Analyze Firepower Firewall Captures to Effectively Troubleshoot Network Issues

Contents

Introduction

Prerequisites

Requirements

Components Used

Background Information

How to Collect and Export Captures on the NGFW Product Family?

Collect FXOS Captures

Enable and Collect FTD Lina Captures

Enable and Collect FTD Snort Captures

Troubleshoot

Case 1. No TCP SYN on Egress Interface

Capture Analysis

Recommended Actions

Possible Causes and Recommended Actions Summary

Case 2. TCP SYN from Client, TCP RST from Server

Capture Analysis

Recommended Actions

Case 3. TCP 3-Way Handshake + RST from One Endpoint

Capture Analysis

3.1 - TCP 3-way Handshake + Delayed RST from the Client

Recommended Actions

3.2 - TCP 3-way Handshake + Delayed FIN/ACK from Client + Delayed RST from the Server

Recommended Actions

3.3 - TCP 3-way Handshake + Delayed RST from the Client

Recommended Actions

3.4 - TCP 3-way Handshake + Immediate RST from the Server

Recommended Actions

Case 4. TCP RST from the Client

Capture Analysis

Recommended Actions

Case 5. Slow TCP Transfer (Scenario 1)

Scenario 1. Slow Transfer

Capture Analysis

Recommended Actions

Scenario 2. Fast transfer

Case 6. Slow TCP Transfer (Scenario 2)

Capture Analysis

Recommended Actions

Case 7. TCP Connectivity Problem (Packet Corruption)

Capture Analysis

Recommended Actions

Case 8. UDP Connectivity Problem (Missing Packets)

Capture Analysis

Recommended Actions

Case 9. HTTPS Connectivity Problem (Scenario 1)

Capture Analysis

Recommended Actions

Case 10. HTTPS Connectivity Problem (Scenario 2)

Capture Analysis

Recommended Actions

Case 11. IPv6 Connectivity Problem

Capture Analysis

Recommended Actions

Case 12. Intermittent Connectivity Problem (ARP Poisoning)

Capture Analysis

Recommended Actions

Case 13. Identify SNMP Object Identifiers (OIDs) that cause CPU Hogs

Capture Analysis

Recommended Actions

Related Information

Introduction

This document describes various packet capture analysis techniques that aim to effectively troubleshoot network issues.

Prerequisites

Requirements

Cisco recommends that you have knowledge of these topics:

- Firepower platform architecture
- NGFW logs
- NGFW packet-tracer

Additionally, before you start to analyze packet captures it is highly advisable to meet these requirements:

- **Know the protocol operation** Do not start to check a packet capture if you do not understand how the captured protocol operates.
- **Know the topology** You must know the transit devices end-to-end. If this is not possible, you must at least know the upstream and downstream devices.
- **Know the appliance** You must know how your device handles packets, what are the involved interfaces (ingress/egress), what is the device architecture, and what are the various capture points.
- **Know the configuration** You must know how a packet flow is supposed to be handled by the device in terms of:
 - Routing/Egress Interface
 - Policies applied
 - Network Address Translation (NAT)
- **Know the available tools** Along with the captures, it is recommended to be ready to apply other tools and techniques (like logging and tracers) and if needed, correlate them with the captured packets

Components Used

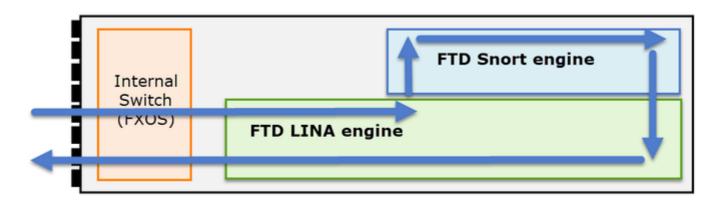
The information in this document is based on these software and hardware versions:

- Most of the scenarios are based on FP4140 running FTD software 6.5.x.
- FMC running software 6.5.x.

The information in this document was created from the devices in a specific lab environment. All of the devices used in this document started with a cleared (default) configuration. If your network is live, ensure that you understand the potential impact of any command.

Background Information

Packet capture is one of the most overlooked troubleshoot tools available today. Daily, Cisco TAC solves many problems with analysis of captured data.


The goal of this document is to help network and security engineers to identify and troubleshoot common network issues based mainly on packet capture analysis.

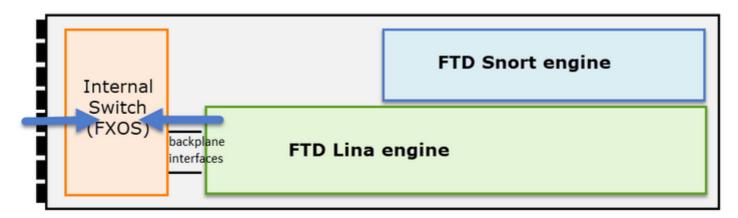
All the scenarios presented in this document are based on real user cases seen in the Cisco Technical Assistance Center (TAC).

The document covers the packet captures from a Cisco Next-Generation Firewall (NGFW) point of view, but the same concepts are applicable to other device types as well.

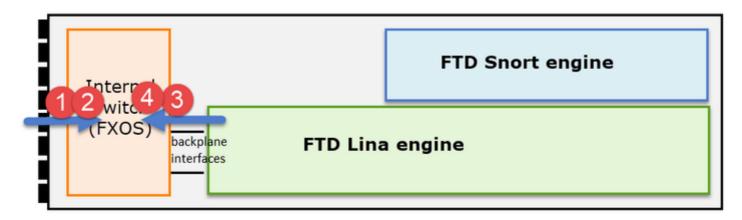
How to Collect and Export Captures on the NGFW Product Family?

In the case of a Firepower appliance (1xxx, 21xx, 41xx, 93xx) and a Firepower Threat Defense (FTD) application a packet processing can be visualized as shown in the image.

- 1. A packet enters the ingress interface and it is handled by the chassis internal switch.
- 2. The packet enters the FTD Lina engine which does mainly L3/L4 checks.
- 3. If the policy requires the packet is inspected by the Snort engine (mainly L7 inspection).
- 4. The Snort engine returns a verdict for the packet.
- 5. The LINA engine drops or forwards the packet based on Snort's verdict.
- 6. The packet egresses the chassis through the internal chassis switch.


Based on the shown architecture, the FTD captures can be taken in three (3) different places:

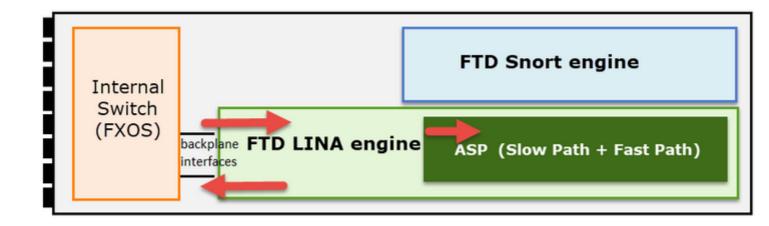
- FXOS
- FTD Lina engine
- FTD Snort engine


Collect FXOS Captures

The process is described in this document:

FXOS captures can be only taken in the ingress direction from the internal switch point of view are shown in the image here.

Shown here, these are two capture points per direction (due to internal switch architecture).


Captured packets in points 2, 3, and 4 have a virtual network tag (VNTag).

Note: FXOS chassis-level captures are only available on FP41xx and FP93xx platforms. FP1xxx and FP21xx do not provide this capability.

Enable and Collect FTD Lina Captures

Main capture points:

- · Ingress interface
- Egress interface
- Accelerated Security Path (ASP)

You can use either Firepower Management Center User Interface (FMC UI) or FTD CLI to enable and collect the FTD Lina captures.

Enable capture from CLI on the INSIDE interface:

<#root>

firepower#

capture CAPI interface INSIDE match icmp host 192.168.103.1 host 192.168.101.1

This capture matches the traffic between IPs 192.168.103.1 and 192.168.101.1 in both directions.

Enable ASP capture to see all packets dropped by the FTD Lina engine:

<#root>

firepower#

capture ASP type asp-drop all

Export an FTD Lina capture to an FTP server:

<#root>

firepower#

copy /pcap capture:CAPI ftp://ftp_username:ftp_password@192.168.78.73/CAPI.pcap

Export an FTD Lina capture to a TFTP server:

<#root>

firepower#

copy /pcap capture:CAPI tftp://192.168.78.73

As from FMC 6.2.x version you can enable and collect FTD Lina captures from FMC UI.

Another way to collect FTD captures from an FMC-managed firewall is this.

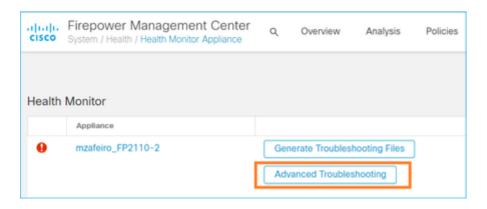
Step 1

In case of LINA or ASP capture copy the capture to the FTD disk.

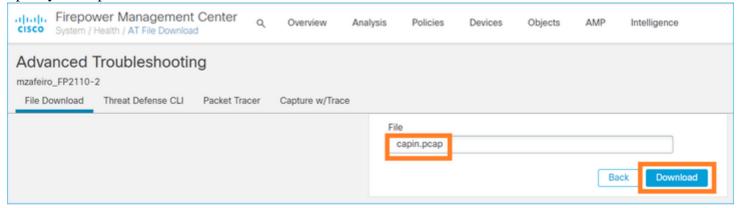
```
<#root>
firepower#
copy /pcap capture:capin disk0:capin.pcap
Source capture name [capin]?
Destination filename [capin.pcap]?
!!!!
```

Step 2

Navigate to expert mode, locate the saved capture, and copy it to the /ngfw/var/common location:


```
<#root>
firepower#
Console connection detached.
expert
admin@firepower:~$
sudo su
Password:
root@firepower:/home/admin#
cd /mnt/disk0
root@firepower:/mnt/disk0#
ls -al | grep pcap
-rwxr-xr-x 1 root root
                           24 Apr 26 18:19 CAPI.pcap
-rwxr-xr-x 1 root root 30110 Apr 8 14:10
capin.pcap
-rwxr-xr-x 1 root root
                         6123 Apr 8 14:11 capin2.pcap
root@firepower:/mnt/disk0#
cp capin.pcap /ngfw/var/common
```

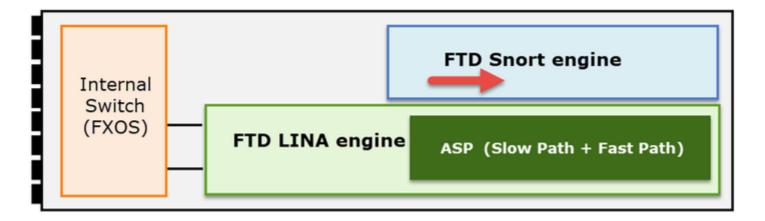
Login to the FMC that manages the FTD and navigate to **Devices > Device Management.** Locate the FTD device and select the **Troubleshoot** icon:



Step 4

Select Advanced Troubleshooting:

Specify the capture file name and select **Download:**



For more examples on how to enable/collect captures from the FMC UI check this document:

 $\underline{https://www.cisco.com/c/en/us/support/docs/security/firepower-ngfw/212474-working-with-firepower-threat-defense-f.html}$

Enable and Collect FTD Snort Captures

The capture point is shown in the image here.

Enable Snort-level capture:

```
<#root>
capture-traffic
Please choose domain to capture traffic from:
  0 - br1
  1 - Router
Selection?
1
Please specify tcpdump options desired.
(or enter '?' for a list of supported options)
Options:
-n host 192.168.101.1
To write the capture to a file with name capture.pcap and copy it via FTP to a remote server:
<#root>
capture-traffic
Please choose domain to capture traffic from:
  0 - br1
  1 - Router
Selection?
Please specify tcpdump options desired.
```

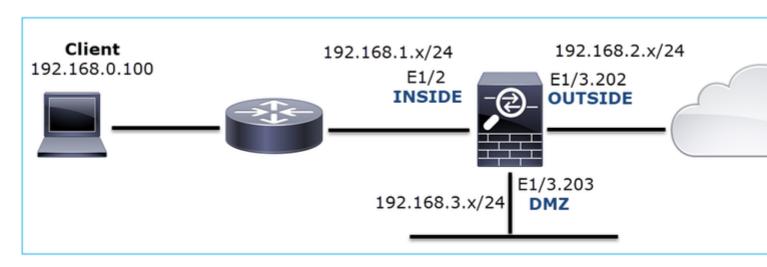
(or enter '?' for a list of supported options)

Options:

```
-w capture.pcap host 192.168.101.1

CTRL + C <- to stop the capture

>
file copy 10.229.22.136 ftp / capture.pcap
Enter password for ftp@10.229.22.136:
Copying capture.pcap
Copy successful.
```


For more Snort-level capture examples that include different capture filters check this document:

 $\underline{https://www.cisco.com/c/en/us/support/docs/security/firepower-ngfw/212474-working-with-firepower-threat-defense-f.html}$

Troubleshoot

Case 1. No TCP SYN on Egress Interface

The topology is shown in the image here:

Problem Description: HTTP does not work

Affected Flow:

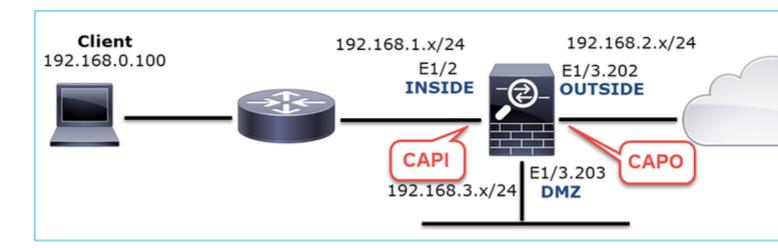
Src IP: 192.168.0.100

Dst IP: 10.10.1.100

Protocol: TCP 80

Capture Analysis

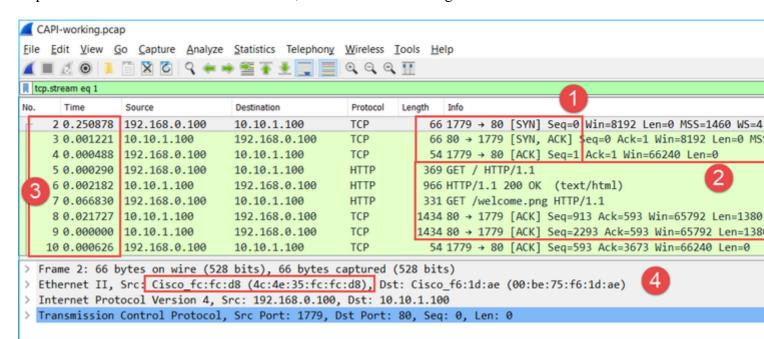
Enable captures on the FTD LINA engine:


<#root>

firepower#

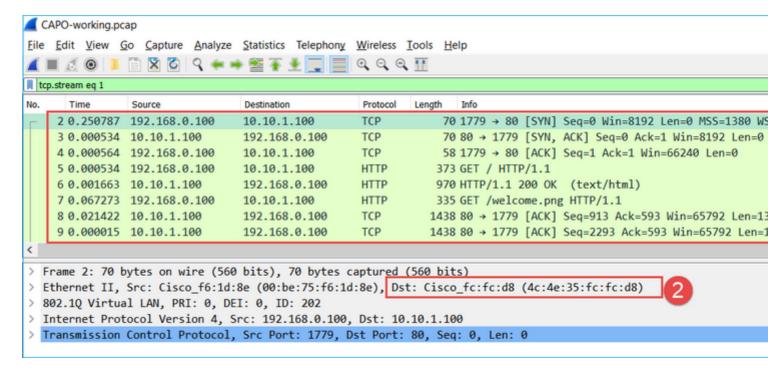
capture CAPI int INSIDE match ip host 192.168.0.100 host 10.10.1.100

firepower#


capture CAPO int OUTSIDE match ip host 192.168.0.100 host 10.10.1.100

Captures - Functional Scenario:

As a baseline, it is always very useful to have captures from a functional scenario.


Capture taken on NGFW INSIDE interface, is as shown in the image:

Key Points:

- 1. TCP 3-way handshake.
- 2. Bidirectional data exchange.
- 3. No delays between the packets (based on the time difference between the packets)
- 4. Source MAC is the correct downstream device.

Capture taken on NGFW OUTSIDE interface, is shown in the image here:

Key Points:

- 1. Same data as in the CAPI capture.
- 2. Destination MAC is the correct upstream device.

Captures - Non-functional scenario

From the device CLI the captures look like this:

```
<#root>
firepower#
show capture

capture CAPI type raw-data interface INSIDE
[Capturing - 484 bytes]
  match ip host 192.168.0.100 host 10.10.1.100
capture CAPO type raw-data interface OUTSIDE
[Capturing - 0 bytes]
  match ip host 192.168.0.100 host 10.10.1.100
```

CAPI contents:

```
<#root>
firepower#
show capture CAPI
6 packets captured
  1: 11:47:46.911482
                   192.168.0.100.3171 > 10.10.1.100.80:
1089825363:1089825363(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK>
                    192.168.0.100.3172 > 10.10.1.100.80:
  2: 11:47:47.161902
s
3981048763:3981048763(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK>
  1089825363:1089825363(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK>
  4: 11:47:50.162757
                   192.168.0.100.3172 > 10.10.1.100.80:
3981048763:3981048763(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK>
                   192.168.0.100.3171 > 10.10.1.100.80:
  5: 11:47:55.914640
1089825363:1089825363(0) win 8192 <mss 1460,nop,nop,sackOK>
  3981048763:3981048763(0) win 8192 <mss 1460,nop,nop,sackOK>
<#root>
firepower#
show capture CAPO
0 packet captured
0 packet shown
```

This is the image of CAPI capture in Wireshark:

No.		Time	Source	Destination	Protocol	Length	Info								
Г	1	0.000000	192.168.0.100	10.10.1.100	TCP									1=1	
	_2	0.250420	192.168.0.100	10.10.1.100	TCP									1=د	
	3	2.745781	192.168.0.100	10.10.1.100	TCP	66	[TCP	Retra	ansmis	sion]	3171	→ 80	[SYN]	Seq=0	Win
	4	0.255074	192.168.0.100	10.10.1.100	TCP	66	[TCP	Retra	ansmis	sion]	3172	→ 80	[SYN]	Seq=0	Win
L	5	5.751883	192.168.0.100	10.10.1.100	TCP	62	[TCP	Retra	ansmis	si 🤈	3171	→ 80	[SYN]	Seq=0	Win
	6	0.250070	192.168.0.100	10.10.1.100	TCP	62	[TCP	Retra	ansmis	si 📛	3172	→ 80	[SYN]	Seq=0	Win
	7	3												•	
>	Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)														
>	Ethernet IIc: Cisco_fc:fc:d8 (4c:4e:35:fc:fc:d8) Dst: Cisco_f6:1d:ae (00:be:75:f6:1d:ae)														
>	> Internet Procedular Version 4, Src: 192.168.0.100, Dst: 10.10.1.100														
>	Transmission Control Protocol, Src Port: 3171, Dst Port: 80, Seq: 0, Len: 0														

Key Points:

- 1. Only TCP SYN packets are seen (no TCP 3-way handshake).
- 2. There are 2 TCP sessions (source port 3171 and 3172) that cannot be established. The source client resends the TCP SYN packets. These retransmitted packets are identified by the Wireshark as TCP Retransmissions.
- 3. The TCP Retransmissions occur every ~3 then 6 etc seconds.
- 4. The source MAC address is from the correct downstream device.

Based on the 2 captures it can be concluded that:

- A packet of a specific 5-tuple (src/dst IP, src/dst port, protocol) arrives on the firewall on the expected interface (INSIDE).
- A packet does not leave the firewall on the expected interface (OUTSIDE).

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Check the Trace of an Emulated Packet.

Use the packet-tracer tool to see how a packet is supposed to be handled by the firewall. In case the packet is dropped by the firewall Access Policy the trace of the emulated packet looks similar to this output:

```
<#root>
```

firepower#

packet-tracer input INSIDE tcp 192.168.0.100 11111 10.10.1.100 80

Phase: 1 Type: CAPTURE Subtype: Result: ALLOW Config:

Additional Information:

MAC Access list

Phase: 2

Type: ACCESS-LIST

Subtype:

Result: ALLOW

```
Config:
Implicit Rule
Additional Information:
MAC Access list
Phase: 3
Type: ROUTE-LOOKUP
Subtype: Resolve Egress Interface
Result: ALLOW
Config:
Additional Information:
found next-hop 192.168.2.72 using egress ifc OUTSIDE
Phase: 4
Type: ACCESS-LIST
Subtype: log
Result: DROP
Config:
access-group CSM_FW_ACL_ global
access-list CSM_FW_ACL_ advanced deny ip any rule-id 268439946 event-log flow-start
access-list CSM_FW_ACL_ remark rule-id 268439946: ACCESS POLICY: FTD_Policy - Default
access-list CSM_FW_ACL_ remark rule-id 268439946: L4 RULE: DEFAULT ACTION RULE
Additional Information:
Result:
input-interface: INSIDE
input-status: up
input-line-status: up
output-interface: OUTSIDE
output-status: up
output-line-status: up
Action: drop
Drop-reason: (acl-drop) Flow is denied by configured rule, Drop-location: frame 0x00005647a4f4b120 flow
Action 2. Check the traces of live packets.
Enable the packet trace to check how the real TCP SYN packets are handled by the firewall. By default,
only the first 50 ingress packets are traced:
<#root>
firepower#
capture CAPI trace
Clear the capture buffer:
```

<#root>

```
firepower#
```

clear capture /all

In case the packet is dropped by the firewall Access Policy the trace looks similar to this output:

```
<#root>
```

firepower#

show capture CAPI packet-number 1 trace

6 packets captured

Phase: 1 Type: CAPTURE Subtype: Result: ALLOW Config:

Additional Information:

MAC Access list

Phase: 2

Type: ACCESS-LIST

Subtype: Result: ALLOW Config: Implicit Rule

Additional Information:

MAC Access list

Phase: 3

Type: ROUTE-LOOKUP

Subtype: Resolve Egress Interface

Result: ALLOW

Config:

Additional Information:

found next-hop 192.168.2.72 using egress ifc OUTSIDE

Phase: 4

Type: ACCESS-LIST

Subtype: log
Result: DROP

Config:

access-group CSM_FW_ACL_ global

access-list CSM_FW_ACL_ advanced deny ip any rule-id 268439946 event-log flow-start access-list CSM_FW_ACL_ remark rule-id 268439946: ACCESS POLICY: FTD_Policy - Default access-list CSM_FW_ACL_ remark rule-id 268439946: L4 RULE: DEFAULT ACTION RULE

Additional Information:

Result:

input-interface: INSIDE

input-status: up
input-line-status: up
output-interface: OUTSIDE

output-status: up output-line-status: up Action: drop Drop-reason: (acl-drop) Flow is denied by configured rule, Drop-location: frame 0x00005647a4f4b120 flow 1 packet shown Action 3. Check FTD Lina logs. To configure Syslog on FTD via FMC check this document: https://www.cisco.com/c/en/us/support/docs/security/firepower-ngfw/200479-Configure-Logging-on-FTDvia-FMC.html It is highly recommended to have an external Syslog server configured for FTD Lina logs. If there is no remote Syslog server configured, enable local buffer logs on the firewall while you troubleshoot. The log configuration shown in this example is a good start point: <#root> firepower# show run logging … logging enable logging timestamp logging buffer-size 1000000 logging buffered informational Set the terminal pager to 24 lines in order to control the terminal pager: <#root> firepower# terminal pager 24 Clear the capture buffer: <#root>

firepower#

clear logging buffer

Test the connection and check the logs with a parser filter. In this example the packets are dropped by the firewall Access Policy:

```
firepower#

show logging | include 10.10.1.100

Oct 09 2019 12:55:51: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3696 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:51: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3696 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.10.1.100/80 & Oct 09 2019 12:55:54: %FTD-4-106023: Deny tcp src INSIDE:192.168.0.100/3697 dst OUTSIDE:10.10.10.100/3697
```

Action 4. Check the firewall ASP drops.

<#root>

If you suspect that the packet is dropped by the firewall you can see the counters of all the packets dropped by the firewall at software level:

Tip: If you are not interested in the packet contents you can capture only the packet headers (headers-only option). This allows you to capture much more many packets in the capture buffer. Additionally, you can increase the size of the capture buffer (by default is 500Kbytes) to a value up 32 Mbytes (buffer option). Finally, as from FTD version 6.3, the file-size option allows you to configure a capture file up to 10GBytes. In that case you can only see the capture contents in a pcap format.

To check the capture contents, you can use a filter to narrow down your search:

```
<#root>
```

firepower#

```
show capture ASP | include 10.10.1.100

18: 07:51:57.823672     192.168.0.100.12410 > 10.10.1.100.80: S 1870382552:1870382552(0) win 8192 <mss 19: 07:51:58.074291     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:00.830370     192.168.0.100.12410 > 10.10.1.100.80: S 1870382552:1870382552(0) win 8192 <mss 19: 07:52:01.080394     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:06.824282     192.168.0.100.12410 > 10.10.1.100.80: S 1870382552:1870382552(0) win 8192 <mss 19: 07:52:06.824282     192.168.0.100.12410 > 10.10.1.100.80: S 1870382552:1870382552(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <mss 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <ms 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <ms 19: 07:52:07.074230     192.168.0.100.12411 > 10.10.1.100.80: S 2006489005:2006489005(0) win 8192 <ms 19: 07:52:07.074230      192.168.0.100.12411 > 10.10
```

In this case, since the packets are already traced at interface level the reason for the drop is not mentioned in the ASP capture. Remember that a packet can be only traced in one place (ingress interface or ASP drop). In that case, it is recommended to take multiple ASP drops and set a specific ASP drop reason. Here is a recommended approach:

1. Clear the current ASP drop counters:

```
<#root>
firepower#
clear asp drop
```

- 2. Send the flow that you troubleshoot through the firewall (run a test).
- 3. Check again the ASP drop counters and note down the ones increased.

```
<#root>
firepower#
show asp drop

Frame drop:
   No route to host (
no-route
)
   Flow is denied by configured rule (
acl-drop
)
   71
```

4. Enable ASP capture(s) for the specific drops seen:

```
<#root>
```

firepower#

```
capture ASP_NO_ROUTE type asp-drop no-route
firepower#
capture ASP_ACL_DROP type asp-drop acl-drop
```

- 5. Send the flow that you troubleshoot through the firewall (run a test).
- 6. Check the ASP captures. In this case, the packets were dropped due to an absent route:

```
<#root>
```

firepower#

show capture ASP_NO_ROUTE | include 192.168.0.100.*10.10.1.100

Action 5. Check the FTD Lina connection table.

There can be cases where you expect the packet to egress interface 'X', but for whatever reasons it egresses interface 'Y'. The firewall egress interface determination is based on this order of operation:

- 1. Established Connection Lookup
- 2. Network Address Translation (NAT) lookup UN-NAT (destination NAT) phase takes precedence over PBR and route lookup.
- 3. Policy-Based Routing (PBR)
- 4. Routing Table lookup

To check the FTD connection table:

INSIDE

```
192.168.0.100:

11694

, idle 0:00:01, bytes 0, flags

aA N1

TCP

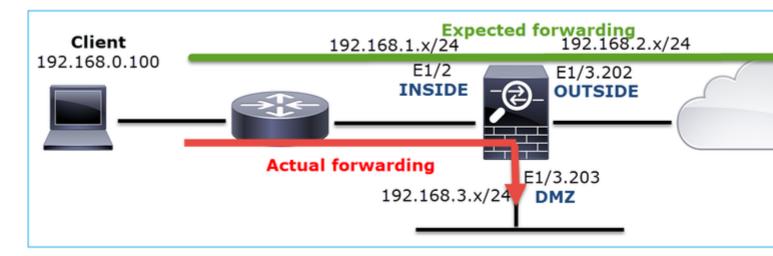
DMZ

10.10.1.100:80

INSIDE

192.168.0.100:

11693


, idle 0:00:01, bytes 0, flags

aA N1
```

Key Points:

- Based on the flags (Aa) the connection is embryonic (half-opened only TCP SYN was seen by the firewall).
- Based on the source/destination ports the ingress interface is INSIDE and the egress interface is DMZ.

This can be visualized in the image here:

Note: Since all FTD interfaces have a Security Level of 0 the interface order in the **show conn** output is based on the interface number. Specifically, the interface with higher vpif-num (virtual platform interface number) is selected as inside while the interface with lower vpif-num is selected as outside. You can see the interface vpif value with the **show interface detail** command. Related enhancement, Cisco bug ID <u>CSCvi15290</u> ENH: FTD shows the connection directionality in FTD 'show conn' output

```
<#root>
firepower#
show interface detail | i Interface number is|Interface [P|E].*is up
```

Note: As from Firepower software release 6.5, ASA release 9.13.x the show conn long and show conn detail command outputs provide information about the connection initiator and responder

```
Output 1:
```

Connection lookup keyid: 228982375

Additionally, the **show conn long** displays the NATed IPs within a parenthesis in case of a Network Address Translation:

```
<#root>
firepower#
show conn long
TCP OUTSIDE: 192.168.2.222/80 (192.168.2.222/80) INSIDE: 192.168.1.100/34792 (192.168.2.150/34792), flag
  Initiator: 192.168.1.100, Responder: 192.168.2.222
  Connection lookup keyid: 262895
Action 6. Check the firewall Address Resolution Protocol (ARP) cache.
If the firewall cannot resolve the next hop, the firewall silently drops the original packet (TCP SYN in this
case) and continuously sends ARP Requests until it resolves the next hop.
In order to see the firewall ARP cache, use the command:
<#root>
firepower#
show arp
Additionally, to check if there are unresolved hosts you can use the command:
<#root>
firepower#
 show arp statistics
        Number of ARP entries in ASA: 0
        Dropped blocks in ARP: 84
        Maximum Queued blocks: 3
        Queued blocks: 0
        Interface collision ARPs Received: 0
        ARP-defense Gratuitous ARPS sent: 0
        Total ARP retries:
182
                < indicates a possible issue for some hosts
        Unresolved hosts:
< this is the current status
```

If you want to check further the ARP operation you can enable an ARP-specific capture:

Maximum Unresolved hosts: 2

<#root>

firepower#

capture ARP ethernet-type arp interface OUTSIDE

firepower#

show capture ARP

. . .

4: 07:15:16.877914

802.1Q vlan#202 P0 arp

who-has 192.168.2.72 tell 192.168.2.50

5: 07:15:18.020033

802.1Q vlan#202 P0 arp who-has 192.168.2.72 tell 192.168.2.50

In this output, the firewall (192.168.2.50) tries to resolve the next-hop (192.168.2.72), but there is no ARP reply

The output here shows a functional scenario with proper ARP resolution:

<#root>

firepower#

show capture ARP

2 packets captured

1: 07:17:19.495595

802.1Q vlan#202 P0

arp who-has 192.168.2.72 tell 192.168.2.50

2: 07:17:19.495946

802.1Q vlan#202 P0

arp reply 192.168.2.72 is-at 4c:4e:35:fc:fc:d8

2 packets shown

<#root>

```
firepower#
```

```
show arp
```

Config:

```
INSIDE 192.168.1.71 4c4e.35fc.fcd8 9
OUTSIDE 192.168.2.72 4c4e.35fc.fcd8 9
```

In case there is no ARP entry in place a trace of a live TCP SYN packet shows:

```
<#root>
firepower#
show capture CAPI packet-number 1 trace
6 packets captured
   1: 07:03:43.270585
192.168.0.100.11997 > 10.10.1.100.80
: S 4023707145:4023707145(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK>
Phase: 1
Type: CAPTURE
Subtype:
Result: ALLOW
Config:
Additional Information:
MAC Access list
Phase: 2
Type: ACCESS-LIST
Subtype:
Result: ALLOW
Config:
Implicit Rule
Additional Information:
MAC Access list
Phase: 3
Type: ROUTE-LOOKUP
Subtype: Resolve Egress Interface
Result: ALLOW
Config:
Additional Information:
found next-hop 192.168.2.72 using egress ifc OUTSIDE
…
Phase: 14
Type: FLOW-CREATION
Subtype:
Result: ALLOW
Config:
Additional Information:
New flow created with id 4814, packet dispatched to next module
…
Phase: 17
Type: ROUTE-LOOKUP
Subtype: Resolve Egress Interface
Result: ALLOW
```

```
Additional Information:
found next-hop 192.168.2.72 using egress ifc OUTSIDE

Result:
input-interface: INSIDE
input-status: up
input-line-status: up
output-interface: OUTSIDE
```

output-status: up
output-line-status: up

Action: allow

As can be seen in the output, the trace shows **Action: allow** even when the next hop is not reachable and the packet is silently dropped by the firewall! In this case, the packet-tracer tool must be also checked since it provides a more accurate output:

```
<#root>
firepower#

packet-tracer input INSIDE tcp 192.168.0.100 1111 10.10.1.100 80

Phase: 1
Type: CAPTURE
Subtype:
Result: ALLOW
Config:
```

Additional Information:

MAC Access list

Phase: 2

Type: ACCESS-LIST

Subtype: Result: ALLOW Config: Implicit Rule

Additional Information:

MAC Access list

Phase: 3

Type: ROUTE-LOOKUP

Subtype: Resolve Egress Interface

Result: ALLOW

Config:

Additional Information:

found next-hop 192.168.2.72 using egress ifc OUTSIDE

…

Phase: 14

Type: FLOW-CREATION

Subtype: Result: ALLOW Config:

Additional Information:

New flow created with id 4816, packet dispatched to next module

…

Phase: 17

Type: ROUTE-LOOKUP

Subtype: Resolve Egress Interface

Result: ALLOW

Config:

Additional Information:

found next-hop 192.168.2.72 using egress ifc OUTSIDE

Result:

input-interface: INSIDE

input-status: up
input-line-status: up
output-interface: OUTSIDE

output-status: up
output-line-status: up

Action: drop

Drop-reason: (no-v4-adjacency) No valid V4 adjacency, Drop-location: frame 0x00005647a4e86109 flow (NA)

In recent ASA/Firepower versions, the previous message has been optimized to:

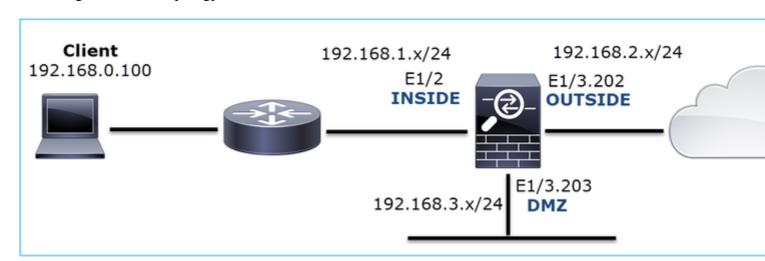
<#root>

Drop-reason: (no-v4-adjacency) No valid V4 adjacency.

Check ARP table (show arp) has entry for nexthop

., Drop-location: f

Possible Causes and Recommended Actions Summary


If you only see a TCP SYN packet on the ingress interfaces, but no TCP SYN packet sent out of the expected egress interface some possible causes are:

Possible Cause	Recommended Actions					
The packet is dropped by the firewall accesspolicy.	 Use packet-tracer or capture w/trace to see how to firewall handles the packet. Check the firewall logs. Check the firewall ASP drops (show asp drop or capture type asp-drop). Check FMC Connection Events. This assumes that the rule has logging enabled. 					
The capture filter is wrong.	 Use packet-tracer or capture w/trace to see if there is NAT translation that modifies the source or destination IP. In that case, adjust your capture filter. show conn long command output shows the NATed IPs. 					

The packet is sent to a different egress interface.	 Use packet-tracer or capture w/trace to see how the firewall handles the packet. Remember the order of operations which regard the egress interface determination, current connection, UN-NAT, PBR and Routing table lookup. Check the firewall logs. Check the firewall connection table (show conn). If the packet is sent to a wrong interface because it matches a current connection use the command clear conn address and specify the 5-tuple of the connection that you want to clear.					
There is no route towards the destination.	 Use packet-tracer or capture w/trace to see how to firewall handles the packet. Check the firewall ASP drops (show asp drop) for no-route drop reason. 					
There is no ARP entry on the egress interface.	 Check the firewall ARP cache (show arp). Use packet-tracer to see if there is a valid adjacency. 					
The egress interface is down.	Check the output of the show interface ip brief command on the firewall and verify the interface status.					

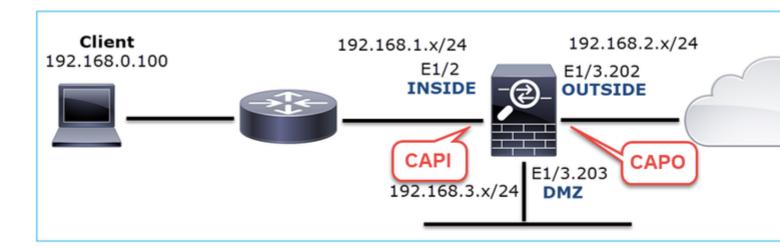
Case 2. TCP SYN from Client, TCP RST from Server

This image shows the topology:

Problem Description: HTTP does not work

Affected Flow:

Src IP: 192.168.0.100


Dst IP: 10.10.1.100

Protocol: TCP 80

Capture Analysis

Enable captures on the FTD LINA engine.

```
<#root>
firepower#
capture CAPI int INSIDE match ip host 192.168.0.100 host 10.10.1.100
firepower#
capture CAPO int OUTSIDE match ip host 192.168.0.100 host 10.10.1.100
```


Captures - Non-functional scenario:

From the device CLI the captures look as follows:

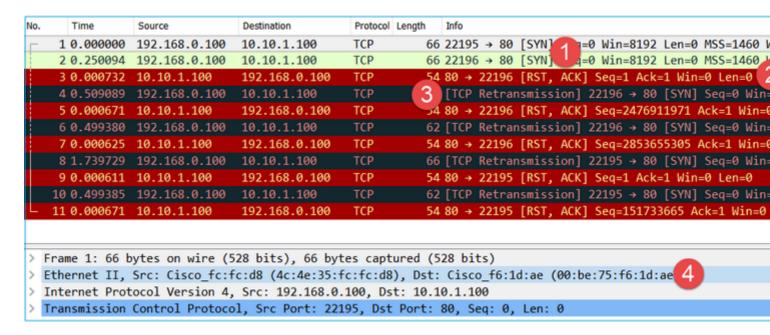
```
<#root>
firepower#
show capture

capture CAPI type raw-data trace interface INSIDE [Capturing -
834 bytes
]
   match ip host 192.168.0.100 host 10.10.1.100
capture CAPO type raw-data interface OUTSIDE [Capturing -
878 bytes
]
   match ip host 192.168.0.100 host 10.10.1.100
```

CAPI contents: <#root> firepower# show capture CAPI S 1397289928:1397289928(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK> 2171673258:2171673258(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK> 3: 05:20:36.905043 10.10.1.100.80 > 192.168.0.100.22196: R 1850052503:1850052503(0) ack 2171673259 win 0 2171673258:2171673258(0) win 8192 <mss 1460,nop,wscale 2,nop,nop,sackOK> 5: 05:20:37.414803 10.10.1.100.80 > 192.168.0.100.22196: R 31997177:31997177(0) ack 2171673259 win 0 2171673258:2171673258(0) win 8192 <mss 1460,nop,nop,sackOK> CAPO contents: <#root> firepower# show capture CAPO 1: 05:20:36.654507 802.1Q vlan#202 P0 192.168.0.100.22195 > 10.10.1.100.80: 2866789268:2866789268(0) win 8192 <mss 1380,nop,wscale 2,nop,nop,sackOK> 2: 05:20:36.904478 802.1Q vlan#202 P0 192.168.0.100.22196 > 10.10.1.100.80: s

4785344:4785344(0) win 8192 <mss 1380,nop,wscale 2,nop,nop,sackOK>

3: 05:20:36.904997 802.1Q vlan#202 P0 10.10.1.100.80 > 192.168.0.100.22196:


```
0:0(0) ack 4785345 win 0
    4: 05:20:37.414269   802.1Q vlan#202 P0 192.168.0.100.22196 > 10.10.1.100.80:

8
4235354730:4235354730(0) win 8192 <mss 1380,nop,wscale 2,nop,nop,sackOK>
    5: 05:20:37.414758   802.1Q vlan#202 P0 10.10.1.100.80 > 192.168.0.100.22196:

R
0:0(0) ack 4235354731 win 0
6: 05:20:37.914305   802.1Q vlan#202 P0 192.168.0.100.22196 > 10.10.1.100.80:

$
4118617832:4118617832(0) win 8192 <mss 1380,nop,nop,sackOK>
```

This image shows the capture of CAPI in Wireshark.

Key Points:

- 1. The source sends a TCP SYN packet.
- 2. A TCP RST is sent towards the source.
- 3. The source retransmits the TCP SYN packets.
- 4. The MAC addresses are correct (on ingress packets the source MAC address belongs to the downstream router, the destination MAC address belongs to the firewall INSIDE interface).

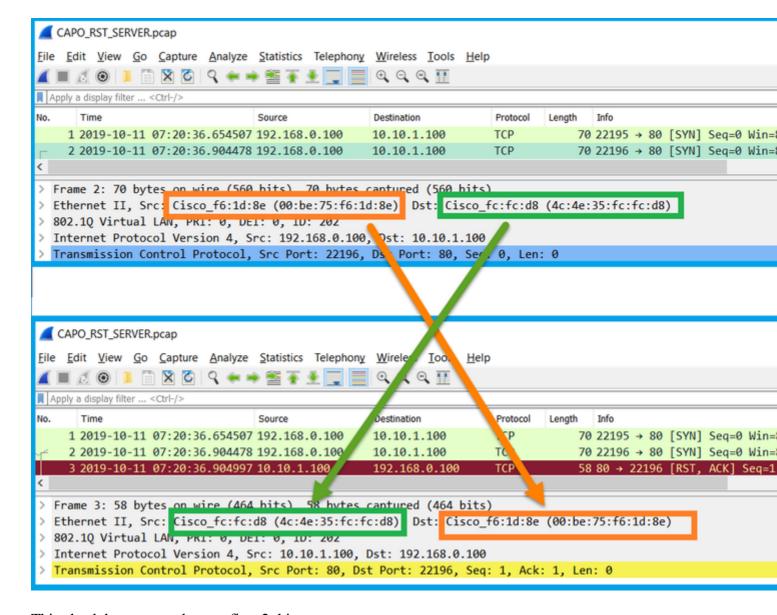
This image shows the capture of CAPO in Wireshark:

No.		Time		Source	Destination	Protocol	Length	Info
г	1	2019-10-11 07:20:3	6.654507	192.168.0.100	10.10.1.100	TCP	70	22195 → 80 [SYN] 10 Win=8192 Len=0 MSS=138
	2	2019-10-11 07:20:3	6.904478	192.168.0.100	10.10.1.100	TCP	70	22196 → 80 [SYN] Seq=0 Win=8192 Len=0 MSS=138
	3	2019-10-11 07:20:3	6.904997	10.10.1.100	192.168.0.100	TCP	58	80 → 22196 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	4	2019-10-11 07:20:3	7.414269	192.168.0.100	10.10.1.100	TCP	70	[TCP Port numbers reused] 22196 → 80 [SYN] Se
	5	2019-10-11 07:20:3	7.414758	10.10.1.100	192.168.0.100	TCP	58	80 → 22196 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
		2019-10-11 07:20:3	7.914305	192.168.0.100	10.10.1.100	TCP	66	[TCP Port numbers reused] 22196 → 80 [SYN] Se
	7	2019-10-11 07:20:3	7.914762	10.10.1.100	192.168.0.100	TCP		80 → 22196 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
	8	2019-10-11 07:20:3	9.654629	192.168.0.100	10.10.1.100	TCP	70	[TCP Retransmission] 22195 → 80 [SYN] Seq=0 W
	9	2019-10-11 07:20:3	9.655102	10.10.1.100	192.168.0.100	TCP	58	80 → 22195 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
L	10	2019-10-11 07:20:4	0.154700	192.168.0.100	10.10.1.100	TCP	66	[TCP Port numbers reused] 22195 → 80 [SYN] Se
	11	2019-10-11 07:20:4	0.155173	10.10.1.100	192.168.0.100	TCP	58	80 → 22195 [RST, ACK] Seq=1 Ack=1 Win=0 Len=0
<								
> E: > 8: > I:	the 02. nte	me 1: 70 bytes on wernet II, Src: Cisco 1Q Virtual LAN, PR ernet Protocol Vers Ismission Control P	o_f6:1d: I: 0, DE ion 4, S	8e (00:be:75:f6:1 I: 0, ID: 202 rc: 192.168.0.100	d:8e), Dst: Cisco , Dst: 10.10.1.10	_fc:fc:d8 0		35:fc:fc:d8)

Key Points:

- 1. The source sends a TCP SYN packet.
- 2. A TCP RST arrives on the OUTSIDE interface.
- 3. The source retransmits the TCP SYN packets.
- 4. The MAC addresses are correct (on egress packets the firewall OUTSIDE is the source MAC, upstream router is the destination MAC).

Based on the 2 captures it can be concluded that:

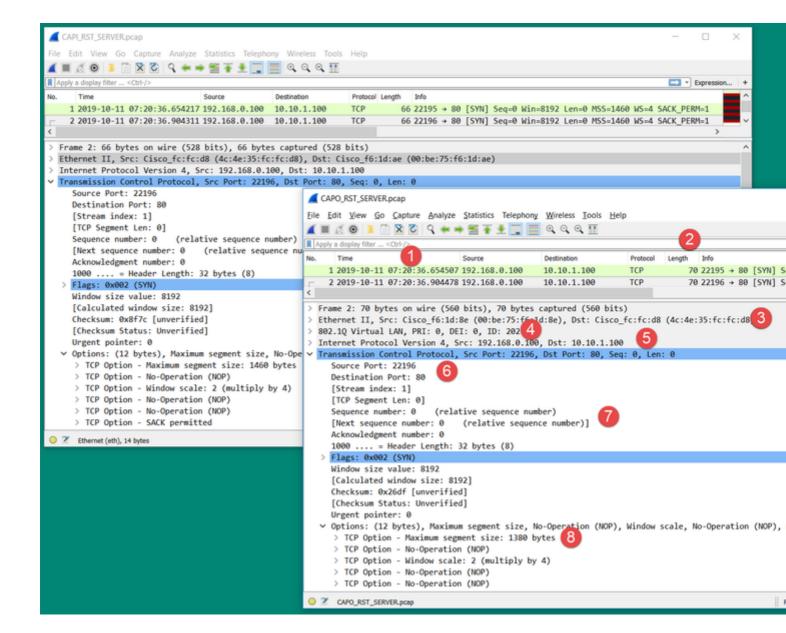

- The TCP 3-way handshake between the client and the server does not get completed
- There is a TCP RST which arrives on the firewall egress interface
- The firewall 'talks' to the proper upstream and downstream devices (based on the MAC addresses)

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Check the source MAC address that sends the TCP RST.

Verify that the destination MAC seen in the TCP SYN packet is the same as the source MAC has seen in the TCP RST packet.



This check has as a goal to confirm 2 things:

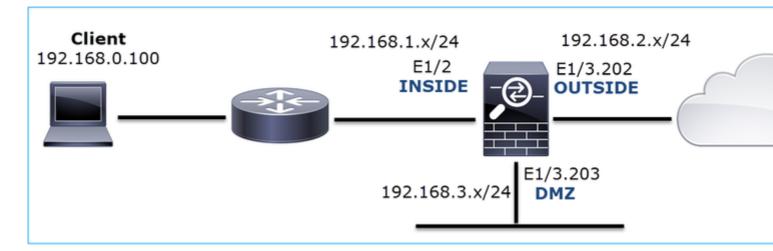
- Verify that there is no asymmetric flow.
- Verify that the MAC belongs to the expected upstream device.

Action 2. Compare ingress and egress packets.

Visually compare the 2 packets on Wireshark to verify that the firewall does not modify/corrupt the packets. Some expected differences are highlighted.

Key Points:

- 1. Timestamps are different. On the other hand, the difference must be small and reasonable. This depends on the features and policy checks applied to the packet as well as the load on the device.
- 2. The length of the packets may differ especially if there is a dot1Q header added/removed by the firewall on one side only.
- 3. The MAC addresses are different.
- 4. A dot1Q header can be in place if the capture was taken on a subinterface.
- 5. The IP address(es) are different in case NAT or Port Address Translation (PAT) is applied to the packet.
- 6. The source or destination ports are different in case NAT or PAT is applied to the packet.
- 7. If you disable the Wireshark **Relative Sequence Number** option you see that the TCP sequence numbers/acknowledgment numbers are modified by the firewall due to Initial Sequence Number (ISN) randomization.
- 8. Some TCP options can be overwritten. For example, the firewall by default changes the TCP Maximum Segment Size (MSS) to 1380 in order to avoid packet fragmentation in the transit path.


Action 3. Take a capture at the destination.

If possible, take a capture at the destination itself. If this is not possible take a capture as close to the destination as possible. The goal here is to verify who sends the TCP RST (is the destination server or is

some other device in the path?).

Case 3. TCP 3-Way Handshake + RST from One Endpoint

This image shows the topology:

Problem Description: HTTP does not work

Affected Flow:

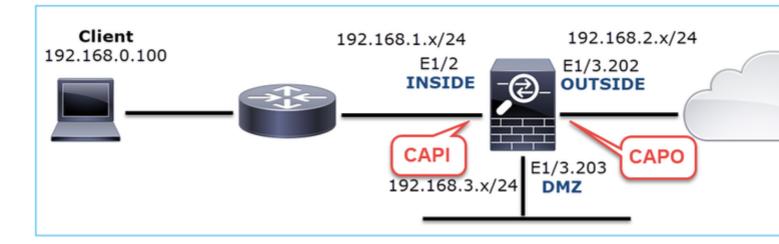
Src IP: 192.168.0.100

Dst IP: 10.10.1.100

Protocol: TCP 80

Capture Analysis

Enable captures on the FTD LINA engine.

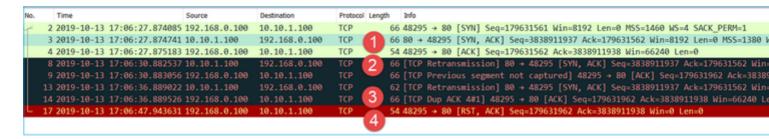

<#root>

firepower#

capture CAPI int INSIDE match ip host 192.168.0.100 host 10.10.1.100

firepower#

capture CAPO int OUTSIDE match ip host 192.168.0.100 host 10.10.1.100



Captures - Non-functional scenario:

There are a couple of different ways this issue can manifest in captures.

3.1 - TCP 3-way Handshake + Delayed RST from the Client

Both the firewall captures CAPI and CAPO contain the same packets, as shown in the image.

Key Points:

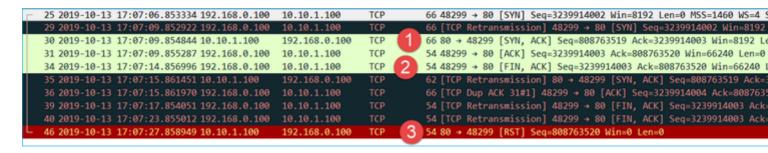
- 1. The TCP 3-way handshake goes through the firewall.
- 2. The server retransmits the SYN/ACK.
- 3. The client retransmits the ACK.
- 4. After ~20 sec the client gives up and sends a TCP RST.

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Take captures as close to the two endpoints as possible.

The firewall captures indicate that the client ACK was not processed by the server. This is based on these facts:


- The server retransmits the SYN/ACK.
- The client retransmits the ACK.
- The client sends a TCP RST or FIN/ACK before any data.

Capture on the server shows the problem. The client ACK from the TCP 3-way handshake never arrived:

- 26 7.636612	192.168.0.100	10.10.1.100	TCP	66 55324+80 [SYN] Seq=4332013
29 7.637571	10.10.1.100	192.168.0.100	TCP	66 80→55324 [SYN, ACK] Seq=40
30 7.930152	192.168.0.100	10.10.1.100	TCP	66 55325+80 [SYN] Seq=3661974
31 7.930221	10.10.1.100	192.168.0.100	TCP	66 80→55325 [SYN, ACK] Seq=21
41 10.629868	192.168.0.100	10.10.1.100	TCP	66 [TCP Spurious Retransmission
42 10.633208	10.10.1.100	192.168.0.100	TCP	66 [TCP Retransmission] 80+55
44 10.945178	10.10.1.100	192.168.0.100	TCP	66 [TCP Retransmission] 80+55
60 16.636255	192.168.0.100	10.10.1.100	TCP	62 [TCP Spurious Retransmission
61 16.639145	10.10.1.100	192.168.0.100	TCP	62 [TCP Retransmission] 80+55
62 16.951195	10.10.1.100	192.168.0.100	TCP	62 [TCP Retransmission] 80+55

3.2 - TCP 3-way Handshake + Delayed FIN/ACK from Client + Delayed RST from the Server

Both the firewall captures CAPI and CAPO contain the same packets, as shown in the image.

Key Points:

- 1. The TCP 3-way handshake goes through the firewall.
- 2. After ~5 sec the client sends a FIN/ACK.
- 3. After ~20 sec the server gives up and sends a TCP RST.

Based on this capture it can be concluded that although there is a TCP 3-way handshake through the firewall it seems that it never actually gets completed on one endpoint (the retransmissions indicate this).

Recommended Actions

Same as in case 3.1

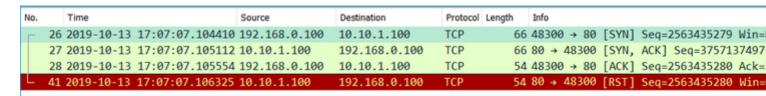
3.3 - TCP 3-way Handshake + Delayed RST from the Client

Both the firewall captures CAPI and CAPO contain the same packets, as shown in the image.

Key Points:

- 1. The TCP 3-way handshake goes through the firewall.
- 2. After ~20 sec the client gives up and sends a TCP RST.

Based on these captures it can be concluded that:


• After 5-20 seconds one endpoint gives up and decides to terminate the connection.

Recommended Actions

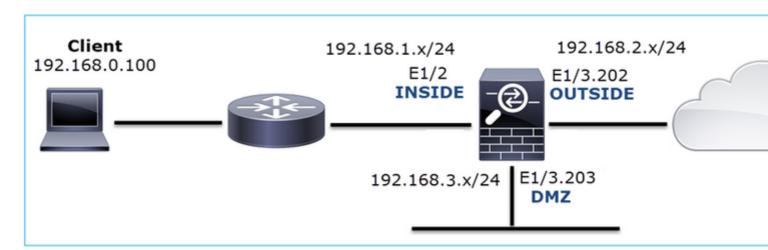
Same as in case 3.1

3.4 - TCP 3-way Handshake + Immediate RST from the Server

Both firewall captures CAPI and CAPO contain these packets, as shown in the image.

Key Points:

- 1. The TCP 3-way handshake goes through the firewall.
- 2. There is a TCP RST from the server a few milliseconds after the ACK packet.


Recommended Actions

Action: Take captures as close to the server as possible.

An immediate TCP RST from the server could indicate a malfunctioning server or a device in the path that sends the TCP RST. Take a capture on the server itself and determine the source of the TCP RST.

Case 4. TCP RST from the Client

This image shows the topology:

Problem Description: HTTP does not work.

Affected Flow:

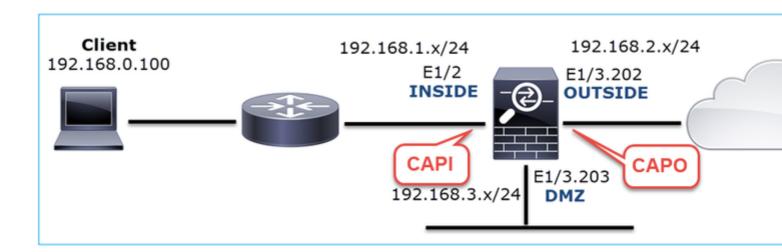
Src IP: 192.168.0.100

Dst IP: 10.10.1.100

Protocol: TCP 80

Capture Analysis

Enable captures on FTD LINA engine.


<#root>

firepower#

capture CAPI int INSIDE match ip host 192.168.0.100 host 10.10.1.100

firepower#

capture CAPO int OUTSIDE match ip host 192.168.0.100 host 10.10.1.100

Captures - Non-functional scenario:

These are the CAPI contents.

<#root>

firepower#

show capture CAPI

14 packets captured

```
6: 12:32:26.108118
                     192.168.0.100.47079 > 10.10.1.100.80: S 2486945841:2486945841(0) win 8192 <mss 3
  7: 12:32:26.109079
                     192.168.0.100.47079 > 10.10.1.100.80: R 3000518858:3000518858(0) win 0
                     192.168.0.100.47079 > 10.10.1.100.80: R 3000518858:3000518858(0) win 0
  8: 12:32:26.118295
                     192.168.0.100.47078 > 10.10.1.100.80: S 4098574664:4098574664(0) win 8192 <mss 3
  9: 12:32:31.859925
                     192.168.0.100.47078 > 10.10.1.100.80: R 1386249853:1386249853(0) win 0
 10: 12:32:31.860902
                     192.168.0.100.47078 > 10.10.1.100.80: R 1386249853:1386249853(0) win 0
 11: 12:32:31.875229
 12: 12:32:32.140632
                     192.168.0.100.47079 > 10.10.1.100.80: R 3000518858:3000518858(0) win 0
                    192.168.0.100.47079 > 10.10.1.100.80: S 2486945841:2486945841(0) win 8192 <mss 3
 13: 12:32:32.159995
 14 packets shown
```

These are the CAPO contents:

<#root>

firepower#

show capture CAPO

11 packets captured

```
802.1Q vlan#202 P0 192.168.0.100.47078 > 10.10.1.100.80: S 1386249852:1386249852
   1: 12:32:22.860780
                        802.1Q vlan#202 P0 192.168.0.100.47079 > 10.10.1.100.80: S 3000518857:3000518857
   2: 12:32:23.111429
   3: 12:32:23.112405
                        802.1Q vlan#202 P0 192.168.0.100.47079 > 10.10.1.100.80: R 3514091874:3514091874
                        802.1Q vlan#202 P0 192.168.0.100.47078 > 10.10.1.100.80: S 1386249852:1386249852
  4: 12:32:25.858125
                        802.1Q vlan#202 P0 192.168.0.100.47078 > 10.10.1.100.80: R 2968892337:296889233
   5: 12:32:25.868729
  6: 12:32:26.108240
                        802.1Q vlan#202 P0 192.168.0.100.47079 > 10.10.1.100.80: S 3822259745:3822259745
                        802.1Q vlan#202 P0 192.168.0.100.47079 > 10.10.1.100.80: R 40865466:40865466(0)
  7: 12:32:26.109094
  8: 12:32:31.860062
                        802.1Q vlan#202 P0 192.168.0.100.47078 > 10.10.1.100.80: S 4294058752:4294058752
                        802.1Q vlan#202 P0 192.168.0.100.47078 > 10.10.1.100.80: R 1581733941:158173394
  9: 12:32:31.860917
                        802.1Q vlan#202 P0 192.168.0.100.47079 > 10.10.1.100.80: S 4284301197:4284301197
 10: 12:32:32.160102
                        802.1Q vlan#202 P0 192.168.0.100.47079 > 10.10.1.100.80: R 502906918:502906918(0
 11: 12:32:32.160971
11 packets shown
```

The firewall logs show:

<#root>

firepower#

```
show log | i 47741
```

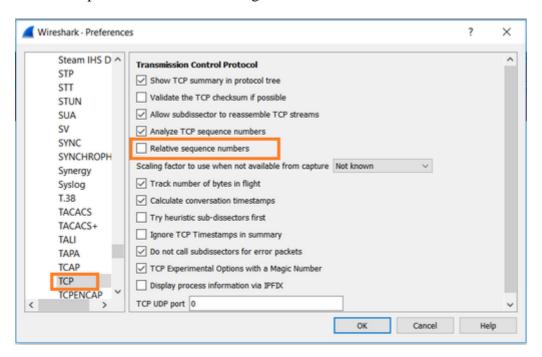
```
Oct 13 2019 13:57:36: %FTD-6-302013: Built inbound TCP connection 4869 for INSIDE:192.168.0.100/47741 (2011) 13:57:36: %FTD-6-302014: Teardown TCP connection 4869 for INSIDE:192.168.0.100/47741 to OUTS
```

TCP Reset-O from INSIDE

```
Oct 13 2019 13:57:39: %FTD-6-302013: Built inbound TCP connection 4870 for INSIDE:192.168.0.100/47741 (2011 13:57:39: %FTD-6-302014: Teardown TCP connection 4870 for INSIDE:192.168.0.100/47741 to OUTS
```

TCP Reset-O from INSIDE

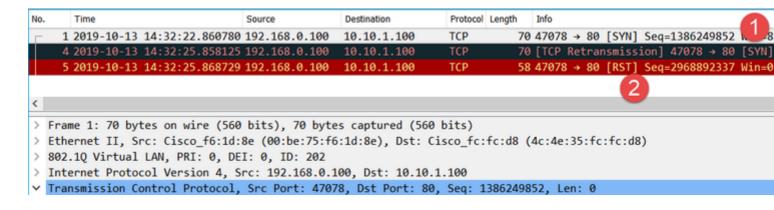
```
Oct 13 2019 13:57:45: %FTD-6-302013: Built inbound TCP connection 4871 for INSIDE:192.168.0.100/47741 (2011) 13:57:45: %FTD-6-302014: Teardown TCP connection 4871 for INSIDE:192.168.0.100/47741 to OUTS
```


These logs indicate that there is a TCP RST which arrives on firewall INSIDE interface

CAPI capture in Wireshark:

Follow the first TCP stream, as shown in the image.

Under Wireshark, navigate to Edit > Preferences > Protocols > TCP and unselect the Relative sequence numbers option as shown in the image.


This image shows the contents of the first flow in CAPI capture:

```
Time
                                Source
   1 2019-10-13 14:32:22.860627 192.168.0.100
Frame 1: 66 bytes on wire (528 bits), 66 bytes captured (528 bits)
Ethernet II, Src: Cisco_fc:fc:d8 (4c:4e:35:fc:fc:d8), Dst: Cisco_f6:1d:ae (00:be:75:f6:1d:ae)
Internet Protocol Version 4, Src: 192.168.0.100, Dst: 10.10.1.100
Transmission Control Protocol, Src Port: 47078, Dst Port: 80, Seq: 4098574664, Len:
   Source Port: 47078
   Destination Port: 80
   [Stream index: 0]
   [TCP Segment Len: 0]
   Sequence number: 4098574664
   [Next sequence number: 4098574664]
   Acknowledgment number: 0
1000 .... = Header Length: 32 bytes (8) > Flags: 0x002 (SYN)
   Window size value: 8192
   [Calculated window size: 8192]
   Checksum: 0x8cd1 [unverified]
   [Checksum Status: Unverified]
   Urgent pointer: 0
 > Options: (12 bytes), Maximum segment size, No-Operation (NOP), Window scale, No-Operation (NOP), No-Operation (NOP), SACK permitted
 > [Timestamps]
```

Key Points:

- 1. The client sends a TCP SYN packet.
- 2. The client sends a TCP RST packet.
- 3. The TCP SYN packet has a Sequence Number value equal to 4098574664.

The same flow in CAPO capture contains:

Key Points:

- 1. The client sends a TCP SYN packet. The firewall randomizes the ISN.
- 2. The client sends a TCP RST packet.

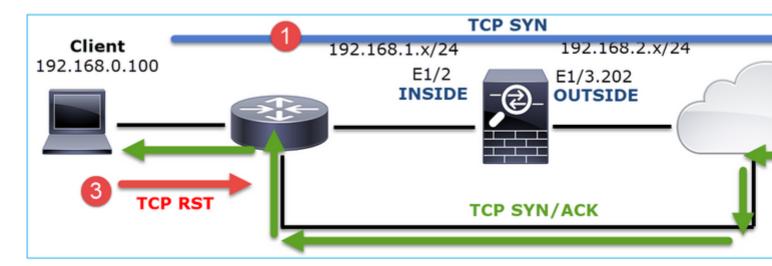
Based on the two captures it can be concluded that:

- There is no TCP 3-way handshake between the client and the server.
- There is a TCP RST which comes from the client. The TCP RST sequence number value in CAPI capture is 1386249853.

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

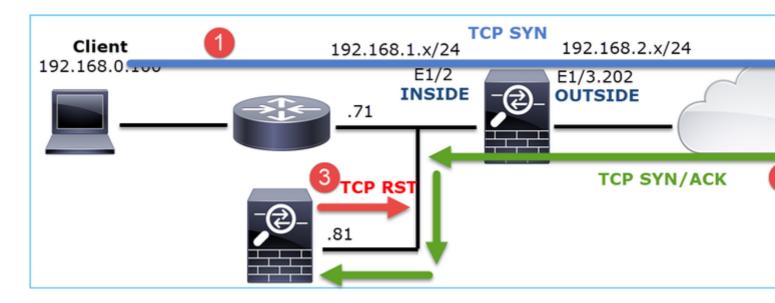
Action 1. Take a capture on the client.


Based on the captures collected on the firewall there is a strong indication of an asymmetric flow. This is based on the fact that the client sends a TCP RST with a value of 1386249853 (the randomized ISN):

Key Points:

- 1. The client sends a TCP SYN packet. The sequence number is 4098574664 and is the same as the one seen on firewall INSIDE interface (CAPI)
- 2. There is a TCP SYN/ACK with ACK number 1386249853 (which is expected due to ISN randomization). This packet was not seen in the firewall captures
- 3. The client sends a TCP RST since it expected a SYN/ACK with ACK number value of 4098574665, but it received value of 1386249853

This can be visualized as:



Action 2. Check the routing between the Client and the Firewall.

Confirm that:

- The MAC addresses seen in the captures are the expected ones.
- Ensure that the routing between the firewall and the client is symmetric.

There are scenarios where the RST comes from a device that sits between the firewall and the client while there is an asymmetric routing in the internal network. A typical case is shown in the image:

In this case, the capture has this content. Notice the difference between the source MAC address of the TCP SYN packet vs the source MAC address of the TCP RST and the destination MAC address of the TCP SYN/ACK packet:

```
<#root>
firepower#
show capture CAPI detail
   1: 13:57:36.730217
 4c4e.35fc.fcd8
 00be.75f6.1dae 0x0800 Length: 66
      192.168.0.100.47740 > 10.10.1.100.80: S [tcp sum ok] 3045001876:3045001876(0) win 8192 <mss 1460,r
   2: 13:57:36.981104 4c4e.35fc.fcd8 00be.75f6.1dae 0x0800 Length: 66
      192.168.0.100.47741 > 10.10.1.100.80: S [tcp sum ok] 3809380540:3809380540(0) win 8192 <mss 1460,r
   3: 13:57:36.981776 00be.75f6.1dae
a023.9f92.2a4d
 0x0800 Length: 66
      10.10.1.100.80 > 192.168.0.100.47741: S [tcp sum ok] 1304153587:1304153587(0) ack 3809380541 win 8
   4: 13:57:36.982126
a023.9f92.2a4d
00be.75f6.1dae 0x0800 Length: 54
      192.168.0.100.47741 > 10.10.1.100.80:
R
 [tcp sum ok] 3809380541:3809380541(0) ack 1304153588 win 8192 (ttl 255, id 48501)
```

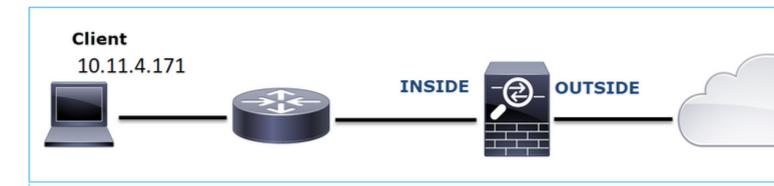
Case 5. Slow TCP Transfer (Scenario 1)

Problem Description:

SFTP transfer between hosts 10.11.4.171 and 10.77.19.11 is slow. Although the minimum bandwidth (BW) between the 2 hosts is 100 Mbps the transfer speed does not go beyond 5 Mbps.

At the same time, the transfer speed between hosts 10.11.2.124 and 172.25.18.134 is quite higher.

Background Theory:


The maximum transfer speed for a single TCP flow is determined by the Bandwidth Delay Product (BDP). The formula used is shown in the image:

For more details about the BDP check the resources here:

- Why Your Application only Uses 10Mbps Even the Link is 1Gbps?
- BRKSEC-3021 Advanced Maximizing Firewall Performance

Scenario 1. Slow Transfer

This image shows the topology:

Affected Flow:

Src IP: 10.11.4.171

Dst IP: 10.77.19.11

Protocol: SFTP (FTP over SSH)

Capture Analysis

Enable captures on FTD LINA engine:

<#root>

firepower#

capture CAPI int INSIDE buffer 33554432 match ip host 10.11.4.171 host 10.77.19.11 firepower#

capture CAPO int OUTSIDE buffer 33554432 match ip host 10.11.4.171 host 10.77.19.11

Warning: LINA captures on FP1xxx and FP21xx captures affect the transfer rate of traffic that goes through the FTD. Do not enable LINA captures on FP1xxx and FP21xxx platforms when you troubleshoot performance (slow transfer through the FTD) issues. Instead use SPAN or a HW Tap device in addition to captures on the source and destination hosts. The issue is documented in Cisco bug ID <u>CSCvo30697</u>.

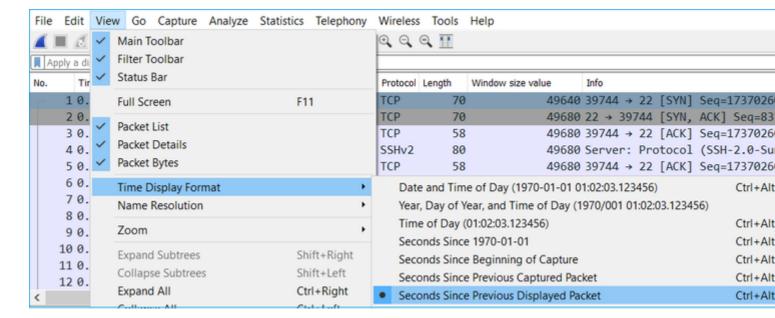
<#root>

firepower#

capture CAPI type raw-data trace interface inside match icmp any any

WARNING: Running packet capture can have an adverse impact on performance.

Recommended Actions

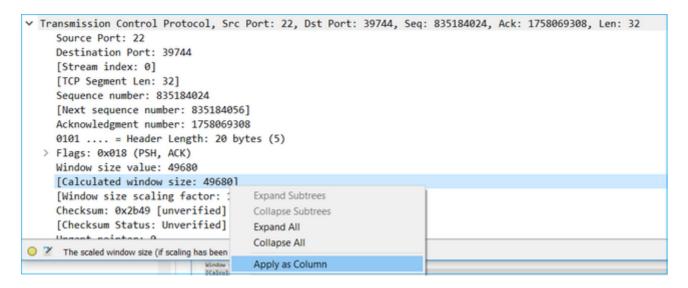

The actions listed in this section have as a goal to further narrow down the issue.

Round Trip Time (RTT) Calculation

First, identify the transfer flow and follow it:

No.	Time	Source	Destination	Protocol	Length	Window size	value
г	1 0.000000	10.11.4.171	10 77 10 11	TCD	, 70)	49640
	2 0.072521	10.77.19.11	Mark/Unmark Packet		70		49680
Т	3 0.000168	10.11.4.171	Ignore/Unignore Pack	et	58		49680
	4 0.077068	10.77.19.11	Set/Unset Time Refer	ence	80)	49680
	5 0.000152	10.11.4.171	Time Shift		58		49680
	6 0.000244	10.11.4.171	Packet Comment		80		49680
	7 0.071545	10.77.19.11	Edit Deschool Name		58		49680
	8 0.000153	10.11.4.171	Edit Resolved Name		538		49680
	9 0.041288	10.77.19.11	Apply as Filter		738		49680
	10 0.000168	10.11.4.171	Prepare a Filter	,	58		49680
	11 0.030165	10.77.19.11	Conversation Filter	,	58		49680
	12 0.000168	10.11.4.171	Colorize Conversation	, ,	. 82		49680
<			SCTP		.		
>	Frame 1: 70 by	tes on wire (560	Follow	,	тс	P Stream	
>	Ethernet II, 9	Src: Cisco_f8:19:f			UE	OP Stream	00:5d:7
>	802.1Q Virtual	LAN, PRI: 0, DEI	Сору	,		L Stream	
>	Internet Proto	ocol Version 4, Sr	Protocol Preferences			TP Stream	
	Transmission (Control Protocol			П	ir sueam	03 Lor

Change the Wireshark View to show the **Seconds Since the Previous Displayed Packet**. This eases the calculation of the RTT:


The RTT can be calculated by addition of the time values between 2 packet exchanges (one towards the source and one towards the destination). In this case, packet #2 shows the RTT between the firewall and the device who sent the SYN/ACK packet (server). Packet #3 shows the RTT between the firewall and the device who sent the ACK packet (client). The addition of the 2 numbers provides a good estimate about the end-to-end RTT:

1 0.000000	10.11.4.171	10.77.19.11	TCP	70	49640 39744 → 22 [SYN] Seq=1737026093 Win=49640 Len=0
2 0.072521	10.77.19.11	10.11.4.171	TCP	70	49680 22 → 39744 [SYN, ACK] Seq=835172681 Ack=17370260
3 0.000168	10.11.4.171	10.77.19.11	TCP	58	49680 39744 → 22 [ACK] Seq=1737026094 Ack=835172682 Wi
4 0.077068	10.77.19.11	10.11.4.171	SSHv2	80	49680 Server: Protocol (SSH-2.0-Sun_SSH_1.1.8)
5 0.000152	10.11.4.171	10.77.19.11	TCP	58	49680 39744 → 22 [ACK] Seq=1737026094 Ack=835172704 Wi
6 0.000244	10.11.4.171	10.77.19.11	SSHv2	80	49680 Client: Protocol (SSH-2.0-Sun_SSH_1.1.4)
7 0.071545	10.77.19.11	10.11.4.171	TCP	58	49680 22 → 39744 [ACK] Seq=835172704 Ack=1737026116 Wi
8 0.000153	10.11.4.171	10.77.19.11	SSHv2	538	49680 Client: Key Exchange Init
9 0.041288	10.77.19.11	10.11.4.171	SSHv2	738	49680 Server: Key Exchange Init
10 0.000168	10.11.4.171	10.77.19.11	TCP	58	49680 39744 → 22 [ACK] Seq=1737026596 Ack=835173384 Wi
11 0.030165	10.77.19.11	10.11.4.171	TCP	58	49680 22 → 39744 [ACK] Seq=835173384 Ack=1737026596 Wi
12 0.000168	10.11.4.171	10.77.19.11	SSHv2	82	49680 Client: Diffie-Hellman Group Exchange Request
	2 0.072521 3 0.000168 4 0.077068 5 0.000152 6 0.000244 7 0.071545 8 0.000153 9 0.041288 10 0.000168 11 0.030165	2 0.072521 10.77.19.11 3 0.000168 10.11.4.171 4 0.077068 10.77.19.11 5 0.000152 10.11.4.171 6 0.000244 10.11.4.171 7 0.071545 10.77.19.11 8 0.000153 10.11.4.171 9 0.041288 10.77.19.11 10 0.000168 10.11.4.171 11 0.030165 10.77.19.11	2 0.072521 10.77.19.11 10.11.4.171 3 0.000168 10.11.4.171 10.77.19.11 4 0.077068 10.77.19.11 10.11.4.171 5 0.000152 10.11.4.171 10.77.19.11 6 0.000244 10.11.4.171 10.77.19.11 7 0.071545 10.77.19.11 10.11.4.171 8 0.000153 10.11.4.171 10.77.19.11 9 0.041288 10.77.19.11 10.11.4.171 10 0.000168 10.11.4.171 10.77.19.11 11 0.030165 10.77.19.11 10.11.4.171	2 0.072521 10.77.19.11 10.11.4.171 TCP 3 0.000168 10.11.4.171 10.77.19.11 TCP 4 0.077068 10.77.19.11 10.11.4.171 SSHv2 5 0.000152 10.11.4.171 10.77.19.11 TCP 6 0.000244 10.11.4.171 10.77.19.11 SSHv2 7 0.071545 10.77.19.11 10.11.4.171 TCP 8 0.000153 10.11.4.171 10.77.19.11 SSHv2 9 0.041288 10.77.19.11 10.11.4.171 SSHv2 10 0.000168 10.11.4.171 10.77.19.11 TCP 11 0.030165 10.77.19.11 10.11.4.171 TCP	2 0.072521 10.77.19.11 10.11.4.171 TCP 70 3 0.000168 10.11.4.171 10.77.19.11 TCP 58 4 0.077068 10.77.19.11 10.11.4.171 SSHv2 80 5 0.000152 10.11.4.171 10.77.19.11 TCP 58 6 0.000244 10.11.4.171 10.77.19.11 SSHv2 80 7 0.071545 10.77.19.11 10.11.4.171 TCP 58 8 0.000153 10.11.4.171 10.77.19.11 SSHv2 538 9 0.041288 10.77.19.11 10.11.4.171 SSHv2 738 10 0.000168 10.11.4.171 10.77.19.11 TCP 58 11 0.030165 10.77.19.11 10.11.4.171 TCP 58

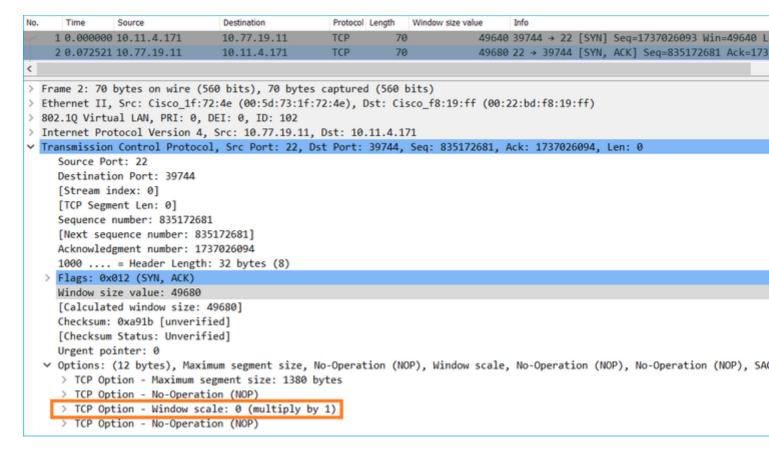
RTT â‰^ 80 msec

TCP Window Size Calculation

Expand a TCP packet, expand the TCP header, select **Calculated window size** and select **Apply as Column:**

Check the **Calculated window size value** column to see what the maximum window size value was during the TCP session. You can also select on the column name and sort the values.

If you test a file download (**server > client**) you must check the values advertised by the server. The maximum window size value advertised by the server determines the maximum transfer speed achieved.


In this case, the TCP window size is ≠50000 Bytes

Appl	Apply a display filter <ctrl-></ctrl->											
No.	Time	Source	Destination	Protocol	Length	Calculated window size		Info				
24	0.000091	10.11.4.171	10.77.19.11	TCP	58	490	680	39744 → 22 [ACK] Seq=1758069341				
24	0.000077	10.77.19.11	10.11.4.171	TCP	58	496	680	22 → 39744 [FIN, ACK] Seq=835184				
24	0.071605	10.77.19.11	10.11.4.171	TCP	58	496	680	22 → 39744 [ACK] Seq=835184152 A				
24	0.000153	10.11.4.171	10.77.19.11	TCP	58	496	680	39744 → 22 [FIN, ACK] Seq=175806				
24	0.000443	10.11.4.171	10.77.19.11	SSHv2	90	496	680 (Client: Encrypted packet (len=32				
24	0.071666	10.77.19.11	10.11.4.171	SSHv2	154	496	680 5	Server: Encrypted packet (len=96				
24	0.044050	10.11.4.171	10.77.19.11	TCP	58	496	680	39744 → 22 [ACK] Seq=1758069308				
24	0.073605	10.77.19.11	10.11.4.171	SSHv2	90	496	680 5	Server: Encrypted packet (len=32				
24	0.000747	10.11.4.171	10.77.19.11	SSHv2	90	496	680 (Client: Encrypted packet (len=32				

Based on these values and with the use of the Bandwidth Delay Product formula you get the maximum theoretical bandwidth that can be achieved under these conditions: 50000*8/0.08 = 5 Mbps maximum theoretical bandwidth.

This matches what the client experiences in this case.

Check closely the TCP 3-way handshake. Both sides, and more importantly the server, advertise a window scale value of 0 which means $2^0 = 1$ (no windows scaling). This affects negatively the transfer rate:

At this point, there is a need to take a capture on the server, confirm that it is the one who advertises window scale = 0 and reconfigure it (check the server documentation for how to do this).

Scenario 2. Fast transfer

Now let's examine the good scenario (fast transfer through the same network):

Topology:

The flow of interest:

Src IP: 10.11.2.124

Dst IP: 172.25.18.134

Protocol: SFTP (FTP over SSH)

Enable Captures on FTD LINA engine

<#root>

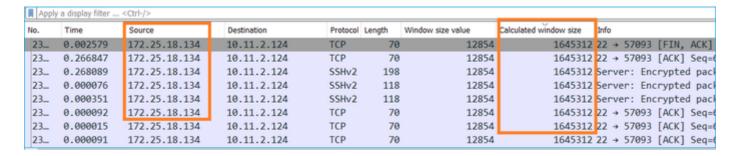
firepower#

capture CAPI int INSIDE buffer 33554432 match ip host 10.11.2.124 host 172.25.18.134 firepower#

capture CAPO int OUTSIDE buffer 33554432 match ip host 10.11.2.124 host 172.25.18.134

Round Trip Time (RTT) Calculation: In this case, the RTT is ≠300 msec.

No.		Time	Source	Destination	Protocol	Length
	1	0.000000	10.11.2.124	172.25.18.134	TCP	78
	2	0.267006	172.25.18.134	10.11.2.124	TCP	78
	3	0.000137	10.11.2.124	172.25.18.134	TCP	70
	4	0.003784	10.11.2.124	172.25.18.134	SSHv2	91
	5	0.266863	172.25.18.134	10.11.2.124	TCP	70
	6	0.013580	172.25.18.134	10.11.2.124	SSHv2	91


TCP Window Size Calculation: The server advertises a TCP window scale factor of 7.

```
Internet Protocol Version 4, Src: 172.25.18.134, Dst: 10.11.2.124
Transmission Control Protocol, Src Port: 22, Dst Port: 57093, Seq: 661963571, Ack: 1770516295, Len: 0
   Source Port: 22
   Destination Port: 57093
   [Stream index: 0]
   [TCP Segment Len: 0]
   Sequence number: 661963571
   [Next sequence number: 661963571]
   Acknowledgment number: 1770516295
   1010 .... = Header Length: 40 bytes (10)
 > Flags: 0x012 (SYN, ACK)
   Window size value: 14480
   [Calculated window size: 14480]
   Checksum: 0x6497 [unverified]
   [Checksum Status: Unverified]
   Urgent pointer: 0

    Options: (20 bytes), Maximum segment size, SACK permitted, Timestamps, No-Operation (NOP), Window scale

   > TCP Option - Maximum segment size: 1300 bytes
    > TCP Option - SACK permitted
    > TCP Option - Timestamps: TSval 390233290, TSecr 981659424
    > TCP Option - No-Operation (NOP)
> TCP Option - Window scale: 7 (multiply by 128)
 > [SEQ/ACK analysis]
```

The server's TCP window size is â‰^ 1600000 Bytes:

Based on these values the Bandwidth Delay Product formula gives:

1600000*8/0.3 = 43 Mbps maximum theoretical transfer speed

Case 6. Slow TCP Transfer (Scenario 2)

Problem Description: FTP file transfer (download) through the firewall is slow.

This image shows the Topology:

Affected Flow:

Src IP: 192.168.2.220

Dst IP: 192.168.1.220

Protocol: FTP

Capture Analysis

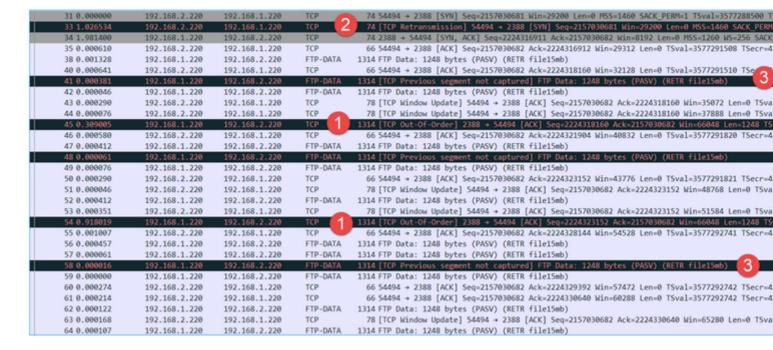
Enable captures on the FTD LINA engine.

<#root>

firepower#

capture CAPI type raw-data buffer 33554432 interface INSIDE match tcp host 192.168.2.220 host 192.168.1 firepower#

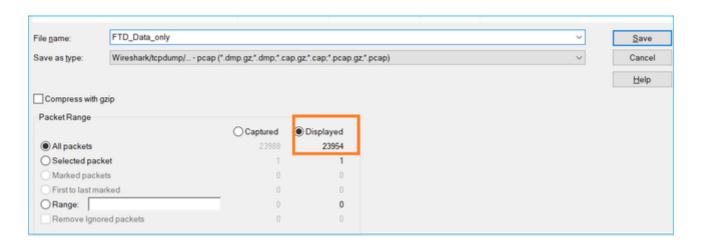
cap CAPO type raw-data buffer 33554432 interface OUTSIDE match tcp host 192.168.2.220 host 192.168.1.220


Select an FTP-DATA packet and follow the FTP Data Channel on FTD INSIDE capture (CAPI):

1	75 0.000412	192.168.2.220	192.168.1.220	TCP	66 54494 → 2388 [ACK] Seq=18842	31612 Ack=2670018383
۱	76 0.000518	192.168.1.220	192.168.2.220	FTP-DATA	Andrew (PASV)	(RETR file15mb)
ı	77 0.000061	192.168.1.220	192.168.2.220	FTP-DATA		(RETR file15mb)
1	78 0.000046	192.168.1.220	192.168.2.220	FTP-DATA		ptured] FTP Data: 124
ſ	79 0.000015	192.168.1.220	192.168.2.220	FTP-DATA	Set/Unset Time Reference (PASV)	(RETR file15mb)
1	80 0.000107	192.168.2.220	192.168.1.220	TCP	Time Shift q=18842	31612 Ack=2670019631
1	81 0.000092	192.168.2.220	192.168.1.220	TCP	Packet Comment q=18842	31612 Ack=2670020879
1	82 0.000091	192.168.2.220	192.168.1.220	TCP	Edit Resolved Name 4494 →	2388 [ACK] Seq=188423
ı	83 0.000015	192.168.2.220	192.168.1.220	TCP	Edit Resolved Name 4494 →	2388 [ACK] Seq=188423
ı	84 0.000321	192.168.1.220	192.168.2.220	FTP-DATA	Apply as Filter PASV)	(RETR file15mb)
ı	85 0.000061	192.168.1.220	192.168.2.220	FTP-DATA	Prepare a Filter PASV)	(RETR file15mb)
ı	86 0.000153	192.168.2.220	192.168.1.220	TCP	Conversation Filter → 4494 →	2388 [ACK] Seq=188423
ı	87 0.000122	192.168.2.220	192.168.1.220	TCP	Colorize Conversation → 4494 →	2388 [ACK] Seq=188423
	88 0.918415	192.168.1.220	192.168.2.220	TCP	SCTP , 38 → 54	494 [ACK] Seq=2670020
ſ	89 0.000397	192.168.2.220	192.168.1.220	TCP		=2670027119
ı	90 0.000869	192.168.1.220	192.168.2.220	FTP-DATA		Stream e15mb)

The FTP-DATA stream content:

26 0.000000	192.168.2.220	192.168.1.220	TCP	74 54494 → 2388 [SYN] Seq=1884231611 Win=29200 Len=0 MSS=1460 SACK_PERM=1 TSval=3577288500 T
28 1.026564	192.168.2.220	192.168.1.220	TCP	74 [TCP Retransmission] 54494 + 2388 [SYN] Seq=1884231611 Win=29200 Len=0 MSS=1460 SACK_PERM
29 1.981584	192.168.1.220	192.168.2.220	TCP	74 2388 - 54494 [SYN, ACK] Seq=2669989678 Ack=1884231612 Win=8192 Len=0 MSS=1260 WS=256 SACK
30 0.000488	192.168.2.220	192.168.1.220	TCP	66 54494 → 2388 [ACK] Seq=1884231612 Ack=2669989679 Win=29312 Len=0 TSval=3577291508 TSecr=4.
34 0.001617	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
35 0.000351	192.168.2.220	192.168.1.220	TCP	66 54494 → 2388 [ACK] Seq=1884231612 Ack=2669990927 Win=32128 Len=0 TSval=3577291510 TSecr=4.
36 0.000458	192.168.1.220	192.168.2.220	FTP-DATA	1314 [TCP Previous segment not captured] FTP Data: 1248 bytes (PASV) (RETR file15mb)
37 0.000061	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
38 0.000198	192.168.2.220	192.168.1.220	TCP	78 [TCP Window Update] 54494 + 2388 [ACK] Seq=1884231612 Ack=2669990927 Win=35072 Len=0 TSva
39 0.000077	192.168.2.220	192.168.1.220	TCP	78 [TCP Window Update] 54494 → 2388 [ACK] Seq=1884231612 Ack=2669990927 Win=37888 Len=0 TSva
40 0.309096	192.168.1.220	192.168.2.220	TCP	1314 [TCP Out-Of-Order] 2388 → 54494 [ACK] Seq=2669990927 Ack=1884231612 Win=66048 Len=1248 TS
41 0.000488	192.168.2.220	192.168.1.220	TCP	66 54494 + 2388 [ACK] Seq=1884231612 Ack=2669994671 Win=40832 Len=0 TSval=3577291820 TSecr=4:
42 0.000489	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
43 0.000045	192.168.1.220	192.168.2.220	FTP-DATA	1314 [TCP Previous segment not captured] FTP Data: 1248 bytes (PASV) (RETR file15mb)
44 0.000077	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
45 0.000244	192.168.2.220	192.168.1.220	TCP	66 54494 + 2388 [ACK] Seq=1884231612 Ack=2669995919 Win=43776 Len=0 TSval=3577291821 TSecr=4
46 0.000030	192.168.2.220	192.168.1.220	TCP	78 [TCP Window Update] 54494 → 2388 [ACK] Seq=1884231612 Ack=2669995919 Win=48768 Len=0 TSva
47 0.000504	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
48 0.000259	192.168.2.220	192.168.1.220	TCP	78 [TCP Window Update] 54494 → 2388 [ACK] Seq=1884231612 Ack=2669995919 Win=51584 Len=0 TSva
49 0.918126	192.168.1.220	192.168.2.220	TCP	1314 [TCP Out-Of-Order] 2388 → 54494 [ACK] Seq=2669995919 Ack=1884231612 Win=66048 Len=1248 TS
50 0.000900	192.168.2.220	192.168.1.220	TCP	66 54494 → 2388 [ACK] Seq=1884231612 Ack=2670000911 Win=54528 Len=0 TSval=3577292741 TSecr=4:
51 0.000519	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
52 0.000061	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
53 0.000015	192.168.1.220	192.168.2.220	FTP-DATA	1314 [TCP Previous segment not captured] FTP Data: 1248 bytes (PASV) (RETR file15mb)
54 0.000015	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
55 0.000199	192.168.2.220	192.168.1.220	TCP	66 54494 → 2388 [ACK] Seq=1884231612 Ack=2670002159 Win=57472 Len=0 TSval=3577292742 TSecr=4:
56 0.000229	192.168.2.220	192.168.1.220	TCP	66 54494 → 2388 [ACK] Seq=1884231612 Ack=2670003407 Win=60288 Len=0 TSval=3577292742 TSecr=4:
57 0.000183	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)
58 0.000106	192.168.2.220	192.168.1.220	TCP	78 [TCP Window Update] 54494 → 2388 [ACK] Seq=1884231612 Ack=2670003407 Win=65280 Len=0 TSva
59 0.000168	192.168.2.220	192.168.1.220	TCP	78 [TCP Window Update] 54494 → 2388 [ACK] Seq=1884231612 Ack=2670003407 Win=68224 Len=0 TSva
60 0.000000	192.168.1.220	192.168.2.220	FTP-DATA	1314 FTP Data: 1248 bytes (PASV) (RETR file15mb)


The CAPO capture content:

Key Points:

- 1. There are TCP Out-Of-Order (OOO) packets.
- 2. There is a TCP Retransmission.
- 3. There is an indication of a packet loss (dropped packets).

Tip: Save the captures as you navigate to **File** > **Export Specified Packets**. Then save only the **Displayed** packet range

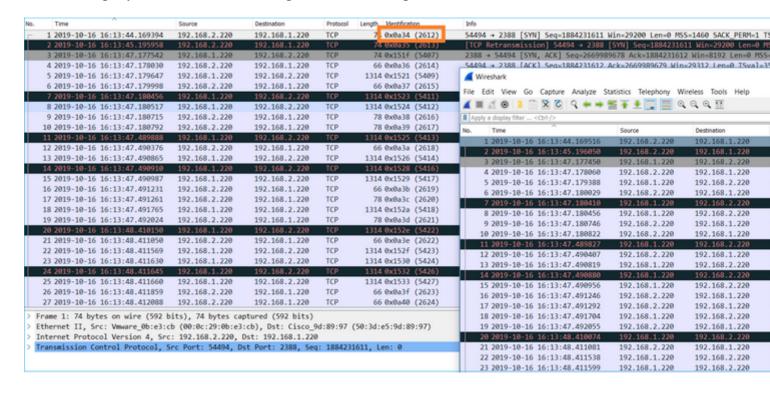
Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Identify the packet loss location.

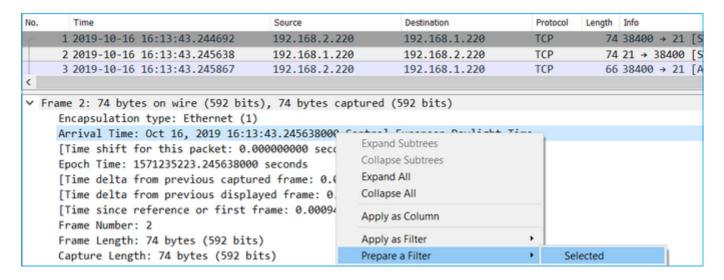
In cases like this, you must take simultaneous captures and use the divide and conquer methodology to identify the network segment(s) that cause packet loss. From the firewall point of view there are 3 main scenarios:

- 1. The packet loss is caused by the firewall itself.
- 2. The packet loss is caused downstream to the firewall device (direction from server to client).
- 3. The packet loss is caused upstream to the firewall device (direction from the client to server).


Packet loss caused by the Firewall: In order to identify if the packet loss is caused by the firewall there is a need to compare the ingress capture to the egress capture. There are quite many ways to compare 2 different captures. This section demonstrates one way to do this task.

Procedure to Compare 2 Captures in order to Identify the Packet Loss

Step 1. Ensure that the 2 captures contain packets from the same time window. This means there must be no packets in one capture that were captured before or after the other capture. There are a few ways to do this:

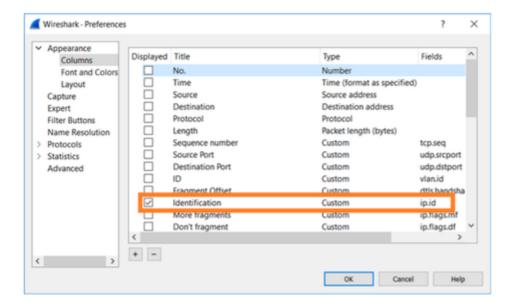

- Check the first and last packet IP identification (ID) values.
- Check the first and last packet timestamp values.

In this example you can see that the first packets of each capture have the same IP ID values:

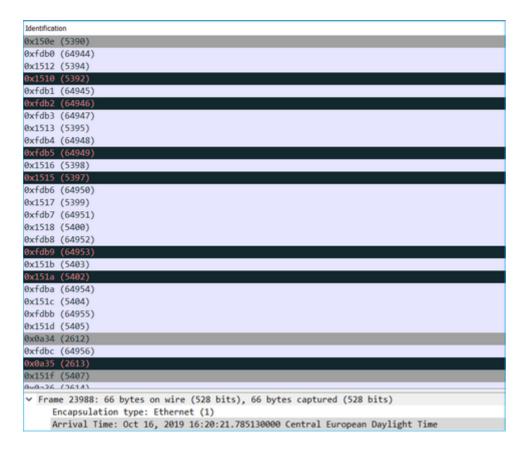
In case they are not the same then:

- 1. Compare the Timestamps from the first packet of each capture.
- 2. From the capture with the latest Timestamp get a filter from it change the Timestamp filter from == to >= (the first packet) and <= (the last packet), e.g:

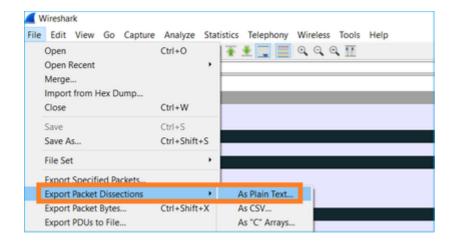

(frame.time >= "Oct 16, 2019 16:13:43.244692000") &&(frame.time <= "Oct 16, 2019 16:20:21.785130000")

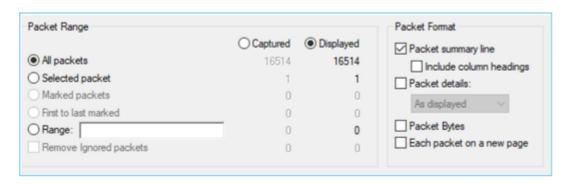

3. Export the specified packets to a new capture, select **File > Export Specified Packets** and then save the **Displayed** packets. At this point, both captures must contain packets that cover the same time window. You can now start the comparison of the 2 captures.

Step 2. Specify which packet field is used for the comparison between the 2 captures. Example of fields that can be used:

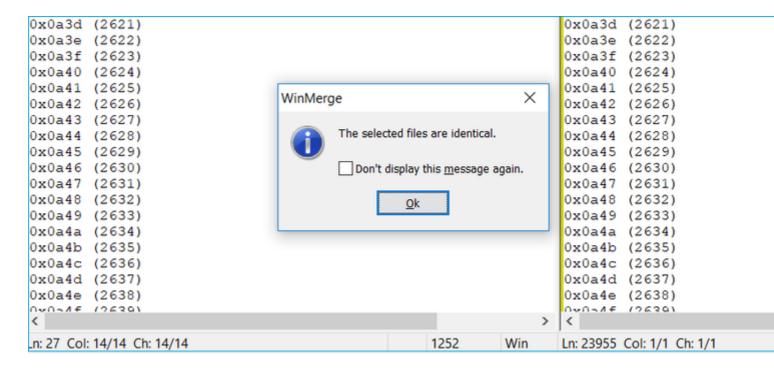

- IP Identification
- RTP Sequence Number
- ICMP Sequence Number

Create a text version of each capture which contains the field for each packet that you specified in step 1. In order to do this, leave only the column of interest, for example, if you want to compare packets based on IP Identification then modify the capture as shown in the image.




The result:

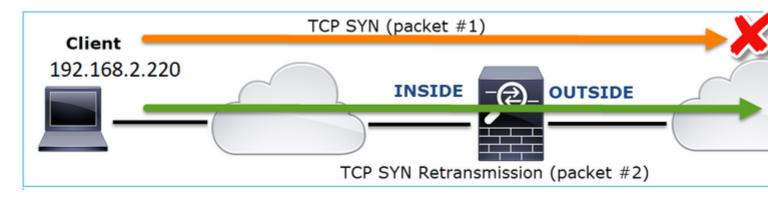
Step 3. Create a text version of the capture (**File > Export Packet Dissections > As Plain Text**...), as shown in the image:


Uncheck the **Include column headings** and **Packet details** options to export only the values of the displayed field, as shown in the image:

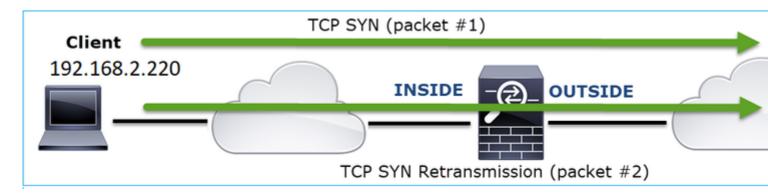
Step 4. Sort the packets in the files. You can use the Linux sort command to do this:

```
<#root>
#
sort CAPI_IDs > file1.sorted
#
sort CAPO_IDs > file2.sorted
```

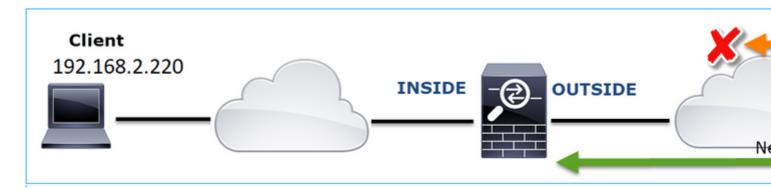
Step 5. Use a text comparison tool (for example, WinMerge) or the Linux **diff** command to find the differences between the 2 captures.


In this case, CAPI and CAPO capture for the FTP Data traffic are identical. This proves that the packet loss was not caused by the firewall.

Identify upstream/downstream packet loss.



Key Points:


1. This packet is a TCP Retransmission. Specifically, it is a TCP SYN packet sent from the client to the server for FTP Data in Passive Mode. Since the client resends the packet and you can see the initial SYN (packet #1) the packet was lost upstream to the firewall.

In this case, there is the possiblity that the SYN packet made it to the server, but the SYN/ACK packet was lost on the way back:

2. There is a packet from the server and Wireshark identified that the previous segment was not seen/captured. Since the non-captured packet was sent from the server to the client and was not seen in the firewall capture that means the packet was lost between the server and the firewall.

This indicates that there is packet loss between the FTP server and the firewall.

Action 2. Take Additional Captures.

Take additional captures along with captures at the endpoints. Try to apply the divide and conquer method to isolate further the problematic segment that causes the packet loss.

No.		Time	Source	Destination	Protocol	Length	Info			
	155	2019-10-16 16:13:51.749845	192.168.1.220	192.168.2.220	FTP-DA	1314	FTP Data:	1248 b	ytes	(PASV)
	156	2019-10-16 16:13:51.749860	192.168.1.220	192.168.2.220	FTP-DA	1314	FTP Data:	1248 b	ytes	(PASV)
	157	2019-10-16 16:13:51.749872	192.168.1.220	192.168.2.220	FTP-DA	1314	FTP Data:	1248 b	ytes	(PASV)
	158	2019-10-16 16:13:51.750722	192.168.2.220	192.168.1.220	TCP	66	54494 → 2	388 [AC	CK] Se	q=2157
	159	2019-10-16 16:13:51.750744	192.168.1.220	192.168.2.220	FTP-DA	1314	FTP Data:	1248 b	ytes	(PASV)
	160	2019-10-16 16:13:51.750768	192.168.2.220	192.168.1.220	TCP	66	54494 → 2	388 [AC	CK] S€	eq=2157
	161	2019-10-16 16:13:51.750782	192.168.1.220	192.168.2.220	FTP-DA	1314	CTD Date:	1240 6	,	(PASV)
	162	2019-10-16 16:13:51.751001	192.168.2.220	192.168.1.220	TCP	7:	[TCP Dup	ACK 160	3#1]	4494 →
	163	2019-10-16 16:13:51.751024	192.168.1.220	192.168.2.220	FTP-DA	.314	FTP Data:	1248 b	ytes	(PASV)
	164	2019-10-16 16:13:51.751378	192.168.2.220	192.168.1.220	TCP	7:	[TCP Dup	ACK 160	3#2]	4494 →
	165	2019-10-16 16:13:51.751402	192.168.1.220	192.168.2.220	FTP-DA		FTP Data:			
	166	2019-10-16 16:13:51.751622	192.168.2.220	192.168.1.220	TCP	7:	[TCP Dup	ACK 160	3#31	4494 →
	167	2019-10-16 16:13:51.751648	192.168.1.220	192.168.2.220	FTP-DA	2 31	[TCP Fast	Retran	nsmiss	ion]
<					•					
>	Frame	e 167: 1314 bytes on wire (10512	bits), 1314 bytes cap	ptured (10512 bits) or	interfa	ice 0				
>	Ether	rnet II, Src: Vmware_30:2b:78 (00	0:0c:29:30:2b:78), Dsf	t: Cisco_9d:89:9b (50	3d:e5:9d	1:89:9b)			
>	Inter	rnet Protocol Version 4, Src: 193	2.168.1.220, Dst: 192	168.2.220	_					
>	Trans	smission Control Protocol, Src Po	ort: 2388, Dst Port	494, Seq: 2224386800	Ack: 2	157030	682, Len:	1248		
		Data (1248 bytes data)								
	[Setu	up frame: 33]								
	[Setu	up method: PASV]								
	[Comn	mand: RETR file15mb]								
	Comma	and frame: 40								
	[Curr	rent working directory: /]								
>	Line-	-based text data (1 lines)								
		•								

Key Points:

- 1. The receiver (the FTP client in this case) tracks the incoming TCP sequence numbers. If it detects that a packet was missed (an expected sequence number was skipped) then it generates an ACK packet with the ACK='expected sequence number that was skipped'. In this example the Ack=2224386800.
- 2. The Dup ACK triggers a TCP Fast Retransmission (retransmission within 20 msec after a Duplicate ACK is received).

What do Duplicate ACKs mean?

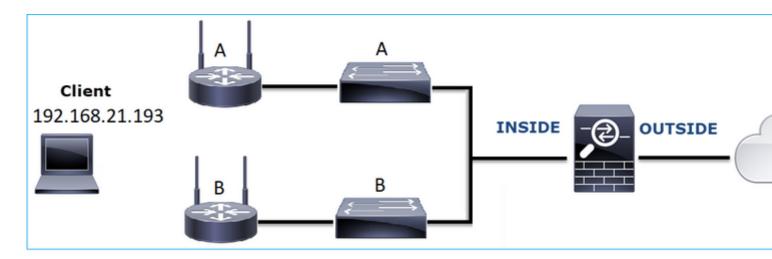
- A few duplicate ACKs but no actual retransmissions indicate that more likely there are packets that arrive out of order.
- Duplicate ACKs followed by actual retransmissions indicate that there is some amount of packet loss.

Action 3. Calculate the firewall processing time for transit packets.

Apply the same capture on 2 different interfaces:

```
<#root>
firepower#
capture CAPI buffer 33554432 interface INSIDE match tcp host 192.168.2.220 host 192.168.1.220
firepower#
capture CAPI interface OUTSIDE
```

Export the capture check the time difference between ingress vs egress packets


Case 7. TCP Connectivity Problem (Packet Corruption)

Problem Description:

Wireless client (192.168.21.193) tries to connect to a destination server (192.168.14.250 - HTTP) and there are 2 different scenarios:

- When the client connects to Access Point (AP) 'A' then the HTTP connection does not work.
- When the client connects to Access Point (AP) 'B' then the HTTP connection works.

This image shows the topology:

Affected Flow:

Src IP: 192.168.21.193

Dst IP: 192.168.14.250

Protocol: TCP 80

Capture Analysis

Enable captures on FTD LINA engine:

<#root>

firepower#

capture CAPI int INSIDE match ip host 192.168.21.193 host 192.168.14.250

firepower#

capture CAPO int OUTSIDE match ip host 192.168.21.193 host 192.168.14.250

Captures - Functional Scenario:

As a baseline, it is always very useful to have captures from a known-good scenario.

This image shows the capture taken on NGFW INSIDE interface

No.	Time		Source	Destination	Protocol	Length Info
г	1 2013-08	08 17:03:25.554582	192.168.21.193	192.168.14.250	TCP	66 1055 → 80 [SYN] Seq=1341231 Win=65535 Len=0 M
	2 2013-08	08 17:03:25.555238	192.168.14.250	192.168.21.193	TCP	66 80 → 1055 [SYN, ACK] Seq=1015787006 Ack=13412
	3 2013-08	08 17:03:25.579910	192.168.21.193	192.168.14.250	TCP	58 1055 → 80 [ACK] Seq=1341232 Ack=1015787007 Wi
	4 2013-08	08 17:03:25.841081	192.168.21.193	192.168.14.250	HTTP	370 GET /ttest.html HTTP/1.1
	5 2013-08	08 17:03:25.848466	192.168.14.250	192.168.21.193	TCP	1438 80 → 1055 [ACK] Seq=1015787007 Ack=1341544 Wi
	6 2013-08	08 17:03:25.848527	192.168.14.250	192.168.21.193	HTTP	698 HTTP/1.1 404 Not Found (text/html)
	7 2013-08	08 17:03:25.858445	192.168.21.193	192.168.14.250	TCP	58 1055 → 80 [ACK] Seq=1341544 Ack=1015789027 Wi
	8 2013-08	08 17:03:34.391749	192.168.21.193	192.168.14.250	HTTP	369 GET /test.html HTTP/1.1
	9 2013-08	08 17:03:34.395487	192.168.14.250	192.168.21.193	HTTP	586 HTTP/1.1 200 OK (text/html)
	10 2013-08	08 17:03:34.606352	192.168.21.193	192.168.14.250	TCP	58 1055 → 80 [ACK] Seq=1341855 Ack=1015789555 Wi
	11 2013-08	08 17:03:40.739601	192.168.21.193	192.168.14.250	HTTP	483 GET /test.html HTTP/1.1
L	12 2013-08	08 17:03:40.741538	192.168.14.250	192.168.21.193	HTTP	271 HTTP/1.1 304 Not Modified

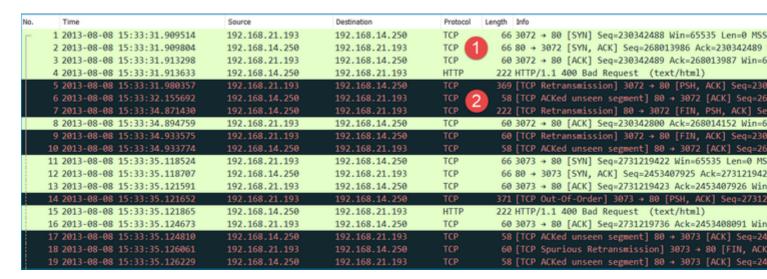
This image shows the capture taken on NGFW OUTSIDE interface.

No.	Time	Source	Destination	Protocol	Length Info
г	1 2013-08-08 17:03:25.554872	192.168.21.193	192.168.14.250	TCP	66 1055 → 80 [SYN] Seq=1839800324 Win=65535 Len=0 MS
	2 2013-08-08 17:03:25.555177	192.168.14.250	192.168.21.193	TCP	66 80 → 1055 [SYN, ACK] Seq=521188628 Ack=1839800325
	3 2013-08-08 17:03:25.579926	192.168.21.193	192.168.14.250	TCP	58 1055 → 80 [ACK] Seq=1839800325 Ack=521188629 Win=
	4 2013-08-08 17:03:25.841112	192.168.21.193	192.168.14.250	HTTP	370 GET /ttest.html HTTP/1.1
	5 2013-08-08 17:03:25.848451	192.168.14.250	192.168.21.193	TCP	1438 80 → 1055 [ACK] Seq=521188629 Ack=1839800637 Win=
	6 2013-08-08 17:03:25.848512	192.168.14.250	192.168.21.193	HTTP	698 HTTP/1.1 404 Not Found (text/html)
	7 2013-08-08 17:03:25.858476	192.168.21.193	192.168.14.250	TCP	58 1055 → 80 [ACK] Seq=1839800637 Ack=521190649 Win=
	8 2013-08-08 17:03:34.391779	192.168.21.193	192.168.14.250	HTTP	369 GET /test.html HTTP/1.1
	9 2013-08-08 17:03:34.395456	192.168.14.250	192.168.21.193	HTTP	586 HTTP/1.1 200 OK (text/html)
	10 2013-08-08 17:03:34.606368	192.168.21.193	192.168.14.250	TCP	58 1055 → 80 [ACK] Seq=1839800948 Ack=521191177 Win=
	11 2013-08-08 17:03:40.739646	192.168.21.193	192.168.14.250	HTTP	483 GET /test.html HTTP/1.1
L	12 2013-08-08 17:03:40.741523	192.168.14.250	192.168.21.193	HTTP	271 HTTP/1.1 304 Not Modified

Key Points:

- 1. The 2 captures are almost identical (consider the ISN randomization).
- 2. There are no indications of a packet loss.
- 3. No Out-Of-Order (OOO) packets
- 4. There are 3 HTTP GET Requests. The first one gets a 404 †Not Found', the second one gets a 200 †OK' and the third one gets a 304 †Not Modified' redirection message.

Captures - Known-faulty Scenario:


The ingress capture (CAPI) contents.

No),	Time	Source	Destination	Protocol	Length	Info
Г	1	2013-08-08 15:33:31.909193	192.168.21.193	192.168.14.250	TCP	66	3072 → 80 [SYN] Seq=4231766828 Win=65535 Len=0 MS
	2	2013-08-08 15:33:31.909849	192.168.14.250	192.168.21.193	TCP 1	66	80 → 3072 [SYN, ACK] Seq=867575959 Ack=4231766829
	3	2013-08-08 15:33:31.913267	192.168.21.193	192.168.14.250	TCP	60	3072 → 80 [ACK] Seq=4231766829 Ack=867575960 Win=
	4	2013-08-08 15:33:31.913649	192.168.14.250	192.168.21.193	HTTP	222	HTTP/1.1 400 Bad Request (text/html)
П		2013-08-08 15:33:31.980326	192.168.21.193	192.168.14.250	TCP		[TCP Retransmission] 3072 → 80 [PSH, ACK] Seq=423
ш		2013-08-08 15:33:32.155723	192.168.14.250	192.168.21.193	TCP 2	58	[TCP ACKed unseen segment] 80 → 3072 [ACK] Seq=86
	7	2013-08-08 15:33:34.871460	192.168.14.250	192.168.21.193	TCP -	222	[TCP Retransmission] 80 → 3072 [FIN, PSH, ACK] Se
	8	2013-08-08 15:33:34.894713	192.168.21.193	192.168.14.250	TCP	60	3072 → 80 [ACK] Seq=4231767140 Ack=867576125 Win=
П		2013-08-08 15:33:34.933560	192.168.21.193	192.168.14.250	TCP	60	[TCP Retransmission] 3072 → 80 [FIN, ACK] Seq=423
	10	2013-08-08 15:33:34.933789	192.168.14.250	192.168.21.193	TCP	58	[TCP ACKed unseen segment] 80 → 3072 [ACK] Seq=86
	11	2013-08-08 15:33:35.118234	192.168.21.193	192.168.14.250	TCP	66	3073 → 80 [SYN] Seq=2130836820 Win=65535 Len=0 MS
н	12	2013-08-08 15:33:35.118737	192.168.14.250	192.168.21.193	TCP	66	80 → 3073 [SYN, ACK] Seq=2991287216 Ack=213083682
	13	2013-08-08 15:33:35.121575	192.168.21.193	192.168.14.250	TCP	60	3073 → 80 [ACK] Seq=2130836821 Ack=2991287217 Win
	14	2013-08-08 15:33:35.121621	192.168.21.193	192.168.14.250	TCP	371	[TCP Out-Of-Order] 3073 → 80 [PSH, ACK] Seq=21308
	15	2013-08-08 15:33:35.121896	192.168.14.250	192.168.21.193	HTTP	222	HTTP/1.1 400 Bad Request (text/html)
	16	2013-08-08 15:33:35.124657	192.168.21.193	192.168.14.250	TCP	60	3073 → 80 [ACK] Seq=2130837134 Ack=2991287382 Win
	17	2013-08-08 15:33:35.124840	192.168.14.250	192.168.21.193	TCP	58	[TCP ACKed unseen segment] 80 → 3073 [ACK] Seq=29
	18	2013-08-08 15:33:35.126046	192.168.21.193	192.168.14.250	TCP	60	[TCP Spurious Retransmission] 3073 → 80 [FIN, ACK
	19	2013-08-08 15:33:35.126244	192.168.14.250	192.168.21.193	TCP	58	[TCP ACKed unseen segment] 80 → 3073 [ACK] Seq=29

Key Points:

- 1. There is a TCP 3-way handshake.
- 2. There are TCP retransmissions and indications of a packet loss.
- 3. There is a packet (TCP ACK) that is identified by Wireshark as **Malformed**.

This image shows the egress capture (CAPO) contents.

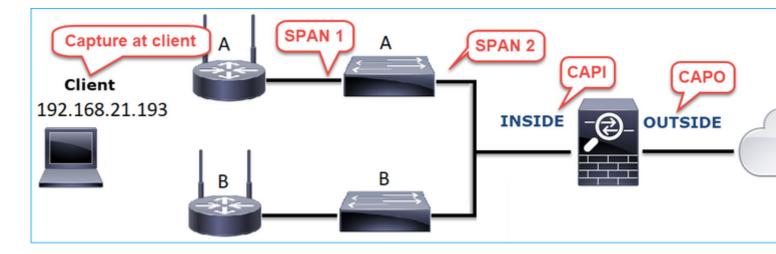
Key Points:

The 2 captures are almost identical (consider the ISN randomization):

- 1. There is a TCP 3-way handshake.
- 2. There are TCP retransmissions and indications of a packet loss.
- 3. There is a packet (TCP ACK) that is identified by Wireshark as **Malformed**.

Check the malformed packet:

```
No.
       Time
                                     Source
                                                                          Protocol Length Info
                                                       Destination
     1 2013-08-08 15:33:31.909193
                                     192.168.21.193
                                                       192.168.14.250
                                                                                     66 3072 → 80 [SYN] Seq=4231766828 Win=65535 Le
      2 2013-08-08 15:33:31.909849
                                     192.168.14.250
                                                       192.168.21.193
                                                                          TCP
                                                                                      66 80 → 3072 [SYN, ACK] Seq=867575959 Ack=4231
     3 2013-08-08 15:33:31.913267
                                     192.168.21.193
                                                       192,168,14,250
                                                                          TCP
                                                                                      60 3072 → 80 [ACK] Seq=4231766829 Ack=86757596
> Frame 3: 60 bytes on wire (480 bits), 60 bytes captured (480 bits)
> Ethernet II, Src: BelkinIn_63:90:f3 (ec:1a:59:63:90:f3), Dst: Cisco_61:cc:9b (58:8d:09:61:cc:9b)
  802.1Q Virtual LAN, PRI: 0, DEI: 0, ID: 20
> Internet Protocol Version 4, Src: 192.168.21.193, Dst: 192.168.14.250
∨ Transmission Control Protocol, Src Port: 3072, Dst Port: 80, Seq: 4231766829, Ack: 867575960, Len: 2 🔼
     Source Port: 3072
    Destination Port: 80
     [Stream index: 0]
     [TCP Segment Len: 2]
     Sequence number: 4231766829
     [Next sequence number: 4231766831]
    Acknowledgment number: 867575960
     0101 .... = Header Length: 20 bytes (5)
  > Flags: 0x010 (ACK)
    Window size value: 65535
     [Calculated window size: 65535]
     [Window size scaling factor: -2 (no window scaling used)]
    Checksum: 0x01bf [unverified]
     [Checksum Status: Unverified]
    Urgent pointer: 0
   > [SEQ/ACK analysis]
     [Timestamps]
     TCP payload (2 bytes)
  [Malformed Packet: Tunnel Socket]
  Expert Info (Error/Malformed): Malformed Packet (Exception occurred)]
        [Malformed Packet (Exception occurred)]
        [Severity level: Error]
        [Group: Malformed]
0000 58 8d 09 61 cc 9b ec 1a
                               59 63 90 f3 81 00 00 14
                                                                  Vc . . . .
                                                         X - · a - · · ·
0010 08 00 45 00 00 2a 7f 1d 40 00 80 06 d5 a4 c0 a8
                                                         ..E..*.. @.....
                                                          0020
     15 c1 c0 a8 0e fa 0c 00
                               00 50 fc 3b
                                               2d 33 b6
                                                         (.p....
0030 28 98 50 10 ff ff 01 bf 00 00 00 00
```

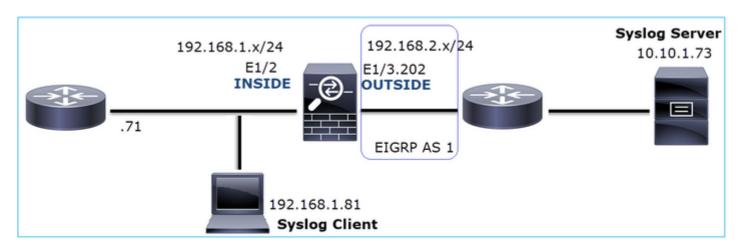

Key Points:

- 1. The packet is identified as a Malformed by Wireshark.
- 2. It has a length of 2 Bytes.
- 3. There is a TCP payload of 2 Bytes.
- 4. The payload is 4 extra zeroes (00 00).

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Take additional captures. Include captures at the endpoints and if possible, try to apply the divide and conquer method to isolate the source of the packet corruption, for example:



In this case, the 2 extra Bytes were added by the switch 'A' interface driver and the solution was to replace the switch that causes the corruption.

Case 8. UDP Connectivity Problem (Missing Packets)

Problem Description: Syslog (UDP 514) messages are not seen on the destination Syslog server.

This image shows the topology:

Affected Flow:

Src IP: 192.168.1.81

Dst IP: 10.10.1.73

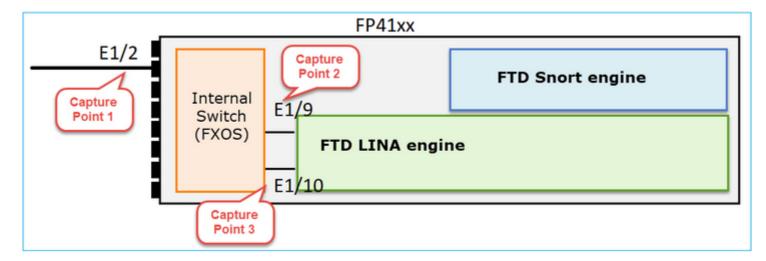
Protocol: UDP 514

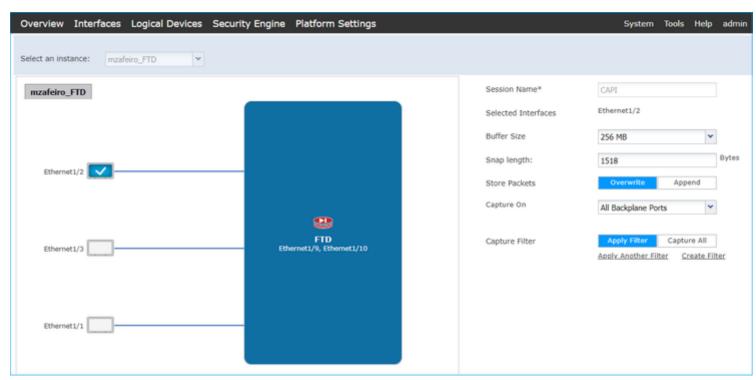
Capture Analysis

Enable captures on FTD LINA engine:

<#root>

```
firepower#
capture CAPI int INSIDE trace match udp host 192.168.1.81 host 10.10.1.73 eq 514
firepower#
capture CAPO int OUTSIDE match udp host 192.168.1.81 host 10.10.1.73 eq 514
FTD captures show no packets:
<#root>
firepower#
show capture
capture CAPI type raw-data trace interface INSIDE [Capturing - 0 bytes]
  match udp host 192.168.1.81 host 10.10.1.73 eq syslog
capture CAPO type raw-data interface OUTSIDE [Capturing - 0 bytes]
  match udp host 192.168.1.81 host 10.10.1.73 eq syslog
Recommended Actions
The actions listed in this section have as a goal to further narrow down the issue.
Action 1. Check the FTD connection table.
To check a specific connection you can use this syntax:
<#root>
firepower#
show conn address 192.168.1.81 port 514
10 in use, 3627189 most used
Inspect Snort:
        preserve-connection: 6 enabled, 0 in effect, 74 most enabled, 0 most in effect
UDP
INSIDE
 10.10.1.73:514
INSIDE
192.168.1.81:514, idle 0:00:00, bytes
480379697
, flags -
```


N1

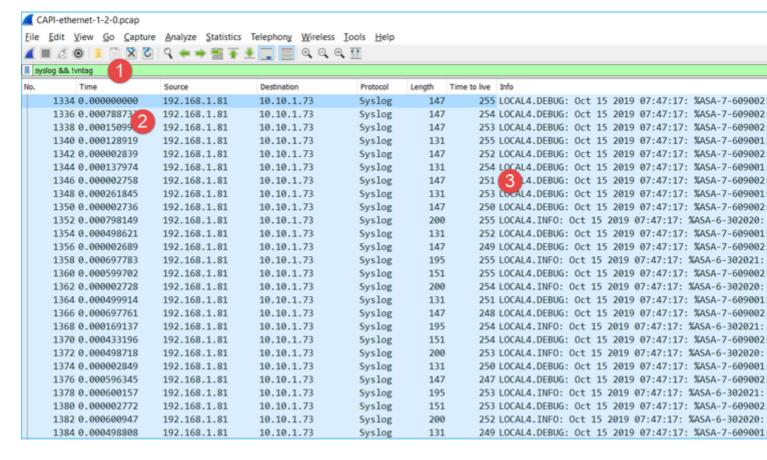

Key Points:

- 1. The ingress and egress interfaces are the same (U-turn).
- 2. The number of Bytes has a significantly large value (~5 GBytes).
- 3. The flag â€~o' denotes flow offload (HW accelerated flow). This is the reason why the FTD captures do not show any packets. Flow offload is only supported on 41xx and 93xx platforms. In this case, the device is a 41xx.

Action 2. Take chassis-level captures.

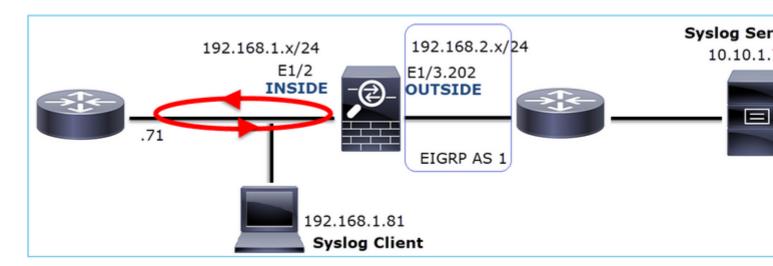
Connect to the Firepower chassis manager and enable capture on the ingress interface (E1/2 in this case) and backplane interfaces (E1/9 and E1/10), as shown in the image:

After a few seconds:



Tip: In Wireshark exclude the VN-tagged packets to eliminate the packet duplication at the physical interface level

Before:


-		2.0						
— (API-ethernet-1							
Eile	Edit View		Statistics Telephony		-			
4	■ 🛭 💿 🕽	📋 🖹 🙆 🧣 ।	→ 열 ∓ ± □ □	@ @	Q 🎹			
A I	pply a display filte	r <ctrl-></ctrl->						
No.	Time	Source	Destination	Protocol	Length			
	1 0.0000_	Cisco_61:5a:9c	Spanning-tree-(f	STP	64	Root = 32768/0/00:11:bc:88:08:	9 Cost = 8	Port = $0x802d$
	2 0.0000_	Cisco_61:5a:9c	Spanning-tree-(f	STP	64	Root = 32768/0/00:11:bc:88:08:	:9 Cost = 8	Port = 0x802d
	3 0.0532	Vmware_85:4f:ca	Broadcast	ARP	70	has 192.168.103.111? Tell 192.1	8.103.112	
	4 0.0000	Vmware_85:4f:ca	Broadcast	ARP	64	has 192.168.103.111? Tell 192.1	8.103.112	
	5 0.5216	Vmware_85:2f:00	Broadcast	ARP	70	has 10.10.10.1? Tell 10.10.10.1)	
	6 0.0000	Vmware_85:2f:00	Broadcast	ARP		has 10.10.10.1? Tell 10.10.10.1		
	7 0.5770	Vmware_85:2f:00	Broadcast	ARP	70	has 10.10.10.1? Tell 10.10.10.1	,	
	8 0.0000	Vmware_85:2f:00	Broadcast	ARP	64	has 10.10.10.1? Tell 10.10.10.1)	
		Cisco_61:5a:9c	Spanning-tree-(f			Root = 32768/0/00:11:bc:88:08:		
	10 0.0000	Cisco_61:5a:9c	Spanning-tree-(f	STP		Root = 32768/0/00:11:bc:88:08:		Port = $0x802d$
	11 0.1520	Vmware_85:2f:00	Broadcast	ARP	70	has 10.10.10.1? Tell 10.10.10.1	,	
		Vmware_85:2f:00	Broadcast	ARP		has 10.10.10.1? Tell 10.10.10.1		
		Vmware_85:4f:ca	Broadcast	ARP		has 192.168.103.111? Tell 192.1		
		Vmware_85:4f:ca	Broadcast	ARP		has 192.168.103.111? Tell 192.1		
		192.168.0.101	173.38.200.100	DNS		dard query 0x4a9f A 2.debian.po		
		192.168.0.101	173.38.200.100	DNS		dard query 0x4a9f A 2.debian.po		
		192.168.0.101	173.38.200.100	DNS		dard query 0x4afd AAAA 2.debian		
		192.168.0.101	173.38.200.100	DNS		dard query 0x4afd AAAA 2.debian		g
		192.168.0.101	173.38.200.100	DNS		dard query 0x4a9f A 2.debian.po		
	20 0.0000	192.168.0.101	173.38.200.100	DNS	85	dard query 0x4a9f A 2.debian.po	l.ntp.org	

After:

Key Points:

- 1. A display filter is applied to remove packet duplicates and show only syslogs.
- 2. The diff between the packets is at the microsecond level. This indicates a very high packet rate.
- 3. The Time to Live (TTL) value decreases continuously. This indicates a packet loop.

Action 3. Use packet-tracer.

Since the packets do not traverse the firewall LINA engine you cannot do a live trace (capture w/trace), but you can trace an emulated packet with packet-tracer:

<#root>

firepower#

packet-tracer input INSIDE udp 10.10.1.73 514 192.168.1.81 514

Phase: 1 Type: CAPTURE Subtype: Result: ALLOW

Config:

Additional Information:

MAC Access list

Phase: 2

Type: ACCESS-LIST

Subtype:
Result: ALLOW
Config:

Implicit Rule

Additional Information:

MAC Access list

Phase: 3

Type: FLOW-LOOKUP

Subtype:
Result: ALLOW
Config:

Additional Information:

Found flow with id 25350892, using existing flow

Phase: 4 Type: SNORT Subtype: Result: ALLOW

Config:

Additional Information:

Snort Verdict: (fast-forward) fast forward this flow

Phase: 5

Type: ROUTE-LOOKUP

Subtype: Resolve Egress Interface

Result: ALLOW Config:

Additional Information:

found next-hop 192.168.1.81 using egress ifc INSIDE

Phase: 6

Type: ADJACENCY-LOOKUP

Subtype: next-hop and adjacency

Result: ALLOW

Config:

Additional Information:

adjacency Active

next-hop mac address a023.9f92.2a4d hits 1 reference 1

Phase: 7 Type: CAPTURE Subtype: Result: ALLOW

Config:

Additional Information:

MAC Access list

Result:

input-interface: INSIDE

input-status: up

```
output-interface: INSIDE
output-status: up
output-line-status: up
Action: allow
Action 4. Confirm the FTD routing.
Check the firewall routing table to see if there are any routing issues:
<#root>
firepower#
show route 10.10.1.73
Routing entry for 10.10.1.0 255.255.255.0
  Known via "eigrp 1", distance 90, metric 3072, type internal
  Redistributing via eigrp 1
  Last update from 192.168.2.72 on
OUTSIDE, 0:03:37 ago
  Routing Descriptor Blocks:
  * 192.168.2.72, from 192.168.2.72,
0:02:37 ago, via OUTSIDE
      Route metric is 3072, traffic share count is 1
      Total delay is 20 microseconds, minimum bandwidth is 1000000 Kbit
      Reliability 255/255, minimum MTU 1500 bytes
      Loading 29/255, Hops 1
Key Points:
   1. The route points towards the correct egress interface.
   2. The route was learned a few minutes ago (0:02:37).
Action 5. Confirm the connection uptime.
Check the connection uptime to see when this connection was established:
<#root>
firepower#
show conn address 192.168.1.81 port 514 detail
21 in use, 3627189 most used
Inspect Snort:
        preserve-connection: 19 enabled, 0 in effect, 74 most enabled, 0 most in effect
Flags: A - awaiting responder ACK to SYN, a - awaiting initiator ACK to SYN,
       b - TCP state-bypass or nailed,
       C - CTIQBE media, c - cluster centralized,
       D - DNS, d - dump, E - outside back connection, e - semi-distributed,
```

input-line-status: up

```
F - initiator FIN, f - responder FIN,
       G - group, g - MGCP, H - H.323, h - H.225.0, I - initiator data,
       i - incomplete, J - GTP, j - GTP data, K - GTP t3-response
       k - Skinny media, L - decap tunnel, M - SMTP data, m - SIP media
       N - inspected by Snort (1 - preserve-connection enabled, 2 - preserve-connection in effect)
       n - GUP, 0 - responder data, o - offloaded,
       P - inside back connection, p - passenger flow
       q - SQL*Net data, R - initiator acknowledged FIN,
       R - UDP SUNRPC, r - responder acknowledged FIN,
       T - SIP, t - SIP transient, U - up,
       V - VPN orphan, v - M3UA W - WAAS,
       w - secondary domain backup,
       X - inspected by service module,
       x - per session, Y - director stub flow, y - backup stub flow,
       Z - Scansafe redirection, z - forwarding stub flow
UDP INSIDE: 10.10.1.73/514 INSIDE: 192.168.1.81/514,
    flags -oN1, idle 0s,
uptime 3m49s
, timeout 2m0s, bytes 4801148711
```

Key Point:

1. The connection was established ~4 minutes ago (this is before the EIGRP route installation in the routing table)

Action 6. Clear the established connection.

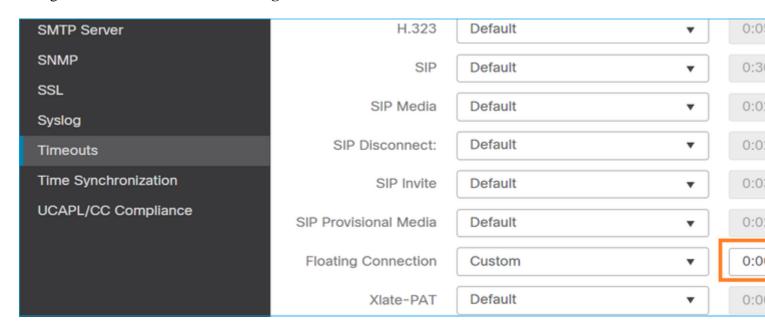
In this case, the packets match an established connection and are routed to a wrong egress interface; this causes a loop. This is because of the firewall order of operations:

- 1. Established connection lookup (this takes priority over the global routing table lookup).
- 2. Network Address Translation (NAT) lookup UN-NAT (destination NAT) phase takes precedence over PBR and route lookup.
- 3. Policy-Based Routing (PBR)
- 4. Global routing table lookup

Since the connection never times out (the Syslog client continuously sends packets while the UDP conn idle timeout is 2 minutes) there is a need to manually clear the connection:

```
<#root>
firepower#
clear conn address 10.10.1.73 address 192.168.1.81 protocol udp port 514
1 connection(s) deleted.
```

Verify that a new connection is established:


<#root>

```
firepower#
show conn address 192.168.1.81 port 514 detail | b 10.10.1.73.*192.168.1.81
UDP
OUTSIDE
: 10.10.1.73/514
INSIDE
: 192.168.1.81/514,
```

flags -oN1, idle 1m15s, uptime 1m15s, timeout 2m0s, bytes 408

Action 7. Configure floating conn timeout.

This is the proper solution to address the issue and avoid suboptimal routing, especially for UDP flows. Navigate to **Devices > Platform Settings > Timeouts** and set the value:

You can find more details about the floating conn timeout in the Command Reference:

 $\underline{https://www.cisco.com/c/en/us/td/docs/security/asa/asa-command-reference/T-Z/cmdref4/t1.html\#pgfId-1649892}$

Case 9. HTTPS Connectivity Problem (Scenario 1)

Problem Description: HTTPS communication between the client 192.168.201.105 and server 192.168.202.101 cannot be established

This image shows the topology:

Affected Flow:

Src IP: 192.168.201.111

Dst IP: 192.168.202.111

Protocol: TCP 443 (HTTPS)

Capture Analysis

Enable captures on FTD LINA engine:

The IP used in the OUTSIDE capture is different due to the Port-Address Translation configuration.

<#root>

firepower#

capture CAPI int INSIDE match ip host 192.168.201.111 host 192.168.202.111

firepower#

capture CAPO int OUTSIDE match ip host 192.168.202.11 host 192.168.202.111

This image shows the capture taken on NGFW INSIDE interface:

No.	Time	Source	Destination	Protocol	Length Identification	Info
57	38 2018-02-01 10:39:35.187887	192.168.201.111	192.168.202.111	TCP	78 0x2f31 (12081)	6666 → 443 [SYN] Seq=2034865631 Win=29200 Len
	39 2018-02-01 10:39:35.188909	192.168.202.111	192.168.201.111	TCP	78 0x0000 (0)	443 → 6666 [SYN, ACK] Seq=4086514531 Ack=2034
	40 2018-02-01 10:39:35.189046	192.168.201.111	192.168.202.111	TCP	70 0x2f32 (12082)	6666 → 443 [ACK] Seq=2034865632 Ack=408651453
	41 2018-02-01 10:39:35.251695	192.168.201.111	192.168.202.111	TLSv1	326 0x2f33 (12083)	Client Hello
	42 2018-02-01 10:39:35.252352	192.168.202.111	192.168.201.111	TCP	70 0xefb4 (61364)	443 → 6666 [ACK] Seq=4086514532 Ack=203486588
L	43 2018-02-01 10:40:05.317320	192.168.202.111	192.168.201.111	TCP	70 0xd8c3 (55491)	443 → 6666 [RST] Seq=4086514532 Win=8192 Len=
						4

Key Points:

- 1. There is a TCP 3-way handshake.
- 2. SSL Negotiation starts. The client sends a Client Hello message.
- 3. There is a TCP ACK sent to the client.
- 4. There is a TCP RST sent to the client.

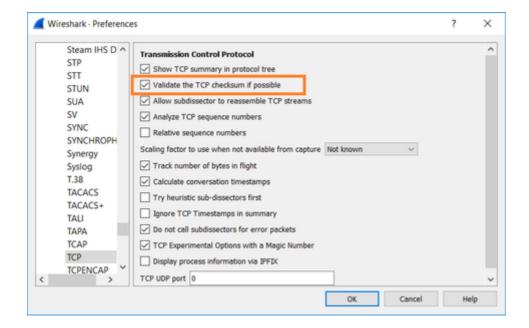
This image shows the capture taken on NGFW OUTSIDE interface.

Key Points:

- 1. There is a TCP 3-way handshake.
- 2. SSL Negotiation starts. The client sends a Client Hello message.
- 3. There are TCP Retransmissions sent from the firewall towards the server.
- 4. There is a TCP RST sent to the server.

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.


Action 1. Take additional captures.

A capture taken on the server reveals that the server received the TLS Client Hellos with corrupted TCP checksum and silently drops them (there is no TCP RST or any other reply packet towards the client):


```
21:26:27.133677 IP (tos 0x0, ttl 64, id 52534, offset 0, flags [DF], proto TCP (6), length 239)
    192.168.202.11.15880 > 192.168.202.111.443: Flags [P.], cksum 0x0c65 (incorrect -> 0x3063), seq 1:188
S val 192658174 ecr 3119615816], length 187
21:26:29.155652 IP (tos 0x0, ttl 64, id 47365, offset 0, flags [DF], proto TCP (6), length 239)
    192.168.202.11.15880 > 192.168.202.111.443: Flags [P.], cksum 0x4db7 (incorrect -> 0x71b5)
                                                                                                   seq 1:188
S val 192660198 ecr 0], length 187
21:26:33.178142 IP (tos 0x0, ttl 64, id 34991, offset 0, flags [DF], p
                                                                          oto TCP (6), length 239)
    192.168.202.11.15880 > 192.168.202.111.443: Flags [P.], cksum 0x3d
                                                                         d (incorrect -> 0x61fb),
                                                                                                    seq 1:188
 val 192664224 ecr 0], length 187
21:26:41.189640 IP (tos 0x0, ttl 64, id 63114, offset 0, flags [DF], p
                                                                          oto TCP (6), length 239)
                                                                         9 (incorrect -> 0x42a7),
    192.168.202.11.15880 > 192.168.202.111.443: Flags [P.], cksum 0x1e
                                                                                                    seq 1:188
S val 192672244 ecr 0], length 187
21:26:57.195947 IP (tos 0x0, ttl 64, id 54817, offset 0, flags [DF], p
                                                                         oto TCP (6), length 52)
    192.168.202.11.15880 > 192.168.202.111.443: Flags [R], cksum 0x9ee
                                                                                                    eq 248693
                                                                         (incorrect -> 0xc2e8),
al 192688266 ecr 0], length 0
21:26:58.668973 IP (tos 0x0, ttl 64, id 0, offset 0, flags [DF], proto TCP (6), length 60)
    192.168.202.111.443 > 192.168.202.11.15880: Flags [S.], cksum 0x15fb (incorrect -> 0xffd2), seq 36744
ptions [mss 1460,sackOK,TS val 3119647415 ecr 192658158,nop,wscale 7], length 0
154 packets captured
154 packets received by filter
```

When you put everything together:

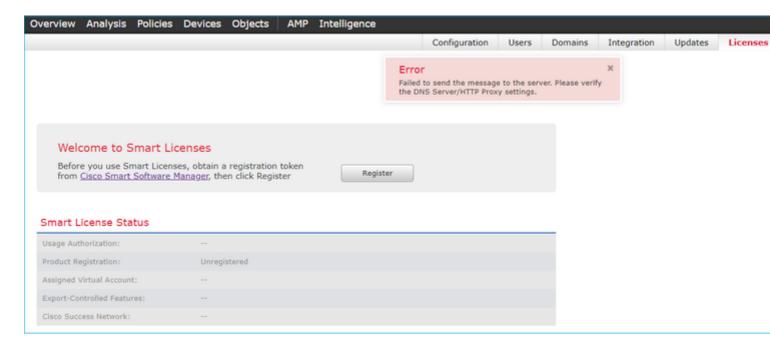
In this case, to understand, there is a need to enable on Wireshark the **Validate the TCP checksum if possible** option. Navigate to **Edit** > **Preferences** > **Protocols** > **TCP**, as shown in the image.

In this case, it is helpful to put the captures side-by-side in order to get the full picture:

Key Points:

- 1. There is a TCP 3-way handshake. The IP IDs are the same. This means the flow was not proxied by the firewall.
- 2. A TLS Client Hello comes from the client with IP ID 12083. The packet is proxied by the firewall (the firewall, in this case, was configured with TLS Decryption Policy) and the IP ID is changed to 52534. Additionally, the packet TCP checksum gets corrupted (due to a software defect that later got fixed).
- 3. The firewall is in TCP Proxy mode and sends an ACK to the client (which spoofs the server).

```
15880 + 443 [SYN] Seq=2486930707 Win=29200 Len=0 MSS=1380
    34 2018-02-01 10:39:35.188527
                                                                                                                                     443 + 15880 [SYN, ACK] Seq=3674405382 Ack=2486930708 Win=2
15880 + 443 [ACK] Seq=2486930708 Ack=3674405383 Win=29312
                                          192.168.202.111 192.168.202.11
     36 2018-02-01 10:39:35.252397
                                           192.168.202.11
                                                                 192.168.202.111
                                                                                                    257 0xcd36 (52534)
                                                                                                                                     Client Hello
 Internet Protocol Version 4, Src: 192.168.202.11, Dst: 192.168.202.111
    Destination Port: 443
    [Stream index: 1]
[TCP Segment Len: 187]
     Sequence number: 2486930708
    [Next sequence number: 2486930895]
Acknowledgment number: 3674405383
    1000 .... = Header Length: 32 bytes (8)
  > Flags: 0x018 (PSH, ACK)
    Window size value: 64
[Calculated window size: 8192]
     [Window size scaling factor: 128]
     [Checksum Status: Bad]
    [Calculated Checksum: 0x3063]
    Urgent pointer: 0
Options: (12 bytes), No-Operation (NOP), No-Operation (NOP), Timestamps
  > [SEQ/ACK analysis]
    [Timestamps]
     TCP payload (187 bytes)
Secure Sockets Layer
```


- 4. The firewall does not receive any TCP ACK packet from the server and retransmits the TLS Client Hello message. This is again due to TCP Proxy mode that the firewall activated.
- 5. After ~30 seconds the firewall gives up and sends a TCP RST towards the client.
- 6. The firewall sends a TCP RST towards the server.

For reference:

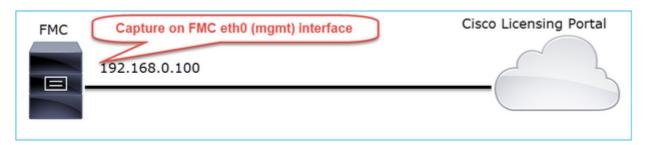
Firepower TLS/SSL Handshake Processing

Case 10. HTTPS Connectivity Problem (Scenario 2)

Problem Description: FMC Smart License registration fails.

This image shows the topology:

Affected Flow:

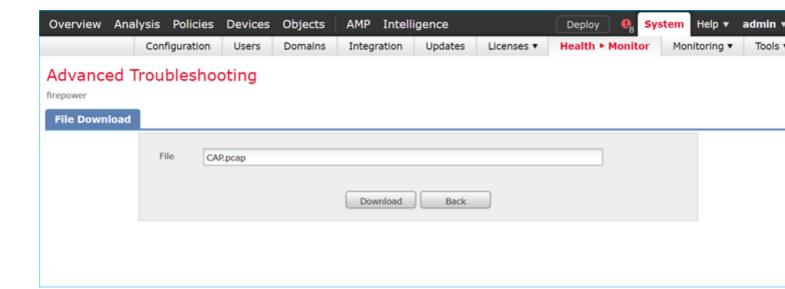

Src IP: 192.168.0.100

Dst: tools.cisco.com

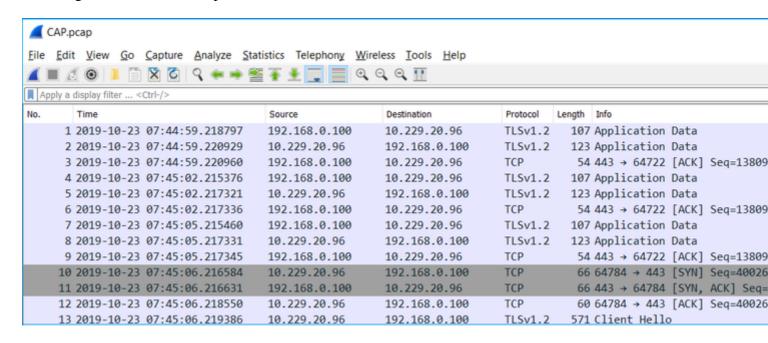
Protocol: TCP 443 (HTTPS)

Capture Analysis

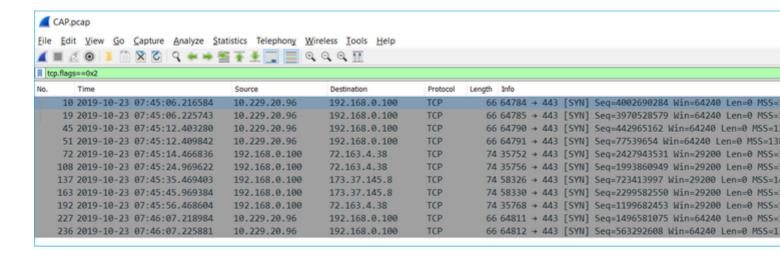
Enable capture on the FMC management interface:

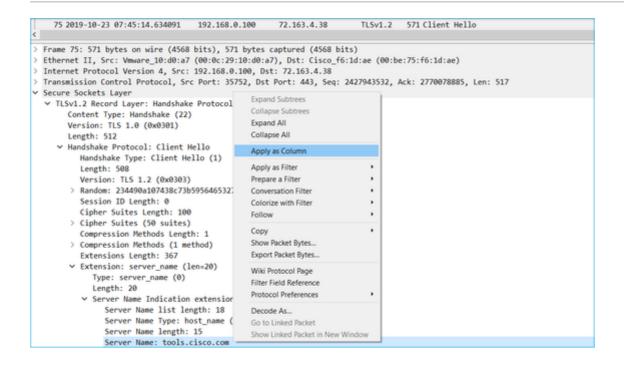


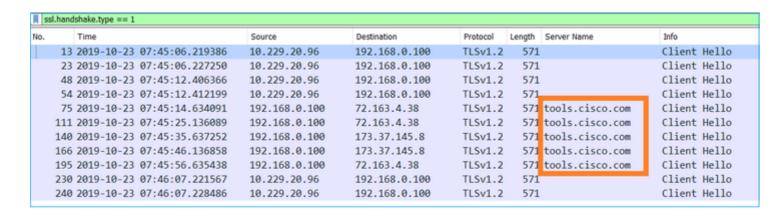
Try to register again. Once the Error message appears press CTRL-C to stop the capture:


```
<#root>
root@firepower:/Volume/home/admin#
tcpdump -i eth0 port 443 -s 0 -w CAP.pcap

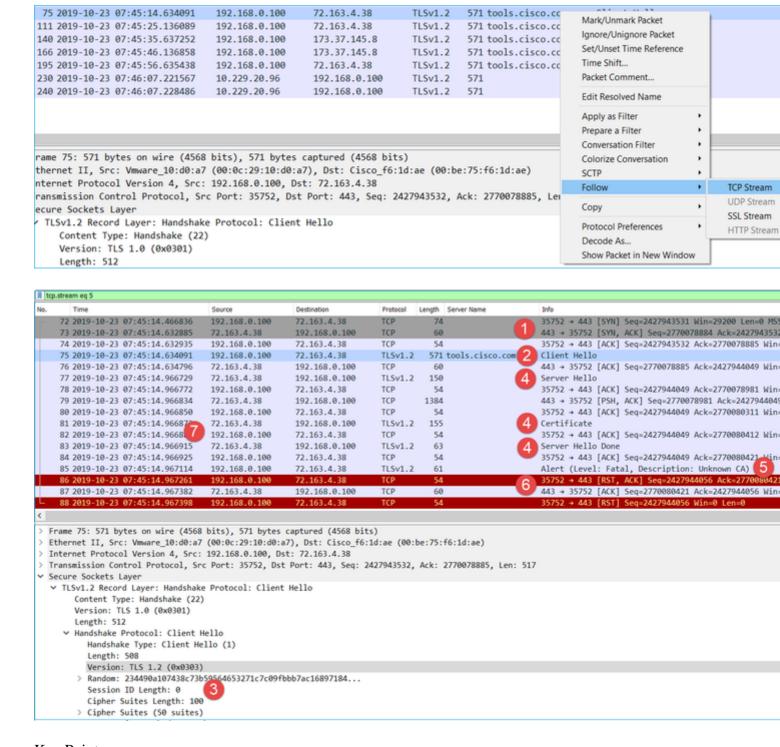
HS_PACKET_BUFFER_SIZE is set to 4.
tcpdump: listening on eth0, link-type EN10MB (Ethernet), capture size 262144 bytes
^C
264 packets captured
<- CTRL-C
264 packets received by filter
0 packets dropped by kernel
root@firepower:/Volume/home/admin#</pre>
```


Collect the capture from the FMC (**System > Health > Monitor**, select the device and select **Advanced Troubleshooting**), as shown in the image:


The image shows the FMC capture on Wireshark:


Tip: In order to check for all new TCP sessions that were captured, use the **tcp.flags==0x2** display filter on Wireshark. This filters all the TCP SYN packets that were captured.

Tip: Apply as Column the **Server Name** field from the SSL Client Hello.



Tip: Apply this display filter to see only the Client Hello messages ssl.handshake.type == 1

Note: At the time of this writing, the Smart Licensing portal (tools.cisco.com) uses these IPs: 72.163.4.38, 173.37.145.8

Follow one of the TCP flows (**Follow > TCP Stream**), as shown in the image.

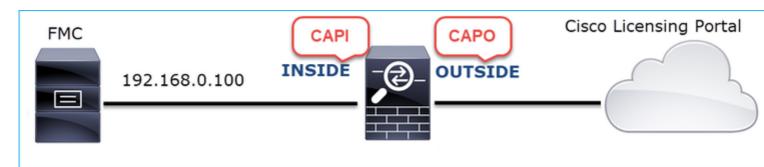
Key Points:

- 1. There is a TCP 3-way handshake.
- 2. The client (FMC) sends an SSL Client Hello message towards the Smart Licensing portal.
- 3. The SSL Session ID is 0. This means that it is not a resumed session.
- 4. The destination server replies with Server Hello, Certificate and Server Hello Done message.
- 5. The client sends an SSL Fatal Alert which regards an †Unknown CA'.
- 6. The client sends a TCP RST to close the session.
- 7. The whole TCP session duration (from establishment to closure) was ~0.5 sec.

Select the **Server Certificate** and expand the **issuer** field to see the commonName. In this case the Common Name reveals a device that does Man-in-the-middle (MITM).

No.	1	Time	Source	Destination	Protocol	Length	Server Name	Info
г	72 2	2019-10-23 07:45:14.466836	192.168.0.100	72.163.4.38	TCP	74		35752 → 443 [SYN] Seq=2427943531 Wi
	73 2	2019-10-23 07:45:14.632885	72.163.4.38	192.168.0.100	TCP	60		443 → 35752 [SYN, ACK] Seq=27700788
	74 2	2019-10-23 07:45:14.632935	192.168.0.100	72.163.4.38	TCP	54		35752 + 443 [ACK] Seq=2427943532 Ac
	75 2	2019-10-23 07:45:14.634091	192.168.0.100	72.163.4.38	TLSv1.2	571	tools.cisco.com	Client Hello
	76 2	2019-10-23 07:45:14.634796	72.163.4.38	192.168.0.100	TCP	60		443 → 35752 [ACK] Seq=2770078885 Ac
	77 2	2019-10-23 07:45:14.966729	72.163.4.38	192.168.0.100	TLSv1.2	150		Server Hello
	78 2	2019-10-23 07:45:14.966772	192.168.0.100	72.163.4.38	TCP	54		35752 + 443 [ACK] Seq=2427944049 Ac
+	79 2	2019-10-23 07:45:14.966834	72.163.4.38	192.168.0.100	TCP	1384		443 → 35752 [PSH, ACK] Seq=27700789
	80 2	2019-10-23 07:45:14.966850	192.168.0.100	72.163.4.38	TCP	54		35752 + 443 [ACK] Seq=2427944049 Ac
+	81 2	2019-10-23 07:45:14.966872	72.163.4.38	192.168.0.100	TLSv1.2	155		Certificate
<								
		Length: 1426						
		Handshake Protocol: Certifica	ite					
		Handshake Type: Certificat						
		Length: 1422	- (/					
		Certificates Length: 1419						
		<pre>V Certificates (1419 bytes)</pre>						
		Certificate Length: 141	6					
				0d00aa23af5d607e000	0 (id	-at-co	mmonName=tools.cisco	.com,id-at-organizationName=Cisco Sy
		√ signedCertificate			,,,,,			,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
		version: v3 (2)						
		serialNumber: 0x00	aa23af5d607e00002f	423880				
		> signature (sha256k						
		✓ issuer: rdnSequence						
				nName=FTD4100 MITM	.id-at-or	ganiza	tionalUnitName=FTD 0	OU.id-at-organizationName=FTD 0)
				t-organizationName:		G		,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,,
				t-organizationalUni		D OU)		
		•		t commonName=FTD410		/		
		> validity						
		> subject: rdnSequen	nce (0)					ļ
		> subjectPublicKeyIn	4-7					ļ
		v extensions: 6 item						
		uncensacing of accu	_					

This is shown in this image:



Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Take additional captures.

Take captures on the transit firewall device:

CAPI shows:

tcp.stre	am eq 57						
No.	Time	Source	Destination	Protocol	Length	Server Name	Info
_ 1221	2019-10-22 17:49:03.212681	192.168.0.100	173.37.145.8	TCP	74		39924 → 443 [SYN] Seq=42
1222	2019-10-22 17:49:03.379023	173.37.145.8	192.168.0.100	TCP	58		443 → 39924 [SYN, ACK] S
1223	2019-10-22 17:49:03.379298	192.168.0.100	173.37.145.8	TCP	54		39924 → 443 [ACK] Seq=42
1224	2019-10-22 17:49:03.380336	192.168.0.100	173.37.145.8	TLSv1.2	571	tools.cisco.com	Client Hello
1225	2019-10-22 17:49:03.380732	173.37.145.8	192.168.0.100	TCP	54		443 → 39924 [ACK] Seq=23
1226	2019-10-22 17:49:03.710092	173.37.145.8	192.168.0.100	TLSv1.2	150		Server Hello
+ 1227	2019-10-22 17:49:03.710092	173.37.145.8	192.168.0.100	TCP	1384		443 → 39924 [PSH, ACK] S
+ 1228	2019-10-22 17:49:03.710092	173.37.145.8	192.168.0.100	TLSv1.2	155		Certificate
1229	2019-10-22 17:49:03.710107	173.37.145.8	192.168.0.100	TLSv1.2	63		Server Hello Done
1230	2019-10-22 17:49:03.710412	192.168.0.100	173.37.145.8	TCP	54		39924 → 443 [ACK] Seq=42
1231	2019-10-22 17:49:03.710519	192.168.0.100	173.37.145.8	TCP	54		39924 → 443 [ACK] Seq=42
1232	2019-10-22 17:49:03.710519	192.168.0.100	173.37.145.8	TCP	54		39924 → 443 [ACK] Seq=42
1233	2019-10-22 17:49:03.710534	192.168.0.100	173.37.145.8	TCP	54		39924 → 443 [ACK] Seq=42
1234	2019-10-22 17:49:03.710626	192.168.0.100	173.37.145.8	TLSv1.2	61		Alert (Level: Fatal, Des
	2019-10-22 17:49:03.710641	173.37.145.8	192.168.0.100	TCP	54		443 → 39924 [ACK] Seq=23
1236	2019-10-22 17:49:03.710748	192.168.0.100	173.37.145.8	TCP	54		39924 → 443 [RST, ACK] S
L 1237	2019-10-22 17:49:03.710870	192.168.0.100	173.37.145.8	TCP	54		39924 → 443 [RST] Seq=42
<							
	Length: 1426						
_	Handshake Protocol: Certific	ate					
	Handshake Type: Certifica						
	Length: 1422	(11)					
	Certificates Length: 1419						
	Certificates (1419 bytes)						
	Certificate Length: 14						
			020d00aa23af5d607e0	000 (id	-at-co	mmonName=tools.ci	sco.com,id-at-organizationNa
	√ signedCertificate			,			,
	version: v3 (2)						
		0aa23af5d607e0006	2f423880				
	> signature (sha256	WithRSAEncryption	1)				
	✓ issuer: rdnSequen		,				
	✓ rdnSequence: 3	items (id-at-com	monName=FTD4100 MIT	M.id-at-or	ganiza	tionalUnitName=FT	D_OU,id-at-organizationName=
			-at-organizationNam				_ ,
			-at-organizationalU		D OU)		
			-at-commonName=FTD4				
	> validity	•					

CAPO shows:

			173.37.145.8	TCP	78	39924 → 443 [SYN] Seq=62394
117	0 2019-10-22 17:49:03.378962	173.37.145.8	192.168.0.100	TCP	62	443 → 39924 [SYN, ACK] Seq=
117	1 2019-10-22 17:49:03.379329	192.168.0.100	173.37.145.8	TCP	58	39924 → 443 [ACK] Seq=62394
117	2 2019-10-22 17:49:03.380793	192.168.0.100	173.37.145.8	TLSv1.2	512 tools.cisco.com	Client Hello
117	3 2019-10-22 17:49:03.545748	173.37.145.8	192.168.0.100	TCP	1388	443 → 39924 [PSH, ACK] Seq=
117	4 2019-10-22 17:49:03.545809	173.37.145.8	192.168.0.100	TCP	1388	443 → 39924 [PSH, ACK] Seq=
117	5 2019-10-22 17:49:03.545824	192.168.0.100	173.37.145.8	TCP	58	39924 → 443 [ACK] Seq=62394
+ 117	6 2019-10-22 17:49:03.545915	173.37.145.8	192.168.0.100	TCP	1388	443 → 39924 [PSH, ACK] Seq=
117	7 2019-10-22 17:49:03.545961	173.37.145.8	192.168.0.100	TCP	1388	443 → 39924 [PSH, ACK] Seq=
117	8 2019-10-22 17:49:03.545961	192.168.0.100	173.37.145.8	TCP	58	39924 → 443 [ACK] Seq=62394
+ 117	9 2019-10-22 17:49:03.709420	173.37.145.8	192.168.0.100	TLSv1.2	82	Server Hello, Certificate,
118	0 2019-10-22 17:49:03.710687	192.168.0.100	173.37.145.8	TLSv1.2	65	Alert (Level: Fatal, Descri
118	1 2019-10-22 17:49:03.710885	192.168.0.100	173.37.145.8	TCP	58	39924 → 443 [FIN, PSH, ACK]
L 118	2 2019-10-22 17:49:03.874542	173.37.145.8	192.168.0.100	TCP	58	443 → 39924 [RST, ACK] Seq=
<						
	Length: 5339					
	> Handshake Protocol: Server	Hello				
	∨ Handshake Protocol: Certifi					
	Handshake Type: Certific					
	Length: 5240	ucc (11)				
		7				
	Certificates Length: 523					
	Certificates Length: 523 V Certificates (5237 bytes)				
	Certificates Length: 523 V Certificates (5237 bytes Certificate Length: 20) 925	921.42000692h0f750.4	(7h2 / id.	at-commonName-tools ci	isco com id-at-organizationName-
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 26 Certificate: 308207e5:) 925	92143 000 683b0f7504f	7b2 (id-	at-commonName=tools.ci	isco.com,id-at-organizationName=
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 20 Certificate: 308207e5: > signedCertificate) 925 808205cda0030201020		F7b2 (id-	at-commonName=tools.ci	isco.com,id-at-organizationName=
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 20 Certificate: 308207e5: > signedCertificate > algorithmIdentifier) 925 808205cda0030201020		7b2 (id-	at-commonName=tools.ci	isco.com,id-at-organizationName=
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 20 Certificate: 308207e5: signedCertificate algorithmIdentifier Padding: 0) 025 088205cda0030201020 · (sha256WithRSAEnc	cryption)	,	at-commonName=tools.ci	isco.com,id-at-organizationName=
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 20 Certificate: 308207e5: SignedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084) 925 808205cda0030201020 · (sha256WithRSAEnd 1f7a6f6167058f14e2a	cryption)	,	at-commonName=tools.ci	isco.com,id-at-organizationName=
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 20 Certificate: 308207e5: signedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 13) 925 808205cda0030201020 (sha256WithRSAEnd 1f7a6f6167058f14e2a	cryption) mad8b98b4e6c971ea6e	a3b4		
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 20 Certificate: 308207e5: signedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 1: Certificate: 308206c4) 925 808205cda0030201020 (sha256WithRSAEnd 1f7a6f6167058f14e2a	cryption) mad8b98b4e6c971ea6e	a3b4		
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 26 Certificate: 308207e5: signedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 17 Certificate: 308206c43 signedCertificate) 925 808205cda0030201020 (sha256WithRSAEnd 1f7a6f6167058f14e2a	cryption) mad8b98b4e6c971ea6e	a3b4		isco.com,id-at-organizationName=
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 26 Certificate: 308207e5: signedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 17 Certificate: 308206c43 signedCertificate version: v3 (2)) 925 308205cda0030201020 (sha256WithRSAEnd 1f7a6f6167058f14e2a 736 308204aca0030201020	ryption) aad8b98b4e6c971ea6e 02147517167783d0437	a3b4 /eb5 (id-		
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 26 Certificate: 308207e5: signedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 17 Certificate: 308206c43 signedCertificate version: v3 (2) serialNumber: 0x) 925 308205cda0030201020 (sha256WithRSAEnd 1f7a6f6167058f14e2a 736 308204aca0030201020	ryption) aad8b98b4e6c971ea6e 02147517167783d0437 556c357946e4563b8eb	a3b4 /eb5 (id-		
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 26 Certificate: 308207e5: SignedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 17 Certificate: 308206c43 signedCertificate version: v3 (2) serialNumber: 0x signature (sha25) 925 98205cda0030201020 (sha256WithRSAEnce 167a6f6167058f14e2a 736 308204aca0030201020 7517167783d0437eb5 6WithRSAEncryption	ryption) aad8b98b4e6c971ea6e 02147517167783d0437 556c357946e4563b8eb	a3b4 /eb5 (id-		
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 26 Certificate: 308207e5: SignedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 17 Certificate: 308206c43 signedCertificate version: v3 (2) serialNumber: 0x signature (sha25 issuer: rdnSeque) 925 98205cda0030201020 (sha256WithRSAEnce 167a6f6167058f14e2a 736 988204aca0030201020 7517167783d0437eb5 6WithRSAEncryption nce (0)	cryption) mad8b98b4e6c971ea6e 02147517167783d0437 056c357946e4563b8eb	a3b4 ?eb5 (id- d3ac	-at-commonName=HydrantI	ID SSL ICA G2,id-at-organization
	Certificates Length: 523 Certificates (5237 bytes Certificate Length: 26 Certificate: 308207e5: SignedCertificate algorithmIdentifier Padding: 0 encrypted: 6921d084 Certificate Length: 17 Certificate: 308206c43 signedCertificate version: v3 (2) serialNumber: 0x signature (sha25 issuer: rdnSeque) 925 98205cda0030201020 (sha256WithRSAEnce 167a6f6167058f14e2a 736 988204aca0030201020 7517167783d0437eb5 6WithRSAEncryption nce (0)	cryption) mad8b98b4e6c971ea6e 02147517167783d0437 056c357946e4563b8eb	a3b4 ?eb5 (id- d3ac	-at-commonName=HydrantI	

Protocol

Length Server Name

These captures prove that the transit firewall modifies the server certificate (MITM)

Action 2. Check the device logs.

tcp.stream eq 57

You can collect the FMC TS bundle as described in this document:

https://www.cisco.com/c/en/us/support/docs/security/sourcefire-defense-center/117663-technote-SourceFire-00.html

In this case, the /dir-archives/var-log/process_stdout.log file show messages like this:

```
<#root>
SOUT: 10-23 05:45:14 2019-10-23 05:45:36 sla[10068]: *Wed .967 UTC: CH-LIB-ERROR: ch_pf_curl_send_msg[49]
failed to perform, err code 60, err string "SSL peer certificate or SSH remote key was not OK"
...
SOUT: 10-23 05:45:14 2019-10-23 05:45:36 sla[10068]: *Wed .967 UTC: CH-LIB-TRACE: ch_pf_curl_is_cert_iss_cert_issue_checking, ret 60, url "https://tools.cisco.com/its/
```

Recommended Solution

Disable the MITM for the specific flow so that FMC can successfully register to the Smart Licensing cloud.

Case 11. IPv6 Connectivity Problem

Problem Description: Internal hosts (located behind the firewall's INSIDE interface) cannot communicate with external hosts (hosts located behind firewall's OUTSIDE interface).

This image shows the topology:

Affected Flow:

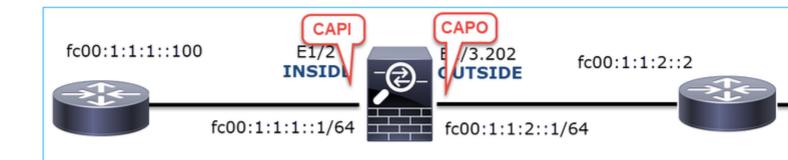
Src IP: fc00:1:1:1::100

Dst IP: fc00:1:1:2::2

Protocol: any

Capture Analysis

Enable captures on FTD LINA engine.


<#root>

firepower#

capture CAPI int INSIDE match ip any6 any6

firepower#

capture CAPO int OUTSIDE match ip any6 any6

Captures - Non-functional Scenario

These captures were taken in parallel with an ICMP connectivity test from IP fc00:1:1:1::100 (inside router) to IP fc00:1:1:2::2 (upstream router).

The capture on firewall INSIDE interface contains:

No.	Time	Source	Destination	Protocolgth Info
	1 2019-10-24 13:02:07.001663	fc00:1:1:1::100	ff02::1:ff00:1	ICMPv6 86 Neighbor Solicitation for fc0
	2 2019-10-24 13:02:07.001876	fc00:1:1:1::1	fc00:1:1:1::100	ICMPv6 2 86 Neighbor Advertisement fc00:1
	3 2019-10-24 13:02:07.002273	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x160d
	4 2019-10-24 13:02:08.997918	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x160d
	5 2019-10-24 13:02:10.998056	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x160d
	6 2019-10-24 13:02:11.999917	fe80::2be:75ff:fef6:1dae	fc00:1:1:1::100	ICMPv6 49 86 Neighbor Solicitation for fc0
	7 2019-10-24 13:02:12.002075	fc00:1:1:1::100	fe80::2be:75ff:fef6:1dae	ICMPv6 78 Neighbor Advertisement fc00:1
	8 2019-10-24 13:02:12.998346	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x160d
	9 2019-10-24 13:02:14.998483	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 6 114 Echo (ping) request id=0x160d
	10 2019-10-24 13:02:17.062725	fe80::4e4e:35ff:fefc:fcd8	fe80::2be:75ff:fef6:1dae	ICMPv6 86 Neighbor Solicitation for fe8
	11 2019-10-24 13:02:17.062862	fe80::2be:75ff:fef6:1dae	fe80::4e4e:35ff:fefc:fcd8	ICMPv6 78 Neighbor Advertisement fe80::
	12 2019-10-24 13:02:22.059994	fe80::2be:75ff:fef6:1dae	fe80::4e4e:35ff:fefc:fcd8	ICMPv6 86 Neighbor Solicitation for fe8
	13 2019-10-24 13:02:22.063000	fe80::4e4e:35ff:fefc:fcd8	fe80::2be:75ff:fef6:1dae	ICMPv6 78 Neighbor Advertisement fe80::

Key Points:

- 1. The router sends an IPv6 Neighbor Solicitation message and asks for the MAC address of the upstream device (IP fc00:1:1:1:1).
- 2. The firewall replies with an IPv6 Neighbor Advertisement.
- 3. The router sends an ICMP Echo Request.
- 4. The firewall sends an IPv6 Neighbor Solicitation message and asks for the MAC address of the downstream device (fc00:1:1:1::100).
- 5. The router replies with an IPv6 Neighbor Advertisement.
- 6. The router sends additional IPv6 ICMP Echo Requests.

The capture on firewall OUTSIDE interface contains:

No.	Time	Source	Destination	Protocol agth Info
1	2019-10-24 13:02:07.002517	fe80::2be:75ff:fef6:1d8e	ff02::1:ff00:2	ICMP 90 Neighbor Solicitation for fo
2	2 2019-10-24 13:02:07.005569	fc00:1:1:2::2	fe80::2be:75ff:fef6:1d8e	ICM 2 90 Neighbor Advertisement fc00
3	3 2019-10-24 13:02:08.997995	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 3 18 Echo (ping) request id=0x16
4	2019-10-24 13:02:09.001815	fc00:1:1:2::2	ff02::1:ff00:100	ICMPv6 90 Neighbor Solicitation for fo
5	2019-10-24 13:02:10.025938	fc00:1:1:2::2	ff02::1:ff00:100	ICMPy 4 90 Neighbor Solicitation for fo
6	2019-10-24 13:02:10.998132	fc00:1:1:1::100	fc00:1:1:2::2	ICM 5 118 Echo (ping) request id=0x16
7	7 2019-10-24 13:02:11.050015	fc00:1:1:2::2	ff02::1:ff00:100	ICMPvb 6 90 Neighbor Solicitation for fo
8	3 2019-10-24 13:02:12.066082	fe80::4e4e:35ff:fefc:fcd8	fe80::2be:75ff:fef6:1d8e	ICMPv6 90 Neighbor Solicitation for fo
9	2019-10-24 13:02:12.066234	fe80::2be:75ff:fef6:1d8e	fe80::4e4e:35ff:fefc:fcd8	ICMPv6 82 Neighbor Advertisement fe80
10	2019-10-24 13:02:12.998422	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 118 Echo (ping) request id=0x16
11	2019-10-24 13:02:13.002105	fc00:1:1:2::2	ff02::1:ff00:100	ICMPv6 90 Neighbor Solicitation for fo
12	2 2019-10-24 13:02:14.090251	fc00:1:1:2::2	ff02::1:ff00:100	ICMPv6 90 Neighbor Solicitation for fo
13	3 2019-10-24 13:02:14.998544	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 118 Echo (ping) request id=0x16
14	1 2019-10-24 13:02:15.178350	fc00:1:1:2::2	ff02::1:ff00:100	ICMPv6 90 Neighbor Solicitation for f
15	2019-10-24 13:02:17.059963	fe80::2be:75ff:fef6:1d8e	fe80::4e4e:35ff:fefc:fcd8	ICMPv6 90 Neighbor Solicitation for fo
16	2019-10-24 13:02:17.062512	fe80::4e4e:35ff:fefc:fcd8	fe80::2be:75ff:fef6:1d8e	ICMPv6 82 Neighbor Advertisement fe80

Key Points:

- 1. The firewall sends an IPv6 Neighbor Solicitation message which asks for the MAC address of the upstream device (IP fc00:1:1:2::2).
- 2. The router replies with an IPv6 Neighbor Advertisement.
- 3. The firewall sends an IPv6 ICMP Echo Request.
- 4. The upstream device (router fc00:1:1:2::2) sends an IPv6 Neighbor Solicitation message which asks for the MAC address of the IPv6 address fc00:1:1:1::100.
- 5. The firewall sends an additional IPv6 ICMP Echo Request.
- 6. The upstream router sends an additional IPv6 Neighbor Solicitation message which asks for the MAC address of the IPv6 address fc00:1:1:1:100.

Point 4 is very interesting. Normally the upstream router asks for the MAC of the firewall OUTSIDE interface (fc00:1:1:2::2), but instead, it asks for the fc00:1:1:1::100. This is an indication of a misconfiguration.

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Check the IPv6 Neighbor Table.

The firewall IPv6 Neighbor Table is properly populated.

Action 2. Check the IPv6 Configuration.

This is the firewall configuration.

```
<#root>
firewall#
show run int e1/2
!
interface Ethernet1/2
nameif INSIDE
cts manual
  propagate sgt preserve-untag
  policy static sgt disabled trusted
security-level 0
ip address 192.168.0.1 255.255.255.0
ipv6 address
fc00:1:1:1::1/64
ipv6 enable
```

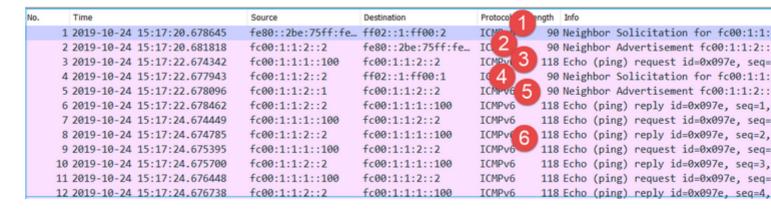
```
firewall#
show run int e1/3.202
!
interface Ethernet1/3.202
vlan 202
nameif OUTSIDE
cts manual
  propagate sgt preserve-untag
  policy static sgt disabled trusted
security-level 0
ip address 192.168.103.96 255.255.255.0
ipv6 address
fc00:1:1:2::1/64
ipv6 enable
```

The upstream device configuration reveals the misconfiguration:

```
<#root>
Router#
show run interface g0/0.202
!
interface GigabitEthernet0/0.202
encapsulation dot1Q 202
vrf forwarding VRF202
ip address 192.168.2.72 255.255.255.0
ipv6 address FC00:1:1:2::2
/48
```

Captures - Functional Scenario

The subnet mask change (from /48 to /64) fixed the issue. This is the CAPI capture in the functional scenario.

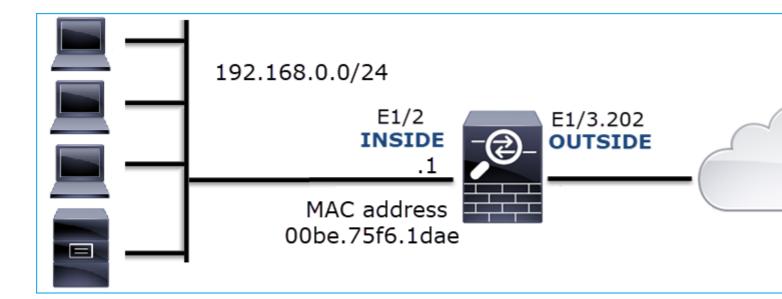

No.	Time	Source	Destination	Protocol ength Info
	1 2019-10-24 15:17:20.677775	fc00:1:1:1::100	ff02::1:ff00:1	ICMPve 86 Neighbor Solicitation for fc00:1:1
	2 2019-10-24 15:17:20.677989	fc00:1:1:1::1	fc00:1:1:1::100	ICMPve 86 Neighbor Advertisement fc00:1:1:1:
	3 2019-10-24 15:17:20.678401	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x097e, seq
	4 2019-10-24 15:17:22.674281	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x097e, seq
	5 2019-10-24 15:17:24.674403	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x097e, seq
	6 2019-10-24 15:17:24.674815	fc00:1:1:2::2	fc00:1:1:1::100	ICMPv6 114 Echo (ping) reply id=0x097e, seq=2
	7 2019-10-24 15:17:24.675242	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x097e, seq
	8 2019-10-24 15:17:24.675731	fc00:1:1:2::2	fc00:1:1:1::100	ICMPv6 114 Echo (ping) reply id=0x097e, seq=3
	9 2019-10-24 15:17:24.676356	fc00:1:1:1::100	fc00:1:1:2::2	ICMPv6 114 Echo (ping) request id=0x097e, seq
	10 2019-10-24 15:17:24.676753	fc00:1:1:2::2	fc00:1:1:1::100	ICMPv6 114 Echo (ping) reply id=0x097e, seq=4

Key Point:

1. The router sends an IPv6 Neighbor Solicitation message which asks for the MAC address of the

- upstream device (IP fc00:1:1:1::1).
- 2. The firewall replies with an IPv6 Neighbor Advertisement.
- 3. The router sends ICMP Echo Requests and gets Echo Replies.

CAPO contents:


Key Points:

- 1. The firewall sends an IPv6 Neighbor Solicitation message which asks for the MAC address of the upstream device (IP fc00:1:1:2::2).
- 2. The firewall replies with an IPv6 Neighbor Advertisement.
- 3. The firewall sends an ICMP Echo Request.
- 4. The router sends an IPv6 Neighbor Solicitation message which asks for the MAC address of the downstream device (IP fc00:1:1:1::1).
- 5. The firewall replies with an IPv6 Neighbor Advertisement.
- 6. The firewall sends ICMP Echo Requests and gets Echo Replies.

Case 12. Intermittent Connectivity Problem (ARP Poisoning)

Problem Description: Internal hosts (192.168.0.x/24) have intermittent connectivity issues with hosts in the same subnet

This image shows the topology:

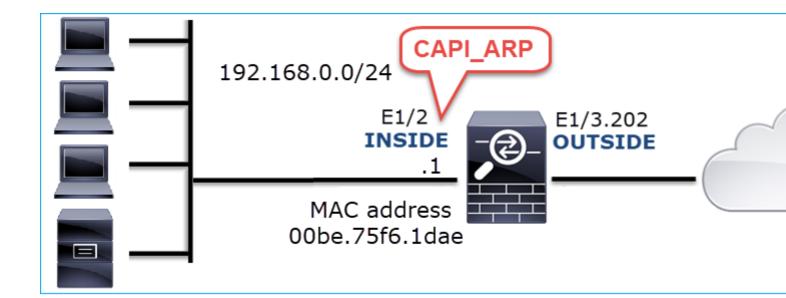
Affected Flow:

Src IP: 192.168.0.x/24

Dst IP: 192.168.0.x/24

Protocol: any

The ARP cache of an internal host seems to be poisoned:


Capture Analysis

Enable a capture on FTD LINA engine

This capture only captures ARP packets on the INSIDE interface:

<#root>

firepower#

Captures - Non-functional Scenario:

The capture on the firewall INSIDE interface contains.

No.	Time		Source	Destination	Protocol	onath	Info		
NO.						ength			
		10:01:55.179571	Vmware_2c:9b:a7	Broadcast	ARP U				192.1
	5 2019-10-25	10:01:55.17969	Cisco_f6:1d:ae	Vmware_2c:9b:a7	ARP	42	192.1	168.	0.23
	35 2019-10-25	10:02:13.050397	Vmware_2c:9b:a7	Broadcast	ARP	60	Who h	nas	192.1
	36 2019-10-25	10:02:13.050488	Cisco_f6:1d:ae	Vmware_2c:9b:a7	ARP	42	192.1	168.	0.24
	47 2019-10-25	10:02:19.284683	Vmware_2c:9b:a7	Broadcast	ARP 1	60	Who h	nas	192.1
	48 2019-10-25	10:02:19.284775	Cisco_f6:1d:ae	Vmware_2c:9b:a7	ARP	42	192.1	168.	0.25
	61 2019-10-25	10:02:25.779821	Vmware_2c:9b:a7	Broadcast	ARP 1	60	Who h	nas	192.1
	62 2019-10-25	10:02:25.779912	Cisco_f6:1d:ae	Vmware_2c:9b:a7	ARP	42	192.1	168.	0.26
	76 2019-10-25	10:02:31.978175	Vmware_2c:9b:a7	Broadcast	ARP 🕝	60	Who h	nas	192.1
	77 2019-10-25	10:02:31.978251	Cisco_f6:1d:ae	Vmware_2c:9b:a7	ARP	42	192.1	168.	0.27
	97 2019-10-25	10:02:38.666515	Vmware_2c:9b:a7	Broadcast	ARP 🕝	60	Who h	nas	192.1
	98 2019-10-25	10:02:38.666606	Cisco_f6:1d:ae	Vmware_2c:9b:a7	ARP	42	192.1	168.	0.28
1	21 2019-10-25	10:02:47.384074	Vmware_2c:9b:a7	Broadcast	ARP	60	Who h	nas	192.1
1	22 2019-10-25	10:02:47.384150	Cisco f6:1d:ae	Vmware 2c:9b:a7	ARP	42	192.1	168.	0.29
1	37 2019-10-25	10:02:53.539995	Vmware 2c:9b:a7	Broadcast	ARP 🗾				192.1
1	38 2019-10-25	10:02:53.540087	Cisco f6:1d:ae	Vmware 2c:9b:a7	ARP				0.30

Key Points:

- 1. The firewall receives various ARP requests for IPs within 192.168.0.x/24 network
- 2. The firewall replies to all of them (proxy-ARP) with its own MAC address

Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

Action 1. Check the NAT configuration.

With regard to the NAT configuration, there are cases where the **no-proxy-arp** keyword can prevent the earlier behavior:

<#root>

firepower#

show run nat

nat (INSIDE,OUTSIDE) source static NET_1.1.1.0 NET_2.2.2.0 destination static NET_192.168.0.0 NET_4.4.4

no-proxy-arp

Action 2. Disable the proxy-arp functionality on the firewall interface.

If the â€~no-proxy-arp' keyword does not solve the problem, try to disable proxy ARP on the interface itself. In case of FTD, at the time of this writing, you have to use FlexConfig and deploy the command (specify the appropriate interface name).

sysopt noproxyarp INSIDE

Case 13. Identify SNMP Object Identifiers (OIDs) that cause CPU Hogs

This case demonstrates how certain SNMP OIDs for memory polling were identified as the root cause of CPU hogs (performance issue) based on the analysis of SNMP version 3 (SNMPv3) packet captures.

Problem Description: Overruns on data interfaces continuously increase. Further research revealed that there are also CPU hogs (caused by the SNMP process) which are the root cause of the interface overruns.

Next step in the troubleshoot process was to identify the root cause of the CPU hogs caused by the SNMP process and in particular, narrow down the scope of the issue to identify the SNMP Object Identifiers (OID) which, when polled, could potentially result in CPU hogs.

Currently, the FTD LINA engine does not provide a 'show' command for SNMP OIDs that are polled in real-time.

The list of SNMP OIDs for polling can be retrieved from the SNMP monitoring tool, however, in this case, there were these preventive factors:

- The FTD administrator did not have access to the SNMP monitoring tool
- SNMP version 3 with authentication and data encryption for privacy was configured on FTD

Capture Analysis

Since the FTD administrator had the credentials for the SNMP version 3 authentication and data encryption,

this action plan was proposed:

- 1. Take SNMP packet captures
- 2. Save the captures and use Wireshark SNMP protocol preferences to specify the SNMP version 3 credentials to decrypt the SNMP version 3 packets. The decrypted captures are used for the analysis and retrieval of SNMP OIDs

Configure SNMP packet captures on the interface that is used in snmp-server host configuration:

<#root>

firepower#

show run snmp-server | include host

snmp-server host management 192.168.10.10 version 3 netmonv3

firepower#

show ip address management

System IP Address:

Interface Name IP address Subnet mask Method Management0/0 management 192.168.5.254 255.255.0 CONFIG

Current IP Address:

Interface Name IP address Subnet mask Method Management0/0 management 192.168.5.254 255.255.255.0 CONFIG

firepower#

capture capsnmp interface management buffer 10000000 match udp host 192.168.10.10 host 192.168.5.254 ed

firepower#

show capture capsnmp

capture capsnmp type raw-data buffer 10000000 interface outside [Capturing -

9512

bytes]

match udp host 192.168.10.10 host 192.168.5.254 eq snmp

io.		Time 1	Protocol	Source	Source Port	Destination Port	Destination	Length	Info
_	1	0.000	SNMP	192.168.10.10	65484	161	192.168.5.254	100	getBulkRequest
	2	0.000	SNMP	192.168.5.254	161	65484	192.168.10.10	167	report 1.3.6.1.6.3.15.1.1.4.0
	3	0.176	SNMP	192.168.10.10	65484	161	192.168.5.254	197 🕗	
	4	0.176	SNMP	192.168.5.254	161	65484	192.168.10.10	192	report 1.3.6.1.6.3.15.1.1.2.0
	5	0.325	SNMP	192.168.10.10	65484	161	192.168.5.254	199	encryptedPDU: privKey Unknown
	6	0.326	SNMP	192.168.5.254	161	65484	192.168.10.10	678	encryptedPDU: privKey Unknown
	7	0.490	SNMP	192.168.10.10	65484	161	192.168.5.254	205	encryptedPDU: privKey Unknown
	8	0.490	SNMP	192.168.5.254	161	65484	192.168.10.10	560	encryptedPDU: privKey Unknown
	9	0.675	SNMP	192.168.10.10	65484	161	192.168.5.254	205	encryptedPDU: privKey Unknown
	10	0.767	SNMP	192.168.5.254	161	65484	192.168.10.10	610	encryptedPDU: privKey Unknown
	11	0.945	SNMP	192.168.10.10	65484	161	192.168.5.254	205	encryptedPDU: privKey Unknown
	12	0.946	SNMP	192.168.5.254	161	65484	192.168.10.10	584	encryptedPDU: privKey Unknown
	13	1.133	SNMP	192.168.10.10	65484	161	192.168.5.254	205	encryptedPDU: privKey Unknown
	14	1.134	SNMP	192.168.5.254	161	65484	192.168.10.10	588	encryptedPDU: privKey Unknown
	15	1.317	SNMP	192.168.10.10	65484	161	192.168.5.254	205	encryptedPDU: privKey Unknown
	16	1.318	SNMP	192.168.5.254	161	65484	192.168.10.10	513	encryptedPDU: privKey Unknown
	17	17.595	SNMP	192.168.10.10	62008	161	192.168.5.254	100	getBulkRequest
	18	17.595	SNMP	192.168.5.254	161	62008	192.168.10.10	167	report 1.3.6.1.6.3.15.1.1.4.0
	19	17.749	SNMP	192.168.10.10	62008	161	192.168.5.254	197	encryptedPDU: privKey Unknown
	20	17.749	SNMP	192.168.5.254	161	62008	192.168.10.10	192	report 1.3.6.1.6.3.15.1.1.2.0
	21	17.898	SNMP	192.168.10.10	62008	161	192.168.5.254	199	encryptedPDU: privKey Unknown
	22	17.899	SNMP	192.168.5.254	161	62008	192.168.10.10	678	encryptedPDU: privKey Unknown
	23	18.094	SNMP	192.168.10.10	62008	161	192.168.5.254	205	encryptedPDU: privKey Unknown
	24	18.094	SNMP	192.168.5.254	161	62008	192.168.10.10	560	encryptedPDU: privKey Unknown
	25	18.290	SNMP	192.168.10.10	62008	161	192.168.5.254	205	encryptedPDU: privKey Unknown
	<[De	stination	Host: 19	92.168.5.254]>					
				on Host: 192.168.5	5.2541>				
Us				Src Port: 65484, I		61			
				t Protocol					
-		ersion: s							
>	-	lobalData		,					
	-		veEngine	eID: 80000009fe1c6	dad4939a99	ef1fec2301621	a4158bfc1f40		
		uthoritat	_				0.425001.021.4011		
	-	uthoritat	-						
	-	serName: n	-						
				meters: ff5176f597	3c30h62ffc	1168			
				000040e100003196	SCSODOZITE	1100			
~		ata: encry							
	_			(1) (6d23633400a0391c5	2884226695	c944d97101ba	703		
	e lei	icryptedPt	U. 8/9a/	100230334008039103	2000220600	C04400/10109	/ U.S		

Key points:

- 1. SNMP source and destination addresses/ports.
- 2. The SNMP protocol PDU could not be decoded because privKey is unknown to Wireshark.
- 3. The value of the encryptedPDU primitive.

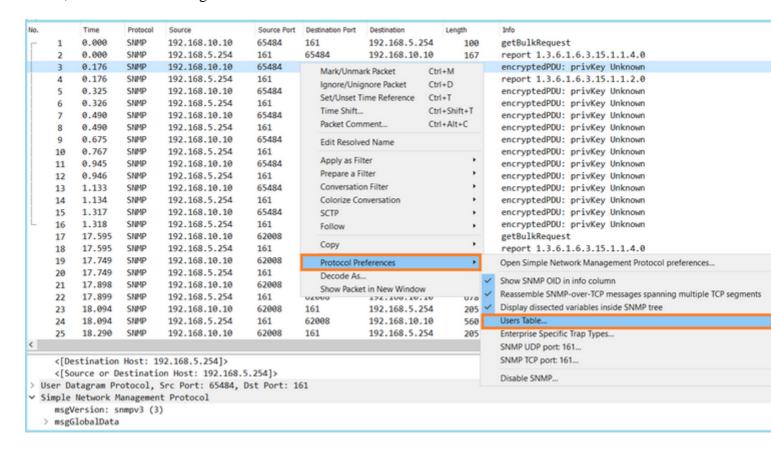
Recommended Actions

The actions listed in this section have as a goal to further narrow down the issue.

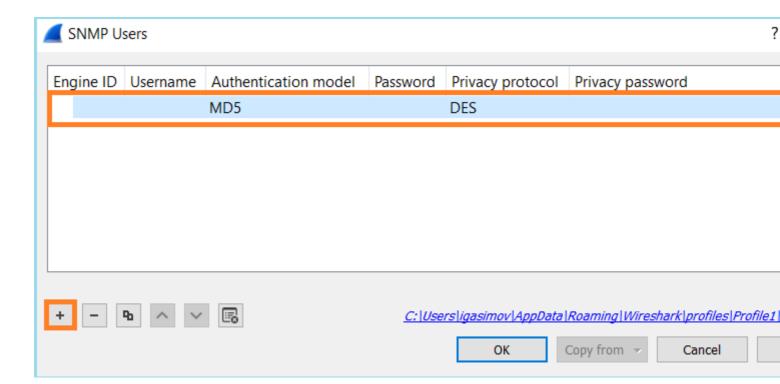
Action 1. Decrypt the SNMP captures.

Save the captures and edit the Wireshark SNMP protocol preferences to specify the SNMP version 3 credentials to decrypt the packets.

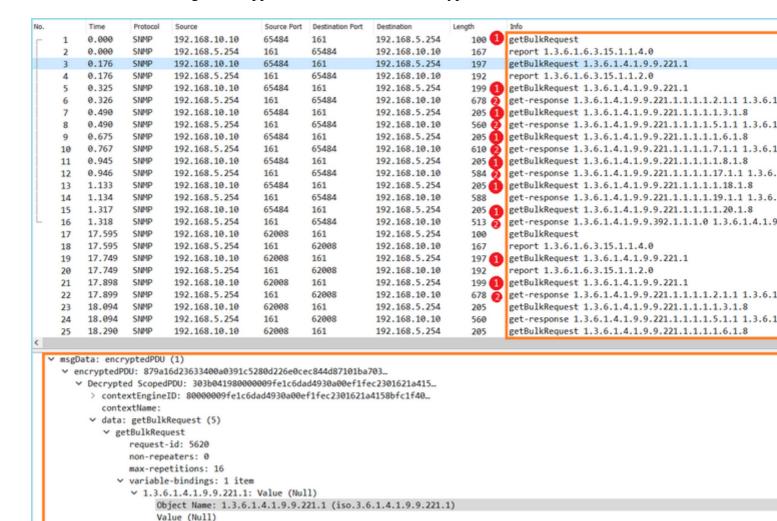
```
<#root>
firepower#
copy /pcap capture: tftp:


Source capture name [capsnmp]?

Address or name of remote host []? 192.168.10.253
```

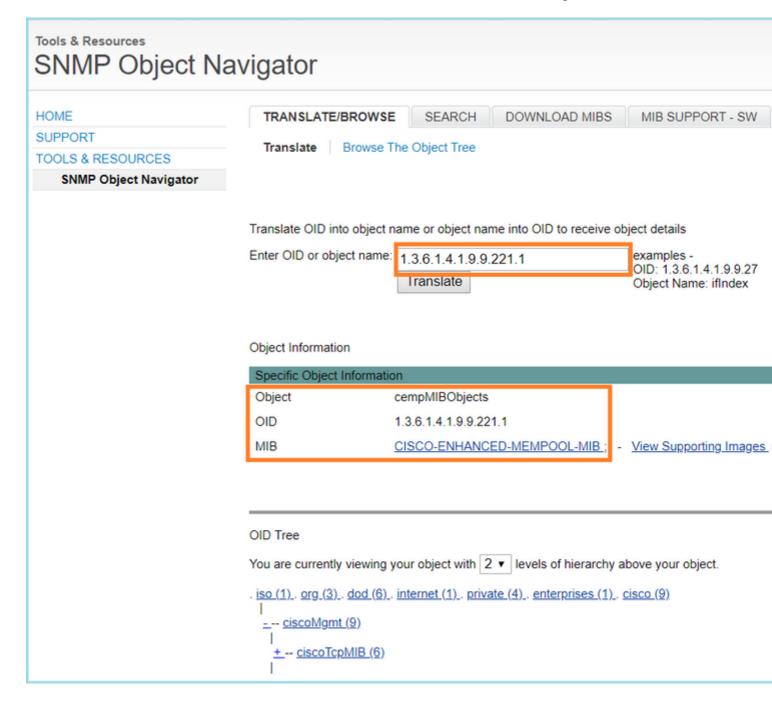

```
Destination filename [capsnmp]? capsnmp.pcap
```

64 packets copied in 0.40 secs


Open the capture file on Wireshark, select an SNMP packet and navigate to **Protocol Preferences > Users Table**, as shown in the image:

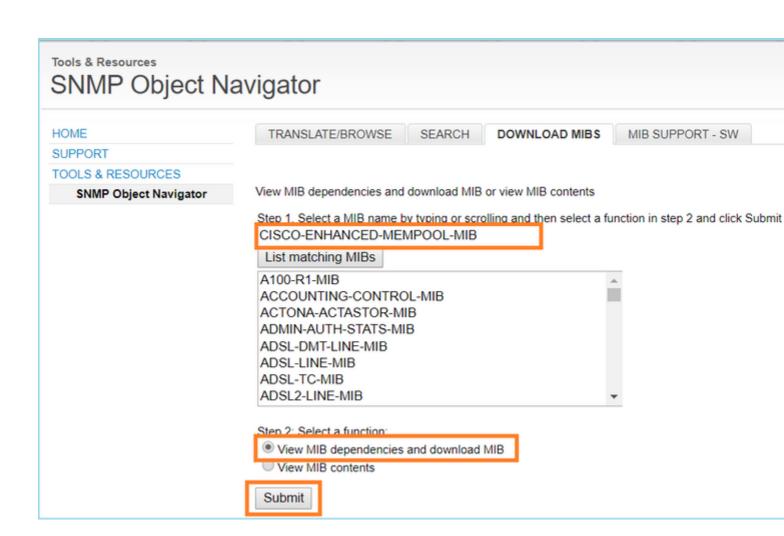
In the SNMP Users table the SNMP version 3 Username, Authentication model, Authentication Password, Privacy protocol and the Privacy password were specified (actual credentials are not shown below):

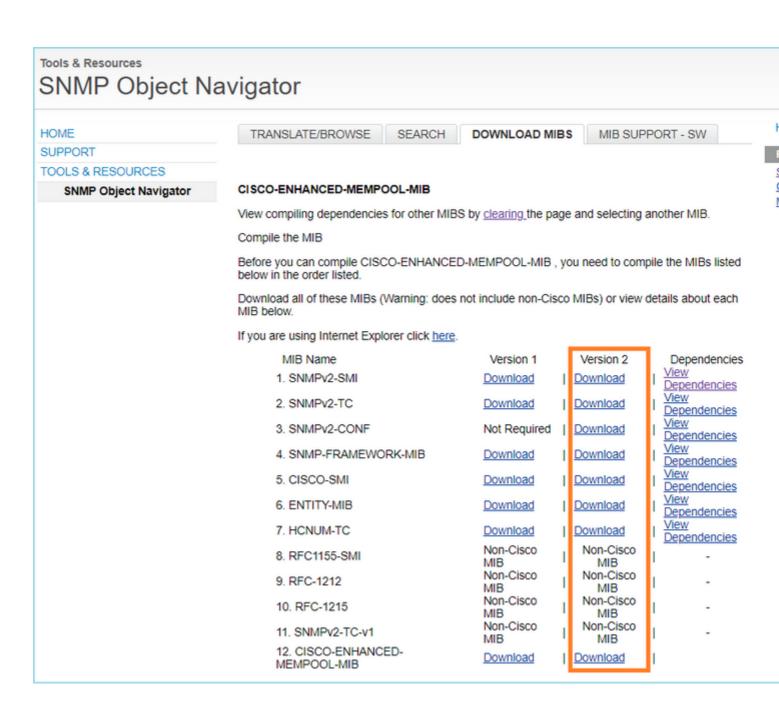
Once SNMP Users settings were applied Wireshark showed decrypted SNMP PDUs:

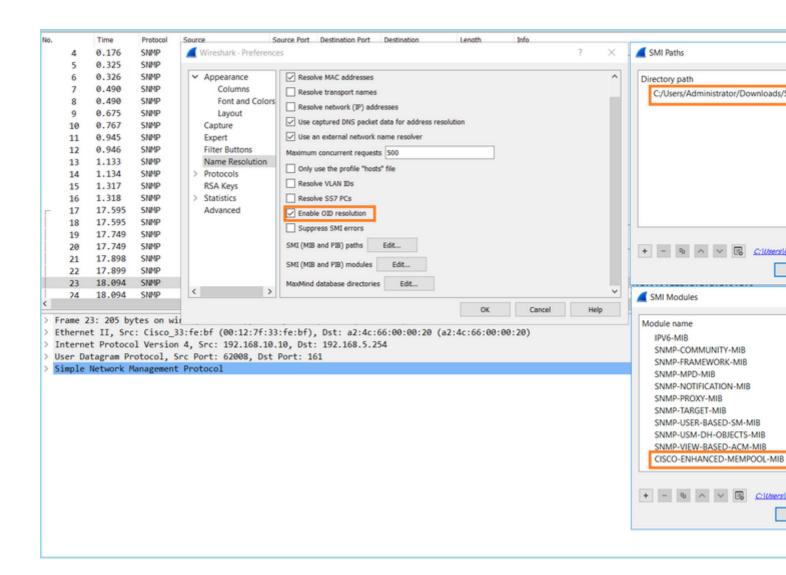


Key points:

- 1. The SNMP monitoring tools used SNMP getBulkRequest to query and walk over the parent OID 1.3.6.1.4.1.9.9.221.1 and related OIDs.
- 2. The FTD responded to each getBulkRequest with get-response that contain OIDs related to 1.3.6.1.4.1.9.9.221.1.


Action 2. Identify the SNMP OIDs.


<u>SNMP Object Navigator</u> showed that OID 1.3.6.1.4.1.9.9.221.1 belongs to the management information base (MIB) named **CISCO-ENHANCED-MEMPOOL-MIB**, as shown in the image:


To display the OIDs in human-readable format in Wireshark:

1. Download the MIB **CISCO-ENHANCED-MEMPOOL-MIB** and its dependencies, as shown in the image:

2. In Wireshark in **Edit > Preferences > Name Resolution** window the **Enable OID Resolution** is checked. In **SMI (MIB and PIB paths)** window specify the folder with the downloaded MIBs and in **SMI (MIB and PIB modules).** The CISCO-ENHANCED-MEMPOOL-MIB is added automatically to the list of modules:

3. Once Wireshark is restarted, OID resolution is activated:

	0.	Time	Protocol	Source	Source Port	Destination Port	Destination	Length	Info
ш	- 1	0.000	SNMP	192.168.10.10	65484	161	192.168.5.254	100	getBulkRequest
	2	0.000	SNMP	192.168.5.254	161	65484	192.168.10.10	167	report SNMP-USER-BASED-SM-MIB::usmStatsUnknownEngineI
	3	0.176	SNMP	192.168.10.10	65484	161	192.168.5.254	197	<pre>getBulkRequest CISCO-ENHANCED-MEMPOOL-MIB::cempMIBObje</pre>
ш	4	0.176	SNMP	192.168.5.254	161	65484	192.168.10.10	192	report SNMP-USER-BASED-SM-MIB::usmStatsNotInTimeWindo
	5	0.325	SNMP	192.168.10.10	65484	161	192.168.5.254	199	getBulkRequest CISCO-ENHANCED-MEMPOOL-MIB::cempMIBObj
	6	0.326	SNMP	192.168.5.254	161	65484	192.168.10.10	678	get-response CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolTy
	7	0.490	SNMP	192.168.10.10	65484	161	192.168.5.254	205	getBulkRequest CISCO-ENHANCED-MEMPOOL-MIB::cempMemPool
ш	8	0.490	SNMP	192.168.5.254	161	65484	192.168.10.10	560	get-response CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolA
	9	0.675	SNMP	192.168.10.10	65484	161	192.168.5.254	205	getBulkRequest CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoo
ш	10	0.767	SNMP	192.168.5.254	161	65484	192.168.10.10	610	get-response CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolU
ш	11	0.945	SNMP	192.168.10.10	65484	161	192.168.5.254	205	getBulkRequest CISCO-ENHANCED-MEMPOOL-MIB::cempMemPool
ш	12	0.946	SNMP	192.168.5.254	161	65484	192.168.10.10	584	get-response CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolU
ш	13	1.133	SNMP	192.168.10.10	65484	161	192.168.5.254	205	getBulkRequest CISCO-ENHANCED-MEMPOOL-MIB::cempMemPool
ш	1.4	1 13/	CMMD	102 168 5 254	161	65/19/	107 169 10 10	000	got posponso CISCO ENUANCED MEMBOOL MIRcompMomDoolE
4									
			→ CISC	D-ENHANCED-MEMPOOL	MIB::cemp	MemPoolName.1	.1 (1.3.6.1.4.1.	9.9.221.1.1	.1.1.3.1.1): System memory
			OF-	Sact Name: 1 3 6	1 / 1 0 0 2	21 1 1 1 1 2	1 1 (CTSCO_ENUA	MCED_MEMBOOI	L-MTP::campMamPoolNama 1 1)

```
Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.1 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.1)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: System memory

    CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.2 (1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.2); System memory

     Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.2 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.2)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: System memory
CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.3 (1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.3): MEMPOOL MSGLYR
     Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.3 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.3)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: MEMPOOL_MSGLYR
 CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.4 (1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.4): MEMPOOL_HEAPCACHE_1
    Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.3.1.4 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.4)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: MEMPOOL_HEAPCACHE_1

    CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.5 (1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.5); MEMPOOL_HEAPCACHE_0

     Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.5 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.5)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: MEMPOOL_HEAPCACHE_0

    CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.6 (1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.6): MEMPOOL_DMA_ALT1

     Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.3.1.6 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.6)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: MEMPOOL_DMA_ALT1
 CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.7 (1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.7): MEMPOOL_DMA
    Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.7 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.7)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: MEMPOOL_DMA
CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.8 (1.3.6.1.4.1.9.9.221.1.1.1.1.3.1.8): MEMPOOL_GLOBAL_SHARED
     Object Name: 1.3.6.1.4.1.9.9.221.1.1.1.3.1.8 (CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName.1.8)
     CISCO-ENHANCED-MEMPOOL-MIB::cempMemPoolName: MEMPOOL_GLOBAL_SHARED
```

Based on the decrypted output of the capture file the SNMP monitoring tool was periodically (10 seconds interval) polling data about the utilization of memory pools on the FTD. As explained in the TechNote article <u>ASA SNMP Polling for Memory-Related Statistics</u>, polling the Global Shared Pool (GSP) utilization with SNMP results in high CPU usage. In this case from the captures, it was clear that the Global Shared Pool utilization was periodically polled as part of SNMP getBulkRequest primitive.

In order to minimize the CPU hogs caused by the SNMP process, it was recommended to follow the mitigation steps for the CPU Hogs for SNMP mentioned in the article and avoid to poll the OIDs related to GSP. Without the SNMP poll for the OIDs that relate to GSP no CPU hogs caused by the SNMP process were observed and the rate of overruns significantly decreased.

Related Information

- Cisco Firepower Management Center Configuration Guides
- Clarify Firepower Threat Defense Access Control Policy Rule Actions
- Work with Firepower Threat Defense Captures and Packet Tracer
- Learn Wireshark