisco to analyze, please run retrace.jar on the stack trace
output with your map file before sending us the un-winded stack trace file.

 • Specify our libraries as input jars with “-libraryjars”. See the example below and remember to
modify the paths as needed:

-libraryjars ./libs/httpclient-4.1.1.jar
-libraryjars ./libs/httpcore-4.1.jar
-libraryjars ./libs/httpmime-4.1.1.jar
-libraryjars ./libs/jackson-core-lgpl-1.8.1.jar
-libraryjars ./libs/jackson-mapper-lgpl-1.8.1.jar
-libraryjars ./libs/StadiumVisionMobile.jar
-libraryjars ./libs/StadiumVisionMobileSender.jar

If you extend or implement any of our classes or interfaces please specify that in the config file,, as
shown in the following example:

-keep public class * extends com.cisco.svm.data.ISVMDataObserver
Specify the following in the configuration file, to work with our JARS, as it prevents the
StadiumVision Mobile JARS from being obfuscated:
-keep public class com.xxxxxx.vome.*
 public protected private *;
}

2-23
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 -keep public class com.cisco.** { public protected private *; }

#for the Jackson library
-keepattributes *Annotation*,EnclosingMethod
-keepnames class org.codehaus.jackson.** { *; }

If ProGuard complains about “joda.org.time” and you have included the library as well as the
configuration options above, you can ignore the warnings with the “–ignorewarnings” flag.

Cisco recommends not obfuscating all the classes that implement or extend the basic Android classes.
The following ProGuard configuration is not meant to be a complete configuration, but rather a
minimum:

-keep public class * extends android.app.Activity
-keep public class * extends android.app.Application
-keep public class * extends android.app.Service
-keep public class * extends android.content.BroadcastReceiver
-keep public class * extends android.content.ContentProvider
-keep public class * extends android.app.backup.BackupAgentHelper
-keep public class * extends android.preference.Preference
-keep public class com.android.vending.licensing.ILicensingService

-keepclasseswithmembernames class * {
 native <methods>;
}
-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet);
}
-keepclasseswithmembers class * {
 public <init>(android.content.Context, android.util.AttributeSet, int);
}
-keepclassmembers class * extends android.app.Activity {
 public void *(android.view.View);
}
-keepclassmembers enum * {
 public static **[] values();
 public static ** valueOf(java.lang.String);
}
-keep class * implements android.os.Parcelable {
 public static final android.os.Parcelable$Creator *;
}

Channel ListView Activity Example

The following example illustrates the following actions:

 • Periodically obtains the list of available video channels

 • Updatse the Activity’s ListView with the channel list

 • Plays the video channel selected in the ListView

// set the click listener for the list view
channelListView.setOnItemClickListener(new OnItemClickListener() {
public void onItemClick(AdapterView<?> parentView, View clickedView,
 int position, long id) {
 // get the selected video channel
 SVMChannel selectedChannel = videoChannels[position];

 Log.d(TAG, "Selected Video Channel = '" + selectedChannel.name);
 // get a reference the StadiumVision Mobile SDK
 StadiumVisionMobile svm = StadiumVisionMobile.getInstance();
 // play the selected video channel with custom video player
 Intent intent = new Intent();
 intent.putExtra("channel", selectedChannel);
2-24
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
 intent.setClass(MyActivity.this, MyVideoPlayer.class);
 intent.addFlags(Intent.FLAG_ACTIVITY_NEW_TASK);
 startActivity(intent);
 }
});
2-25
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

Chapter 2 Cisco StadiumVision Mobile API for Google Android
Introduction to Cisco StadiumVision Mobile API for Google Android
2-26
Cisco StadiumVision Mobile SDK Guide for Apple iOS and Google Android

	Cisco StadiumVision Mobile API for Apple iOS
	Introduction to Cisco StadiumVision Mobile API for Apple iOS
	iOS Model View Controller (MVC) Design Pattern

	Figure 1-1 MVC Design Pattern
	iOS API Prerequisites

	Table 1-1 Apple iOS Table 2. Build Environment Requirements
	Apple iOS SDK Overview
	Client Application Integration Overview

	Figure 1-2 Cisco StadiumVision Mobile iOS SDK Components
	Cisco StadiumVision Mobile iOS API Class Overview

	Figure 1-3 Cisco StadiumVision Mobile iOS API Classes
	Video View Controller Inheritance

	Figure 1-4 Cisco StadiumVision Mobile Video Classes
	Cisco StadiumVision Mobile Application Classes

	Figure 1-5 Cisco StadiumVision Mobile Sample Application Classes
	Cisco StadiumVision Mobile iOS API Summary

	Table 1-2 Cisco StadiumVision Mobile iOS API Summary
	Cisco StadiumVision Mobile iOS API

	Return Status Object
	Table 1-3 SVMStatus class
	Table 1-4 sharedInstance
	Table 1-5 Start
	Table 1-6 addVideoChannelListDelegate
	Table 1-7 setLogLevel
	Table 1-8 removeVideoChannelListDelegate
	Table 1-9 addDataChannelListDelegate
	Table 1-10 removeDataChannelListDelegate
	Table 1-11 addDataChannelListDelegate
	Table 1-12 removeDataChannelListDelegate
	Table 1-13 addDataChannelObserver
	Table 1-14 removeDataChannelObserver
	Table 1-15 onData
	Table 1-16 Stats
	Table 1-17 Stats API Hash Keys and Descriptions
	Table 1-18 getVideoChannelListArray
	Table 1-19 getDataChannelListArray
	Table 1-20 wifiInfo
	Table 1-21 wifiInfo Object Properties
	Table 1-22 version
	Table 1-23 Video View Controller API Summary
	Table 1-24 Video View API Summary
	Table 1-25 setRenderVideoView
	Table 1-26 playVideo Channel
	Table 1-27 seekRelative
	Table 1-28 seekAbsolute
	Table 1-29 playLive
	NS Notification Events

	Table 1-30 NSNotification Event Properties
	SDK Workflow

	Starting the SDK
	Setting the Log Level
	Getting the Video Channel List
	Presenting the Video Channel List
	Table 1-31 SVMChannel object properties
	Playing A Video Channel
	Seeking Within the Video Buffer
	Getting The Data Channel List
	Observing a Data Channel
	Getting the SDK Version String
	Shutting Down the SDK (Optional)
	Video Player View Controller Customization

	Default Cisco Video Player View Controller
	Customized Video Player
	Figure 1-6 Video Player Customization
	Cisco Demo Customized Video Player
	Configuration

	Configuration Files
	Table 1-32 Configuration Files
	Field of Use Configuration
	Wi-Fi Access Point Configuration
	CIntegration Checklist
	Figure 1-7 Adding frameworks in Xcode
	What the SDK Handles
	Customer Application Roles
	Figure 1-8 Customer Application Responsibilities
	Cisco StadiumVision Mobile API for Google Android
	Introduction to Cisco StadiumVision Mobile API for Google Android
	Android API Prerequisites

	Table 2-1 Build Environment Requirements
	Android SDK Overview

	Cisco StadiumVision Mobile iOS API Class Overview
	Figure 2-1 StadiumVision Mobile Class
	Android OS Activity Overview
	Figure 2-2 Android Activity Overview
	Figure 2-3 Android Video Player Activity Inheritance
	Cisco StadiumVision Mobile Android API Summary
	Table 2-2 Cisco StadiumVision Mobile Android API Summary
	Cisco StadiumVision Mobile Android API

	Return Status Object
	Table 2-3 SVMStatus Object
	Table 2-4 Start
	Table 2-5 getVideoChannelArray
	Table 2-6 getDataChannelArrayList
	Table 2-7 addDataChannelObserver
	Figure 2-4 onData
	Table 2-8 removeDataChannelObserver
	Table 2-9 getStats
	Table 2-10 getStats API Hash Keys and Stats Description
	Table 2-11 onPause
	Table 2-12 onResume
	Table 2-13 getWifiInfo
	Table 2-14 getBatteryInfo
	Table 2-15 getLogLevelArray
	Table 2-16 getLogLevelArrayList
	Table 2-17 setLogLevel
	Table 2-18 getLocalIpAddress
	Table 2-19 getDeviceUUID
	Table 2-20 getAppSessionUUID
	Table 2-21 sdkVersion
	Video Player Activity API Summary
	Table 2-22 Video Player Activity API Summary
	Table 2-23 setVideoSurfaceView
	Table 2-24 seekRelative
	Table 2-25 seekAbsolute
	Table 2-26 rewindForDuration
	Table 2-27 playLive
	Table 2-28 shutdown
	SDK Workflow

	Starting the SDK
	Getting the Video Channel List
	Presenting the Video Channel List
	Table 2-29 SVMChannel Object Properties
	Playing a Video Channel
	Seeking Within the Video Buffer
	Setting the Video Dimensions
	Fullscreen Video Layout
	Partial-Screen Video Layout
	Getting the Data Channel List
	Observing a Data Channel
	Activity Life-Cycle Notifications
	Video Player Customization

	Figure 2-5 Default Cisco Video Player
	Figure 2-6 SVMVideoPlayerActivity API
	Cisco Demo Customized Video Player
	Configuration

	Configuration Files
	Table 2-30 Configuration Files
	WiFi AP Info Configuration (Optional)
	Integration

	Client Application Integration Overview
	Figure 2-7 Cisco StadiumVision Mobile Integration Overview
	Integration Checklist
	Customer Application Roles
	Figure 2-8 Customer Application Responsibilities
	Android Permissions
	SDK Native Libraries
	Figure 2-9 Adding Java JAR Files in Eclipse

