vl
CISCO

User Guide for
Cisco Unified CVP VXML Server and
Cisco Unified Call Studio

Release 7.0(1)

February 2008

Corporate Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http//www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTSIN THISMANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONSIN THISMANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERSMUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY
PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE
SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT Y OUR CISCO REPRESENTATIVE FOR A COPY .

The Cisco implementation of TCP header compression is an adaptation of aprogram developed by the University of Cdifornia, Berkeley (UCB) as part of UCB’s
public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of Cdifornia

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “ASIS’
WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING,
WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM
A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NOEVENT SHALL CISCO OR ITSSUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, ORINCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TODATA ARISING OUT OF THE USE OR INABILITY TOUSE THIS
MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCVP, the Cisco logo, and the Cisco Square Bridge logo are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn is a service mark
of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Cadyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork
Expert logo, CiscolOS, Cisco Press, Cisco Systems, Cisco Systems Capitd, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast,
EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, |OS, iPhone, IP/TV, iQ Expertise, theiQ logo, iQ Net Readiness
Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, Networking Academy, Network Registrar, PIX, ProConnect, ScriptShare, SMARTnet,
StackWise, The Fastest Way to Increase Y our Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United
States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership
rel aionship between Cisco and any other company. (0708R)

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Sudio
Copyright © 2008, Cisco Systems, Inc.
All rights reserved

TABLE OF CONTENTS USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Table Of Contents

[o |
[= 1 N I
AN 01 L N I
(@21 N 2 TR I
OBTAINING DOCUMENTATION, OBTAINING SUPPORT, AND SECURITY GUIDELINEScevvvteiieeeeieeririiniseeeseessssnnns I
RELATED DOCUMENTATION ...iittttttusteeettessssassesessesssssassssssesssssssssesssessssnnstessseesssmsteesteestmn et Il
(000 N1 V7= N TN 1"

CHAPTER 1: INTRODUCTION L.ttt ettt et e et e s e s e e s s s s s e s s s s s s s s s s s s s s s e sssssssssa s nnnas 1
VOICEXIML OVERVIEW ...cettttteeieeeeeeette e s e e ee s eettaeessseeseeatbaassseas s e e e baa s sesase e st baa s sseaseessbaa s ssessessbaaasesessesssbaasseaanes 1

Limitations of Traditional IVR TEChNOIOGIES.........ciuuiiiiiiiiiiiie e bbb e 1
VoiceXML: Smplifying VR DEVE OPIMENL..........ciiiiiiiiie ettt st sttt st st bbb e b e b s b e eneesbeesreens 2
Key BUuSiNess BENEfitS Of VOICEXML..........iiiiiiiiiiiiiiie sttt s be e s e 2
HOW VOICEXIMIL WVOTKS.....eeeeeetteeteeeeeeeeeeeseeessessessesssssessssssssssesessesssasae s s seessessssssaessaeesssaseeseesasaeessessseessssssssnnsnnnnns 3
Challenges with VOICEXML DEVEIOPIMENTeiiuiiiieiieiiesie ettt ettt st be e 4
THE UNIFIED CV P SOLUTION ..uiiiiiiietttiiieeeesetettee s s see s st ettt ssssesseessaa s esssseessaaassssssessssaa s sessssssrsaasesessersrrnnseseane 5
(0= | IS (110 [T 5
RIS = Y=, T 6
UNITIEO CVP B EIMIENES. .. eetiiiiiiiieitiieieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee s e e e e e eeeeeeee s s e s e s e e s eeeseeeeseesseseeseeaaessssnnnsssssssssnnsnnnnns 7
ElemMENt N0 SESSION DaLAL........cccueeeiieeeiieitieii e e e et e e e e e e e e et e e e e ees b b aeeeaeesaabbsseeaesesaassasseeesssasssbssssesssaaasssensassssassens 7

L (LA 7= (=TS SPRRRRPRRRPRRRRRI 8
LU (0 41122 o 1 L1 Y 2SSOSR 8

RV TS =1 0101 9
VOICEXML INSEIt B BIMENES ..ottt e e e e e e e e e e e e e e e e e e e s e e e e e e s e s e s s e e s e e e s aan 10
(DTS o i Lo Al = 1=l a07= 01 ES PR PTRPPPORRPRRPRTRI 11
ACHON ElBMBNES ..o 11
WED SEIVICES EIBMENE ... 12
R = To [= = 0 < g TSP P PSSR 12
[(018 1T 0 PSR PTTRTPRRRPRRPPRRI 13
[(0105, = =N 13
APPHICALION REUSE ...ttt ettt ettt ettt ettt et e e st e eab e st e e nbeenbeenbeenbe et enes 14
P o) o 1T o g =0 = SR SPRURRR 14
SUDTIAIOUS ..o e e s e s e ee e e s ee e e eee e s eeeeeeee e e e eeeeeeee e e eeeeeeee e s eseee e se e e et 15
UNIFIED CVP CALL STUDIO INTRODUCTION ...uiiiiiitttttssseeeseestsssseessessssssssesssssssssssssssessssmseesseesssnseeerseemn. 17
[T T= 0 oo PSR RP PRSI 17
JLIE= T = o R 17
APPIYING @ LTCEINSE. ... tteitt ettt s e e et e st e st e e tee e et e aseeessaeeseeanseeasseeasse e seeenteeanseeasaeenseeenseeeneeeaneeeteeaneeans 17
(RS (L= 010 =TT PTTRPPRRRPRRPPTRN 20
BUIIAET TOIr CAll STUIO ...evvvvieieeeieiiiieieeeieeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeseeseesesaeseseesssesee s s e s e e s seseesessssassssssnnsssessnnsennnns 21
Lo 1= o g {0l [H o Ao o F PSPPSR PSSR 21
Creating @ Call SUIO PIrOJECL..........ciiiiiiiiie bbbt b ettt e e saeesae e saeesaeas 21
(I TN T = 26

CHAPTER 2: UNIFIED CVP COMPONENTSIN DETAIL .oooeee oot 27
(@00 =] T = 5 27
R = = T 28

(0] 0= I 0= = 28

F Yoo o= Lo g DT - VTSR PR TP 28

TABLE OF CONTENTS USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

S S0 L= - 29
[0 05 LA L= | = RO PTRRTPRRRPRRPPRRI 29
COMPONENT ACCESSIDITITYveeteiitie sttt b e bbb b e sbe e sbe e sbe e s be e sbe e s beesbeesbeenaeesaeas 30

A 15 30
CONFIGURABLE BLEMENT S e ettttiiiiiieiittttes e e e e s ettt e s e e e e e eeeaa s seee s e e s s b s s see s e e e b b ssees e e st baa s eeeseeesbaaassessseesrsnansss 32
STANDARD ACTION AND DECISION ELEMENTS .cvtttuiiiieeiiietiiesseeeseestssssseesseestssasssssssssssanssesssssssssnsssesssrssssnnns 32
DYNAMIC ELEMENT CONFIGURATIONS ..eettttuuieeetteettttssseessesssssasessseestssassessssesssseeesseesssteesseersneeere. 33
START / END OF CALL ACTIONS ..ottt et ettt ettt 33
[(O I V7 = N 5N 34
S N RS YN 2 T 1] 1 34
START AND END OF APPLICATION ACTIONS. ...itttttttutteeettiesttissseesstesssssessseestsseesstestr et 35
[0 ele] = 23S T 35
ON ERROR NOTIFICATION ..tttttttitteeetteetttesseessessssasssssssessssaasesssesssssasstestesstssateseseesssanseesseessrnsseessrersrnnns 36
UNIFIED CVP XML DECISIONS IN DETAIL 1uuuiiiiiiiietiiiei e e eeeeetttie s s e e e seestaaasssessssesssssssssssesssssnsssssssesssssnnssesssseesnes 36
RR SR w1 o L > - (o DO 40
RIS = = S - o PP 40
SRS = g1 (o > Ir= T PSSR 40
The <general_date TiME> TGciouiiiiriiriirii ettt st e s bt e s bt e saeesbeesbe e snbeenbesnbeenee 41

R LCRN == = Yol Y = T PR 42
BN SR g (o Lo o P = e I Vo PP 42
XML DECISION EXAMPIEHL.....eeiieieieie ittt sttt sttt sttt sb e b e bt b e s bt e b e b e e b e et e et e e beesbeesbeenaeenaeas 43
XML DECISION EXAMPIEH2.....veeieieieee ittt sttt st b e sb e b e bt b e nb e sb et e et e e beesbeesbeesaeenaeas 44
XML DECISION EXBMPIEHI ... ettt sttt sttt sttt bbbt b e s bt e s bt e bt e b e et e et e e beesaeesbeesaeesaeas 45

VWV OICEX M L INSERT ELEMENT S i tittttttiieeeietettusseesseesssaaseesseesssaa s tesssesssaaastessseessaaasesssessssansssssssessssnanssessnes 48
RESIT TG OIS, teeteteeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeeee e eeeeaeeaeeaeeaee e s e eeeeaee e e e s e e e e aeaessesesssesesssesssesesseeesneessesnsesnsnnnnnnnnsnnnnnnnns 48

L DUES. ettt h ke E R eh e e e e e Rt eR et eR R e e nR R e e e R et e Re e e nRre e n e e e r e e e re e nnne s 49

L0 0 11 11 | F OO T ST RSP OTPON 51
(00 D T T .0 (SN 54
EXAITIOIE. ...ttt b e h e bbbt b bbb e bt bt bt b e e be e nbe e s b e e nbeenbeenbeenteenreen 54
CHAPTER 3: ADMINISTRATION ..ottt ettt ettt et e e e e e s e e s e s e s s s s s s s e s s s s s e s s e sssssssnsssssssnnann 57
INTRODUCTION TO VXML SERVER ADMINISTRATION ..ttuuiiieeiieettsnsseeesseestsssssessseessssssesssessssnseessesseeene 57
JMX MANAGEMENE INEEITACE.ee ettt st sttt ab e st ettt 57

F e o g R (Lo S ot] o) PSRRI 58
SYSEEM INFOIMALTION PAGE. ... ceveiiteeitie ittt b bbbt b et sb e bt sbe e bt sb et sbe e s beesbeenbeenaeesaeas 59
ADMINISTRATION INFORMATION. ..etttuuteeettetttssssesssessssusssesssesssssssseseessssmeeesseestsmtresreees e 60
APPlTICaLioN AN SYSEEM SLALUS......veeiveeiteeriee ettt ettt ettt st sttt st e saeesbeebeenbe et enee 60
Y D G [01 0= €= = T 61

P g T TS = 0 g TS] o) TSRS PRSP 61
Y LIS = Y (=T 1010 1.0'= LT o) I 62
Y D G [01 0= €= = T 62

P g T TS = 0 g TS] o) TSRS PRSP 62
SYSLEM INFOIMELTION PEOE. e iveeitiecie ettt e e st e st e e st eatee e s teessaeesteeeseeanteeeseeaseeenteeanteesnneeaseeeseeansen 63

R SRV S S (1Y O 1= o (T 63
CONFIGURATION UPDATES ...ccttttuiitiieiitttttesseessetsssaasssssssssssssassssssssessssasssassesstsaasseseseestsanssesserssransssssssessssnnnns 64
VXML Server Configuration OpPtiONS.uiuiieiiiiiiiiie sttt sttt sb e s bbb st ssee e snbeenbe st eaes 65
TUNING LOGOEr OPLiONS. ... eeetiiiiieiiieaieesittesteeesteeaeeesteesseeesseeasseeasseeasseessseassseaseeassesasseessssessessnseessseesseeessesansessnsensns 65
Session INValidation DElGY OPLiONciiiieiieiie et e e e e e s e e st et e teeeteessteeaseeebeeebeeenteesnseeaseeenseeanses 66
Application Configuration OPLIONS.coieeiieiieii ettt b e sa e st e e se e ettt 67
ADMINISTRATION FUNGCTIONS.ettttttiiieeetieettteseeeesessssaseessseessaasseeseestaaateessesstsnssesseesssssssesressssiansseesnes 68
Graceful AdMINISLIatioN ACHIVITYoiiiiiiie ittt sb e b e et e b e e be e saeesbeesaeesaeas 68
UPAati NG APPIICALIONS.veiitie ittt sttt sttt sb e b b e b e e sbeesb e e sbe e st e e sbeenbeesbeesbeenbeenbeenreens 69
Y D G [01 0= €= = T 70

P g T TS = 0 g TS] o) TSRS PRSP 71

TABLE OF CONTENTS USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

SUSPENAING APPIICALTIONS ...t bbbttt b e b e sb et sbe e s be e sbeesbeesbeenbeenaeenneas 71
1Y D 111 (= = o T T T PSP TR PRSP O P PROPPORPPR 73

P g T TS = (e TS] o) TSRS PRSP 74
AdiNG APPHICALIONS. ...ttt sttt st be e sb e st e e s bt e s be e sbe e s bt e s be e abe e be et e eabeenbeenbesnbeenbeenbeenteenee 74
1Y D 111 (= = o T T PP PRSP OPT PR RPPORPPR 74

P g T TS = (0 g TS] o) TSRS USSR 74
REMOVING ADPPIICALIONS. ...ttt sttt sttt bt b e bbbt e s b e e sb e e sbeesbeesb e e st e e sbeenbeesbeesbeesbeenbeenteens 75
1Y D 111 (= = o T T T PSP TR PRSP O P PROPPORPPR 76

P g T TS = (o TS] o) TSR SPRURRR 76
UpPdating COmMMON ClASSES.......ciuuiitieiteeiteesteesieesteesteesteesteesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeesbeenbeesbeesbeesbeenteens 77
1Y D 111 (= = o T TSP U PP O ST PROPPOPPPR 77

P g T TS = (0 g TS] o) TSRS USSR 77
Getting/Setting Global and APPlICALioN DALA...........cceiuiiiiiiiiiiree e see e saeas 77
GlODAl DB ACCESS ...ttt eteete ettt ettt e bt e b e skt e e e sh e e s bt ea et eh e e b e e ae e eh e e bt e s s e eh e e bt e a st eh e e bt e e e e b e e E e e hn e bt e n e e nn e b e eneennan 78

APl CELION DAL ACTESS.....eevveeteeeiteeetee st esteeastee s atesteeesteeaeeeasseesseeaseeasseeasseaaseeanteeanteaasseaasasanseesnseesneeeasesansessnsennns 78
AdMINISIFALOr LOG ACCESS.teeteeiteerteeste ettt ettt ettt s beebe bttt e be bt e bt e be e bt e nbe e bt eabeenbeenbesnbeenbeenbeenteenes 79
Administration FUNCLION REFEIENCE.........coiiiiieii ettt 80
APPlICELON-LEVE] FUNCLIONS. ... vieiieiiiecie ettt se et e et e st e e st e et easteessae e teaenteeasseessaeenseesnseesneeeaseaeseesnsennns 80
VXML SErVEr-LEVEI FUNCLIONS.eoteiiiiiieieee ettt ettt ettt e b e bt e e e st e et e snnesbe et e snnenreens 80
VXML SERVER IMETRICS ... iuttteititesitee st et stte e st et et ahe e st e st e et e e st e ss e e st e e e b e e e abe e e anr e e snr e e e neeennneennneenn 81
CHAPTER 4: USER MANAGEMENT ...ttt ettt e e s see e s s e e e s nae e e s snneeeesnnrenaeanes 85
[=l) V1= N T OSSPSR PPP PR 85
DATABASE DESIGN ...eeiitiieitieeitte ettt ettt ettt et b e s s et e s st e e b e e e b e e e ah et e sa bt e s s e e e b e e e b e e e en et e nnn e e sne e e neeennne s 86
F Yoo o= Lo RS RURPRTRP 86
(6L B T - PP PRSP ORPON 87
(1S £ PSPPSR 87

(U5 g o] 1o 0= TSRS 88

(UL £)= SRS 88
(TS (o g =1 I DL - TSP RP PSSR 89
LSS0 TSP P PP PTPRPPPOPPPRN 89

L= SRR RPRSURPRI 20
CHAPTER 5: VXML SERVER LOGGINGcotiiiiiiiiie ittt e ssiee e sitee e s stee e e ssstee e s snaeeessnseeeesnnsenesanns 91
LLOGGERS ...ttt ettt ettt h e h et R R e R e e AR et R et aR et e eR Rt e e R et e R et e R et e R Rt e s r e e nre e e reeennne s 91
GLOBAL LOGGERS. ... et etteeritee sttt sttt ss et e st e et as et s st e st e e s e e bt e ekt e s s R e e e R e e e R et e e b et e s e Rt e e R e e e ne e e nneeennreenareeeanes 92
RRALCTC1le] o7 I @r= L I oo o= SRR 92
RRACCTClle] o7 I = g o gl Moo o = SRR 94
Global Error Logger Configuration: LOG DELAIIS.......ccuviiieiiieiiiesie ettt stee st e stae st e snaeesnaeensaeanees 95
Global Error Logger Configuration: Fil€ PUrGiNG........c.eeiueeiieeiieiiee e esie st e s aeesieeestes st e saeestasesteesteesnseessaeensasanses 96
Global Error Logger Configuration EXAMPIEHLccueiiiieiieeiie e sieesiee sttt sae e stee st aeestaeesteesteesnseessaeensaeenees 96

Error Logger Configuration EXAMPIEH2coovieiieiiie it see ettt ae et e s teestaeestaeasaesntaessaaenseeasenanseesnseenseean 98

The Global AAMINiStration HiStOrY LOGOEYcc.eiieiiiiiiieiie ettt sttt st s 98
APPLICATION LOGGERS.. etiteteitte ettt e st e sttt stee ettt ss e s bt e st e e b e e ebe e e sh e e s s s e e e b e e e s et e sb et e asn e e s E e e sar e e e aneeennneennneenas 99
The APPliCationN ACHIVITY LOGGEoiveeitiiiiertieriee sttt sttt ettt sbe ettt et et eebeebe et e enbeenbeesbeesbeenreens 100
Activity Logger Configuration: FOPMELuoiiuieiieeiieeiie e seesee e sieesteesae st eesteesteessteessaeesseeaseessseasseeensesanses 104
Activity Logger CONfigUIatiON: SCOPE........uueiuieiieeiiieiiiesttesteesteeasteesteesseaesseeassesasseesseeesseeessesansesanseessseassesansesanses 105
Activity Logger Configuration: Fil@ ROLEIONccueiiieiiesiiesie ettt see et ae e stae et e e e snaeesnaeenseeanees 107
Activity Logger Configuration: CaChinNg...........oiuieiiiiiie ettt ee s e st et ssaeestaeeteeateesseeesseeenseeanses 108
Activity Logger Configuration: Fil@ PUFGINGeeiiieiieeiie s esieesiesieeste e s e stee st e aeessaeenteeanseesnseessseessaeensesanses 109
Activity Logger Configuration EXAMPIEHL.......ccuveiiriieiiie sttt ee et et ssaaestaeeteeanteesneaessaeenseeanees 110
Activity Logger Configuration EXAMPIEH2.......ccui ittt et e s ssaa et e et e ateesnaaessaeenseeanees 111

The APPlICALION EFTOF LOGGE ... iveeiteeiteeiteestee st stee st sttt sbe e st e b sb e sb e e sbeesbeesb e e st e e sbeenbe e st e e nbeenbeesbeenbeenbeens 112
Error Logger Configuration: FOMMEL............eoiueiiieiieesieesieesieesatesaeeseeeateesstaessaeessesansessseeessseessesanseesnseessseensesanses 113

Error Logger Configuration: FIlE PUIGING.c..ueiiieiiieiiieiie ettt steesee et e st staeestessteesseeessaeeteeansaesnseesssaensananses 114

Error Logger Configuration EXAMPIE Lccueiiieiiieeieesieestie et e s aeesee et esteestaeesteesnteesseeessaeeteesnsaesnseessaeensananses 115

TABLE OF CONTENTS USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Error Logger Configuration EXAMPIEH2ooueiiieiiieeiee sttt e st sae et esta e siae et e e e sneeessaeeteesnteeanteessaeensaeenses 115

The Application Administration HiStOry LOGOESeiiieiiiiieiieiie ettt sttt st sttt sreenree 116

The AppPliCation DEDUG LOGGEToouiiiiiieitie ittt st sttt st sbe e st b st esbe e sbe e st e e st e e sbeenbeebeenbeesbeesbeenbeens 116
CHAPTER 6: VXML SERVER CONFIGURATION. ..ottt ettt e e s ettt s s e s s s eeaaban s s e e e s eeeanes 119
GLOBAL CONFIGURATION FILE 1uuuuiiiiiiietttieiseeeeieesttessssesssessssasssesssesssaaasssesssessssaassessssessssanssessseesssnnsseesserssnes 119
CONFIGURATION OPTIONScce ittt 119
CHAPTER 7: STANDALONE APPLICATION BUILDER... ..ottt e e eeaaas 123
STANDALONE APPLICATION BUILDER INTRODUCTIONcitvvvttiiesieeiieestsssssessseesssssssessssessssnssessssesssssnssesssesssnes 123

IS @ = T =Tt U 1 1) 124
IS0 = O [1 = N 124
APPENDIX A: SUBSTITUTION TAG REFERENCE........oo ettt 127
APPENDIX B: THE DIRECTORY STRUCTURE ..ottt e e e et r s e s s s e eaaan s e aa e 133
AAPPENDIX € G L O SSA RY .oeitiittittttttttetaeessasesasseseeessssaeeseeesse.s..s.sessssssessssssee.es....................................—.. 137
LIS T NN 2 I =1 T 137

LN TE =TGR I = =Y B 138

PREFACE

Preface

Purpose

Audience

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

This document describes how to use Cisco Unified Customer Voice Portal (Unified
CVP). Topics covered include the various components that can exist on Cisco Unified
CVP VXML Server (VXML Server), administering VXML Server, and VXML Server

logging.

This document is intended for voice applications devel opers and administrators of
VXML Server.

Organization

Chapter 1, "Introduction”
Introduces the Cisco Unified CVP VXML Server software.
Chapter 2, "Cisco Unified CVP Components in Detail"
Introduces all the components that can be used with Cisco Unified CVP VXML
Server.
Chapter 3, "Administration"
Describes how to administer VXML Server.
Chapter 4, "User Management”
Describes how to use the built-in user management system.
Chapter 5, "VXML Server Logging"
Describes how to configure VXML Server logging.
Chapter 6, "VXML Server Configuration”
Describes global settings of VXML Server.
Chapter 7, "Standalone Application Builder"
Describes how to use the Standalone Application Builder to deploy voice
applications.
Appendix A, "Substitution Tag Reference”
A referencefor all substitution tags.
Appendix B, "The Directory Structure"
Describes the directory structure of a typical Cisco Unified softwareinstallation.
Appendix C, "Glossary"
Definitions of technical terms used throughout this guide.

Obtaining Documentation, Obtaining Support, and Security
Guidelines

For information on obtaining documentation, obtaining support, providing documentation
feedback, security guidelines, and also recommended aliases and general

PREFACE USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Cisco documents, see the monthly What's New in Cisco Product Documentation, which
also lists all new and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew. html

Related Documentation

Note: Planning your Unified CVP solution isan important part of the processin setting up Unified CVP. Cisco
recommends that you read the Cisco Unified Customer Voice Portal Release 7.x Solution Reference Network Design
(SRND) guide before configuring your Unified CVP solution. With Unified CVP 7.x, the Planning Guide for Cisco
Unified Customer Voice Portal has been incorporated into the SRND guide.

e Cisco Security Agent Ingtallation/Deployment for Cisco Unified Customer Voice Portal provides
installation instructions and information about Cisco Security Agent for the Unified CVP deployment. We
strongly urgeyou to read this document in itsentirety.

e Cisco Unified Customer Voice Portal Release 7.x Solution Reference Network Design (SRND) provides
design considerations and guidelines for deploying contact center voice response solutions based on Cisco
Unified Customer Voice Porta (Unified CVP) 7.x releases.

e Configuration and Administration Guide for Cisco Unified Customer Voice Portal describes how to set up,
run, and administer the Cisco Unified CVP product, including associated configuration.

e Element Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Sudio describesthe
settings, element data, exit Sates, and configuration optionsfor Elements.

e Ingtallation and Upgrade Guide for Cisco Unified Customer Voice Portal describes how to install Unified
CVP software, perform initial configuration, and upgrade.

e Operations Console Online Help for Cisco Unified Customer Voice Portal describes how to use the
Operations Console to configure Unified CV P solution components.

e Port Utilization Guide for Cisco Unified Customer Voice Portal describes the ports used in a Unified CVP
deployment.

e Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Sudio describes how to
build componentsthat run on the Cisco Unified CVP VXML Server.

e Reporting Guide for Cisco Unified Customer Voice Portal describes the Reporting Server, including how to
configure and manageit, and discusses the hosted database.

e Say It Smart Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Sudio describesin
detail the functionality and configuration options for al Say It Smart pluginsincluded with the software.

e Troubleshooting Guide for Cisco Unified Customer Voice Portal describes how to isolate and solve
problems in the Unified CVP solution.

PREFACE USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Conventions

This manual uses the following conventions:

Convention Description

boldface font Boldface font is used to indicate commands, such as user entries, keys, buttons, and folder and
submenu names. For example;

= Choose Edit > Find.

= Click Finish.
italic font Italic font is used to indicate the following:
= Tointroduce anew term. Example: A skill group isa collection of agents who share
similar skills.

= For emphasis. Example:
Do not use the numerical naming convention.

= A syntax value that the user must replace. Example:
IF (condition, true-value, false-val ue)

= A book title Example:
See the Cisco CRS Installation Guide.

window font [Window font, such asCourier, isused for the following:

= Textasitappearsin code or that the window displays. Example:
<html><title>Cisco Systems,Inc. </title></html>

= Filenames. Example: tserver.properties.

= Directory paths. Example:
C:\Program Files\Adobe

<> IAngle brackets are used to indicate the following:
= For arguments where the context does not allow italic, such as ASCII output.

= A character string that the user enters but that does not appear on the window such as a
password.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Chapter 1: Introduction

Welcome to Cisco Unified Customer Voice Porta (Unified CVP), the most robust platform for
building exciting, dynamic VoiceX M L-based voice applications. Unified CVP:

e Allows usersto build complex voice applications without requiring extensive knowledge of
Javaand VoiceXML.

e Includes an easy, graphical interface for building voice applications and simplifies the tasks
of building custom components that easily plug into the software’'s modular architecture.

e Provides the fastest, most error-free process for building professional, dynamic voice
applications.

This user guide introduces the process of building voice applications utilizing the various
components of Unified CVP software. Its primary focus is to explain the concepts required to get
the most out of one Unified CVP component, Cisco Unified CVP VXML Server (VXML
Server), while introducing the others. It will refer to additional documentation to fully describe
other components. The reader just getting started with Unified CV P software should read at least
the first few chaptersto get an idea of the environment in which Unified CV P software revolves
and some of the design of the Unified CVP platform.

VoiceXML Overview

Since its introduction in 2000, VoiceXML has quickly become the standard technology for
deploying automated phone systems. To understand VoiceXML’s quick acceptance by
enterprises, carriers and technology vendors, a brief overview of the traditional technologies used
to develop interactive voice response systems is given.

Limitations of Traditional IVR Technologies

Despite investing millions of dollars in Interactive Voice Response (IVR) systems, many
organizations know that the applications responsible for handling automated customer service do
not fulfill their business requirements. Organizations need their IVR to be as flexible and
dynamic as the rest of their enterprise applications, but proprietary, one-size-fits-all solutions
cannot easily support regular modifications or new corporate initiatives. Additionally, most of
these IVR solutions are not speech enabled and upgrading to speech recognition on atraditional
IVR platform is difficult and costly.

Heightened customer expectations for fast, quality service and a consistent experience across
phone and web contact channels are putting pressure on businesses to implement a higher quality
VR solution. However, due to their proprietary nature, traditional 1VR systems do not alow the
choice and flexibility necessary to meet the increasing demands of high expectation customers.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

While the limitations of atraditional 1VR pose considerable challenges for many organizations,
some smart businesses have found a solution by implementing the flexible and powerful new
standard in 1VR technology: VoiceXML.

VoiceXML: Simplifying IVR Development

VoiceXML isaprogramming language that was created to simplify the development of IVR
systems and other voice applications. Based on the Worldwide Web Consortium’s (W3C's)
Extensible Markup Language (XML), VoiceXML was established as a standard in 1999 by the
VoiceXML Forum, an industry organization founded by AT&T, IBM, Lucent and Motorola.
Today, many hundreds of companies support VoiceXML and use it to develop applications.

By utilizing the same networking infrastructure, HT TP communications, and markup language
programming model, VoiceXML leverages an enterprise’ s existing investment in technology as
well as the skills of many of its application developers and administrators. VoiceXML has
features to control audio output, audio input, presentation logic, call flow, telephony connections,
and event handling for errors. It serves as a standard for the development of powerful speech-
driven interactive applications accessible from any phone.

Key Business Benefits of VoiceXML

A VoiceXML-based IVR provides unparalleled freedom of choice when creating, deploying, and
maintaining automated customer service applications. By capitalizing on the standards-based
nature of VoiceXML, organizations are reaping a number of benefits including:

e Unparalleled portability — VoiceXML eliminates the need to purchase a proprietary, special
purpose platform to provide automated customer service. The standards-based nature of
VoiceXML allows IVR applications to run on any VoiceXML platform, eliminating vendor
lock-in. A VoiceXML based I VR offers businesses choice in application providers and
allows movement of applications between platforms with minimal effort.

e Flexible application development and deployment — VoiceXML enables freedom of choice in
IVR application creation and modification. Since it issimilar to HTML, development of IVR
applications with VoiceXML is simple, straightforward and does not require specialized
knowledge of proprietary telephony systems. Also, VoiceXML iswidely available to the
development community so enterprises can choose between many competing vendorsto find
an application that meets their business needs. Increased application choice also means that
businesses are not tied to the timeframe of a single application provider and can modify their
IVR based on their own organizational priorities.

e Extensive integration capability — VR applications written in VoiceXML can integrate with
and utilize existing business applications and data, extending the capabilities of core business
systems already in use. In fact, aVoiceXML-based I VR can integrate with any enterprise
application that supports standard communication and data access protocols. By leveraging
the capabilities of existing legacy and web systems to deliver better voice services,

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

organizations can treat their IVR like their enterprise applications and fulfill business
demands with an integrated customer facing solution.

By taking advantage of the increased number of choices offered by aVoiceXML-based IVR,
businesses can easily deliver the flexible, dynamic customer service that their organizations
and customers demand. The wide array of options available allows businesses to maximize
existing resources to deliver better service at lower cost.

e Reduced total cost of ownership — The freedom of choice offered by a VoiceXML-based IVR
reduces the total cost of ownership in several key areas:

o Speech capability is standard — The architecture of VoiceXML directly supports
integration with speech recognition, making implementing a VoiceXML-based IVR a
cost effective alternative to retrofitting a traditional 1VR for speech. Extensive industry
research indicates that incorporating speech into an VR solution increases call
completion, lowering the average cost per call.

o Lower hardware and maintenance costs — VoiceXML applications run on commonly
available hardware and software, enabling businesses to save money by using equipment
that they already own instead of purchasing special purpose hardware. Additionally,
businesses can use the same team that handles existing enterprise maintenance to
maintain VR applications written in VoiceXML.

o Affordable scaling —InaVoiceXML-based VR model, application logic resideson a
web/application server and is separate from telephony equipment. Businesses can avoid
unneeded capital investment by purchasing capacity for regular day-to-day needs and
outsourcing seasonal demand to a network provider.

o Applications for every budget — Competition between VoiceX ML application developers
provides a variety of IVR solutions for budgets of all sizes. Businesses only pay for
needed application features as an open marketplace offers a larger number of competing
applications at varying price points.

How VoiceXML Works

Designed to leverage Web infrastructure, VoiceXML is analogousto HTML, which is a standard
for creating Web sites. Like HTML, the development of voice applications using VoiceXML is
simple, straightforward and therefore does not require specialized knowledge of proprietary
telephony systems. Since the intricacies of developing voice applications are hidden from
developers, they can focus on business logic and call flow design rather than complex platform
and infrastructure details.

With VoiceXML, callers interact with the voice application over the phone using a voice
browser. The voice browser is analogous to a graphical Web browser, such as Microsoft’s
Internet Explorer. Instead of interpreting HTML as aweb browser does, the voice browser
interprets VoiceXML and allows callers to access information and services using their voice and
atelephone.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

Figure 1: VoiceXML Platform Architecture

Telephone Network

[]
- :€:><::/ - >

/ m

Analog/ Digital Tekphone Yoice Browser Web/Appication Server
Application Logic
Speech Recognition, Text to Content and Data
Speech and Complex Transaction Processing
Telephony Infrastructure Database Interface

Figure 1-1

As indicated in Figure 1-1, the primary components of the VoiceXML platform architecture are
the telephone, voice browser and application server. The voice browser, a platform that interprets
VoiceXML, manages the dialog between the application and the caller by sending requests to the
application server. Based on data, content and business logic, the application server creates a
VoiceXML document dynamically or uses a static VoiceXML document that it sends back to the
voice browser as aresponse.

Challenges with VoiceXML Development

Degspite the robustness and broad acceptance of VoiceXML as the new standard for voice
applications, there are a number of challenges that developers face when deploying complicated
systems, including:

Requirement for dynamic VoiceXML — Many applications require the ability to dynamically
insert content or to base business logic on data available only at runtime. In these cases, the
VoiceXML must be dynamically generated. For example, an application that plays a“Good
Morning / Afternoon / Evening” prompt depending on the time of day requires VoiceXML to
be dynamically generated.

Voice Paradigm versus Web paradigm — There are many systems designed to manage
dynamic web content or to automatically convert web content to other formats (such as for
wireless phones). These systems, however, are not adequate for voice applications due to the
fundamental difference between a voice application and a Web application. A web page isa
two-dimensional, visual interface while a phone call is a one-dimensional, linear process.
Converting web content to voice content often yields voice applications with lackluster user
interfaces.

Browser compatibility — Due to ambiguities and constant improvements in the VoiceXML
specification, no two commercially available browsers accomplish various functions in

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

exactly the same way. Developers must understand the variations between browsers when
coding VoiceXML to ensure compatibility.

e Stateless nature of VoiceXML —Like HTML, VoiceXML is a stateless mark-up language. For
applications that require the maintenance of data across a session, e.g., account or
transactional information, or phone call, pure VoiceXML does not suffice.

e Complicated coding — Despite VoiceXML’s promise to smplify voice application
development, the process of coding an application with dozens or hundreds of possible
interactions with a caller can become quite complex.

e Limited back-end integration — Enterprise applications rarely operate in a vacuum.
VoiceXML does not natively support robust data access and external system integration.

e OAM&P requirements — Operators of large-scale voice applications have significant
reguirements for administration, management, logging and (sometimes) provisioning.
VoiceXML does not natively support most of these functions.

e Reusability — The larger a Web or voice application becomes, the more critical reusability
becomes. This is even more pronounced in dynamic applications. VoiceXML simply
provides the interface for a voice application; it does not encapsulate common application
functionality into configurable, reusable building blocks.

The Unified CVP Solution

To address the challenges, Unified CV P provides a complete solution for rapidly conceiving,
creating and deploying dynamic VoiceXML 2.0 compliant applications. In order to understand
how to use Unified CVP to build dynamic voice applications, one must understand the
components of the system and how they work. This section presents a high-level overview of all
the components of Unified CVP software.

Unified CVP consists of three main components, Cisco Unified Call Studio (Call Studio),
VXML Server and Unified CVP Elements. Each of these components is discussed in further
detail in the remainder of this section.

Call Studio

Call Studio is a development platform for the creation of voice applications. Call Studio provides
aframework on which awhole host of Unified CV P and third-party tools will appear with a
robust, consistent interface for voice application designers and developersto use. Call Studio
will provide atrue control panel for developing all aspects of a voice application, each function
implemented as a plug-in to the greater Call Studio platform.

The most important plug-in for Call Studio is Builder for Call Studio (or the Builder for short),
the component Cisco has built to provide a drag-and-drop graphical user interface (GUI) for the
rapid creation of advanced voice applications. Builder for Call Studio provides:

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

Intuitive interface — Using a process similar to flowcharting software, the application
developer can use Builder for Call Studio to create an application, define its call flow, and
configure it to the exact specifications required.

Design and build at the same time — Builder for Call Studio acts as adesign tool aswell asa
building tool, allowing the developer to rapidly try different application call flows and then
test them out immediately.

No technical details required — Builder for Call Studio requires little to no technical
knowledge of Java, VoiceXML, or other markup languages. For the first time, the bulk of a
voice application can be designed and built by voice application design specialists, not
technical specialists.

Rapid application development — By using Builder for Call Studio, developers can
dramatically shorten deployment times. Application development time is reduced by as much
as 90% over the generation and management of flat VoiceXML files.

Call Studio documentation resides primarily within Call Studio itself by accessing the Help
menu. This guide, however includes a brief introduction to Call Studio in the section entitled
“Call Studio Introduction” in this chapter.

VXML Server

VXML Server is apowerful 2EE- and J2SE-compliant run-time engine that dynamically drives
the caller experience. VXML Server provides:

Robust back-end integration — VXML Server runsin a J2SE and J2EE framework, giving the
developer accessto the full litany of middleware and data adapters currently available for
those environments. Additionally, the Java application server provides arobust, extensible
environment for system integration and data access and manipulation.

Session management — Call and user data are maintained by VXML Server so that
information captured from the caller (or environment data such as the caller’s number or the
dialed number) can be easily accessed during the call for use in business rules.

Dynamic applications — Content and application logic are determined at runtime based on
rules ranging from simple to the most complex business rules. Almost anything about an
application can be determined at runtime.

System Management —V XML Server provides a full suite of administration tools, from
managing individual voice applications without affecting users calling into them, to
configurable logging of caller activity for analytical purposes.

User Management — VXML Server includes a lightweight customer data management system
for applications where more robust data are not aready available. The user management
system allows dynamic applications to personalize the call experience depending on the
caller.

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The capabilities of VXML Server listed above are discussed in further detail in Chapter 3:
Administration, Chapter 3: User Management and Chapter 5: VXML Server Logging.

Unified CVP Elements

The Unified CVP Elements are a collection of pre-built, fully tested building blocks to speed
application development.

e Browser compatibility — Unified CVP s library of Voice Elements produce VoiceXML
supporting the industry’ s leading voice browsers. They output dynamically generated
VoiceXML 2.0 compliant codethat has been thoroughly tested with each browser.

e Reusable functionality — Unified CV P Elements encapsulate commonly found parts of a
voice application, from capturing and validating a credit card to interfacing with a database.
Unified CVP Elements greatly reduce the complexity of voice applications by managing low-
level details.

e Configurable content — Unified CVP Elements can be significantly configured by the
developer to tailor their output specifically to address the needs of the voice application. Pre-
built configurations utilizing proven dialog design techniques are provided to further speed
the development of professional grade voice applications.

In Unified CVP, there are five different building block types, or elements, that are used to
construct any voice application: voice elements, VoiceXML insert elements, decision elements,
action elements, and flag elements. VXML Server combines these elements with three additional
concepts: hotlinks, hotevents, and application transfers, to represent a voice application.

The building blocks that make up an application are referred to as elements. In Unified CVP,
elements are defined as.

= p— A distinct component of a voice application call flow whose actions
affect the experience of the caller.

Many elements in Unified CV P share several characteristics such as the maintenance of element
data and session data, the concept of an exit state, and customizability.

Element and Session Data

Much like variables in programming, elements in a voice application share data with each other.
Some elements capture data and require storage for this data. Other elements act upon the data or
modify it. These variables are the mechanism for elements to communicate with each other. The
data comes in two forms: element data and session data

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e Element data are variables that exist only within the element itself, can be accessed by other
elements, but can only be changed by the element that created them.

e Session data are variables that can be created and changed by any element as well as some
other non-element components.

Exit States

Each element in an application's call flow can be considered a “black box” that accepts an input
and performs an action. There may be multiple results to the actions taken by the element. In
order to retain the modularity of the system, the consequences of these results are external to the
element. Like a flowchart, each action result is linked to another element by the application
designer. Theresults are called exit states. Each element must have at least one exit state and
frequently has many. The use of multiple exit states creates a“branched” call flow.

Customizability

Most elements require some manner of customization to perform specific tasks in a complex
voice application. Customization is accomplished through three different mechanisms supported
by Unified CVP: afixed configuration for the element, a Java API to dynamically configure pre-
built elements or to define new ones, and an API accessed via XM L-data delivered over http to
do the same.

e Thefixed configuration approach provides a static file containing the element configuration
so that each time the element is visited in the call flow it acts the same. Even in dynamic
voice applications, not every component need be dynamic; many parts actually do not need
to change.

e TheJava API approach is used for dynamic customization and is a high performance solution
because all actions are run by compiled Java code. The one drawback to this approach is that
it requires developers to have at least some Java knowledge, though the Java required for
interfacing with the API is basic.

e TheXML-over-HTTP (or XML API for short) approach affords developers the ability to utilize
any programming language for the customization of elements. The only requirement isthe
use of a system that can return XML based on an HTTP request made by VXML Server. The
advantages of this approach include: a larger array of programming language choices, the
ability to physically isolate business logic and data from the voice presentation layer and the
use of XML, which is commonly used and easy to learn. The main disadvantage of this
approach is the potential for HT TP connection problems, such as slow or lost connections.
Additionally, the performance of this approach does not typically perform as well as
compiled Java because XML must be parsed at runtime in both VXML Server and the
external system.

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Voice Elements

Almost all voice applications must utilize a number of dialogs with the caller, playing audio
files, interpreting speech utterances, capturing data entered by the user, etc. The more these
dialogs can be contained in discrete components, the more they can be reused in asingle
application or across multiple applications. These dialog components are encapsulated in voice
elements.

Voice Element A reusable, Vo_|ceXI\/_|L-prodUC| ng dialog with a fixed or dynamically
produced configuration.

Voice elements are used to assemble the VoiceXML sent to the voice browser. Each voice
element constitutes a discrete section of a call, such as making arecording, capturing a number,
transferring a call, etc. These pre-built components can then be reused throughout the call flow
wherever needed.

Voice elements are built using the Unified CVP Voice Foundation Classes (VFCs), which
produce VoiceXML compatible with multiple voice browsers (see the Programming Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio for more on the VFCs and
constructing custom voice elements).

Voice elements are complete dialogs in that they can encompass just a single action or an entire
interaction with the caller. Depending on its function, a voice element can contain almost as
much dialog as a small application. However, because of the pre-built nature of voice elements,
application designers do not need to worry about their complexity. Each voice element is simply
a“black box” which can be treated as a single object. As aresult, by combining many voice
elements, a complex call flow can be reduced significantly.

Each voice element defines the exit states it can return and the designer must map each exit state
to another call flow component to handle all its consequences. To fully configure voice elements,
developers must specify values for four components: settings, VoiceXML properties, audio
groups, and variables.

e Settings are used to store information that affects how the voice element performs. For
example, a setting describes what phone number to transfer to or the length of audio input
recording. A voice element can have many or few settings, depending on its complexity and
its level of customization.

e VoiceXML properties are equivalent to the properties outlined in the VoiceXML specification,
and are used to modify voice element behavior by directly inserting data into the VoiceXML
that each element produces. For example, the length of time the voice element waits before
encountering a noinput event can be changed by setting aVVoiceX ML property. Available
properties correspond directly to those listed in the VoiceXML specification and voice

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

browser specification. It is up to the designer to understand the consequences of modifying
these properties.

e Audio Groups — Nearly all voice elements involve the use of audio assets, whether in the
form of pre-recorded audio files or text-to-speech (TTS) phrases. An audio group
encapsulates the audio that the application plays when reaching a certain point in the voice
element call flow. For example, an audio group might perform the function of asking a
guestion, giving an answer, playing an error message, etc. An audio group may contain any
number of audio items. Audio items are defined as pre-recorded audio files, TTS phrases, or
information that conforms to a specified format to be read to the user (such as a date or
currency value). Each audio item in an audio group is played in the order they appear in the
audio group.

e Variables, as described in the previous section, allow voice elementsto set or use element or
session data. Many voice elements use element data to store information captured from a
caller, though voice element configurations can also define additional variables.

Finally, avoice element’s configuration can be either fixed or dynamic.

e Fixed configurations are XML files containing the desired settings, VoiceXML properties,
audio groups, and variables that are then loaded by VXML Server. The same configuration is
applied each time the voice element is called.

e The configuration of some voice elements can only be determined at runtime. In these cases a
dynamic configuration is used. As described previously, the Java APl and XML API can be
used to create dynamic configurations.

For a complete list of the voice elements included in Unified CVP, refer to the Element
Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio document.

VoiceXML Insert Elements

There are certain situations in a voice application where a developer may wish to include pre-
written VoiceXML into their Unified CVP application. The developer may desire fine-level
control over a specific voice function at the VoiceXML tag level without having to get involved
with constructing a custom configurable element in Java. Additionally, the developer may wish
to integrate VoiceXML content that has already be created and tested into a Unified CVP
application. These situations are handled by a VoiceXML insert element.

W le S QAR E=a @ A custom element built in VoiceXML providing direct control of
Element lower-level voice dialog at the price of decreased flexibility.

VoiceXML insert elements contain VoiceXML code that the developer makes available as the
content of aVoiceXML <subdialogs. The content can be in the form of static VoiceX ML files,
JSP templates, or even dynamically generated by a separate application server. A framework is

10

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

provided to allow seamless integration of VoiceX ML insert elements with the rest of the call
flow.

The use of VoiceXML insert elements has its consequences such as the loss of being able to
seamlessly switch between different voice browsers, some greater processing overhead involved
with integration with the rest of the call flow, as well as the added complexity of dealing with
VoiceXML itself rather than creating an application with easy to use configurable elements.

VoiceXML insert elements can have as many exit states as the developer requires, with a
minimum of one.

Decision Elements

Even the simplest voice applications require some level of decision making throughout the call
flow. These “crossroads’ are encapsulated in decision elements.

Decision Element

A decision element is like atraffic cop, redirecting the flow of callers according to built in
business rules. Examples of business rules include decisions such as whether to play an ad to a
caller, which of five different payment plans should be offered to the caller, or whether to
transfer a caller to an agent or hang up.

Encapsulates business logic that make decisions with at least two exit
States.

The results of a decision element are represented as exit states. Although many decisions are
boolean in nature, (e.g. “hasthe caller registered?’, “isthe caller new to the application?’),
decision elements can have as many exit states as desired, as long as at least two are specified.

The configuration for a configurable decision contains two components. settings and variables.
Additionally, the Java class that defines the configurable decision sets the exit states it can return
and the designer must map each exit state to another call flow component to handle all its
conseguences.

Action Elements

Many voice applications require actions to occur “behind the scenes’ at some point inthe call. In
these cases, the action does not produce VoiceXML (and thus has no audible effect on the call)
or perform some action that branches the call flow (like adecision). Instead the action makes a
calculation, interfaces with a backend system such as a database or legacy system, stores datato
afile or notifies an outside system of a specific event. All of these processes are built into action
elements.

. Encapsulates business logic that performs tasks not affecting the call
Action Element flow (i.e., has only one exit state).

11

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

An action element can be thought of as away to insert cussom code directly in the call flow of a
voice application. A few examples of action elements could be one which retrieves and storesthe
current stock market price. Another example might be a mortgage rate calculator that soresthe
rate after using information entered by the caller. A standard Unified CVP installation bundles
some pre-built action elements to smplify commonly needed tasks such as sending e-mails and
accessing databases.

Since action elements do not affect the call flow, they will always have a single exit state.
The configuration for a configurable action contains two components: settings and variables.

Web Services Element

Web services are acommon way for any kind of application to communicate with externally
hosted serversto retrieve information or send notification events in a standard manner. Voice
applications that wish to access a web service can use the Web Service element to do so.

Wg eSn;ar e'\gltces A special action element used to interface with a web service.

The Web Services element is an action element so has the same features: it does not affect the
call flow and has a single exit state. The Web Services element, however, has a more complex
configuration than a standard action element. Call Studio renders this configuration with its own
special interface.

One unique feature of the Web Service element is its ability to configure itself at design time.
Thisis done by loading a Web Services Description Language (WSDL) file. A WSDL fileisan
XML file that defines the operations supported by the web services server. It is necessary in
order to define the inputs required by the service that must be entered by the designer and the
outputs returned by the service that can then be stored for use later in the application.

For much more detailed information about how to use the Web Services element, refer to the
Call Studio online help.

Flag Elements

One tool an application designer requires is a mechanism where the activities of callers can be
analyzed to determine which part of the application isthe most popular, creates confusion, or
otherwise is difficult to find. To do these analyses, the developer would require knowledge on
whether a caller (or how many callers) reached a certain point in the application call flow. This
check may also be done within the call itself, changing its behavior dynamically if a caller
visited a part of the application previously. To do this, the developer would use flag elements.

Flag Element Records when a caller reached a certain point in the call flow.

12

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Flag elements can be seen as “beacons’, which are triggered when a caller visits a part of the call
flow. The application designer can place these flag elements in parts of the call flow that need to
be tracked. When the flag is tripped, the application log is updated so that post-call analysis can
determine which calls reached that flag. The flag trigger is also stored within the call data so an
application can make decisions based on flags triggered by the caller.

Flag elements have a single exit state and do not affect the call flow whatsoever.

Hotlinks

Many voice applications an utterance or key press that when entered by the caller resultsin the
application following a certain path in the call flow. In Unified CVP, these actions are referred to
as hotlinks.

Hotlink An utterance and / or key press that immediately brings the call to a
specific part of the call flow or throws an event.

Hotlinks are not elements in that they do not generate VoiceX ML or execute any custom code.
Instead, a hotlink acts as a pointer (or link) to direct the call somewhere or throw aVoiceXML
event when the right word or key press is detected.

There are two hotlink types: global hotlinks and local hotlinks. Global hotlinks are activated
when the utterance/keypress is detected anywhere in the application. An application can define
any number of global hotlinks. An example of aglobal hotlink is the utterance "operator" (and /
or pressing “0”) that transfers callersto alive representative wherever they are in the application.

Local hotlinks are activated only when the utterance or keypress is detected while the caller is
within the voice element in which the local hotlink is defined, i.e. that hotlink is“local” to the
voice element. Local hotlinks allow the application designer to catch certain utterances or
keypresses and handle them in a manner different from how the voice element would handle it.
A voice element can define any number of local hotlinks. An example is listening for the
utterance “I don't know” while in a voice element that expects numeric input. Without the
hotlink, the element would encounter a no match event because it’s unable to interpret the
utterance as a number.

Hotevents

While hotlinks are caller utterances that trigger an action, there are times when the occurrence of
aVoiceXML event is expected to trigger an action. The event can be user-triggered (such as a
noinput event), asynchronous (which would be thrown by the voice browser), or developer-
defined (such as a hotlink that throws an event). In each case, the developer may wish to play
audio, store data, or move to another part of the call flow when the event is triggered. In Unified
CVP, these are referred to as hotevents.

13

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

A global event that when caught, executes devel oper-specified actions.

Like hotlinks, hotevents can act as pointers to direct the call somewhere. They may also specify
VoiceXML to execute when the event istriggered. An application can utilize any number of
hotevents, each activated by a different event.

Note that a hotevent istriggered by aVoiceXML event, not a server-side event such as a Java
exception or an error such as a database being down.

Unlike hotlinks, hotevents are all global, there is no such thing as alocal hotevent.

Application Reuse

There are many scenarios where a set of smaller applications works better than a single
monolithic application. The desire to split up applications into smaller parts centers on reuse —
encapsulating a single function in an application and then using it in multiple applications can
save time and effort. Additionally updating a single application is much simpler than updating
multiple applications with the same change. VXML Server provides two different ways to foster
application reuse, each with its own unique features.

Application Transfers

There may be instances where a caller in one application wants to visit or “transfer to” another
standalone application. This is accomplished with an application transfer.

Application A transfer from one voice application to another running on the same
Transfer instance of VXML Server, simulating a new phone call.

Application transfers do not require telephony routing; they are a server-side simulation of a new
call to another application running on the same instance of VXML Server. The caller is not
aware that they are visiting a new application, but VXML Server treatsit asif it were a separate
call with separate logging, administration, etc. Data captured in the source application can be
sent to the destination application (even Java objects) to avoid asking for the same information
multiple times in a phone call.

A situation that could utilize application transfers would be a voice portal whose main menu
dispatches the caller to various independent applications depending on the caller’s choice.

An application transfer is meant to satisfy the need for one independent, standalone application
wishes to move the call to another independent standalone application that can also take calls
directly. Since an application transfer is used to progress a call from one application to another, it
has no exit states.

14

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Subdialogs

There are instances where an application is less independent and really encapsulates some
function that multiple applications wish to share. This can be achieved by using a subdial og.

A visit to another VXML Server application or other voice application
Subdialog defined in a VoiceXML subdialog context that acts as a voice
“service”.

Unlike application transfers that are separate but independent applications, subdialogs are “sub-
applications’ that an application can visit to handle some reusable functionality and then return
back to the source application. It can also take as input application data (though not Java objects)
and can also return data for use in the source application. Subdialogs also do not have the
restriction that they be deployed on the same instance of VXML Server, they can be hosted
anywhere accessible viaa URL and does not even need to be a VXML Server application at all.

The VXML Server subdialog is similar to the VoiceXML Insert element but without the
requirement to understand VoiceXML. VoiceXML Insert elements are also much more
integrated with the rest of the application to be considered an element aternative where a
subdialog truly sends control to the subdialog application. For example, hotlinks and hoteventsin
the source application do not work in the subdialog application where they do in aVoiceXML
Insert element.

A situation that could utilize a subdialog would be a third party that develops a sophisticated
voice-based authentication system that other applications can use to validate callers. That
company exposes their service as a VoiceXML subdialog that takes specific inputs and returns
information on the identity of the caller. Any application that wishes to use the service will then
use the subdialog element to visit this application.

In order to utilize a subdialog, several special elements are needed in the source and subdialog
applications. Visiting a subdialog from a source application requires that it use a Subdialog
Invoke element.

ST [EoMlalVe)GB An element used by an application to initiate a visit to a subdial og.

The Subdialog Invoke element will be treated by the application as an element but will be the
gateway to the subdialog. This element handles the inputs and outputs of the subdialog
application. While the subdialog application is handling the call, the source application is
dormant waiting for the subdialog to return. The Subdialog Invoke element has a single exit state
that is followed when the subdialog application returns.

If aVXML Server application is to act asthe subdialog, it uses two different elements: the
Subdialog Sart and the Subdialog Return elements.

15

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

An element used by a VXML Server subdialog application at the start
Subdialog Start of the call flow to import all variables passed by the source
application.

An element used by a VXML Server subdialog application when the
subdialog is complete to return data to the source application.

Subdialog Return

These elements must be used as the “endpoints’ of a subdialog application. The Subdialog Start
must be the first element in the application from which the rest of the call flow emerges. The
Subdialog Return must be the final element in the call flow (to be used instead of the Hang Up
element). An application that does not use these elements can only handle calls made directly to
it and cannot be visited by another application as a subdialog.

16

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Unified CVP Call Studio Introduction

Call Studio isa platform for creating, managing, and deploying sophisticated voice applications.
Call Studio is developed using the Eclipse framework, though no knowledge of Eclipse is
necessary to work with Call Studio. Call Studio acts as a container in which features—called
plug-ins—are encapsulated. It includes plug-ins for voice application development, Java
programming, and many other features provided by Eclipse.

This section provides a brief introduction on how to license Call Studio, its preferences, creating
anew project, and how to access online help. Refer to the online help for much more detailed
information on Call Studio.

Licensing
Trial Period

Call Studio can be used for atrial period of 30 days without activation.

Applying a License

When Call Studio isinstalled and launched for the first time, the software will display an
activation dialog. Additionally, each time Call Studio is started without an active license, it will
display this dialog.

To apply alicenseto Cal Studio:

1. When Call Studio is launched for the first time, it displays an “Activation...” dialog:
T Activation... §|

License Type: M/A

Serial Number: M/A

Activation Date: MOT ACTIVATED
Expiration Date: M/A

System ID: WK -WPK-RLIF-T2PH

Installation Key: || | | - | |
Please visit the Cisco Software registration website at: http: ffwww, dsco.comjfgolicense

The Installation Key iz missing or invalid. Flease set a valid Installation Key.

| |

2. Openthe licensetext file that should be applied to thisinstallation; if needed, first visit
http://www.cisco.com/go/license to obtain one. The installation key isthe first piece of

17

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

information found in this file, after the label “InstallationKey:” (see highlighted section
of image below). Ensurethat the installation key is in the format XXXXX-XXXXX-
XXX XX-XXXXX-XXXXX (5 groups of 5 characters). Other formats are for other
products.

installationkey:yl0iE NIIOY- 41316 Fut by - THRIR: | fcensekey : UESDBBQAC
e s i . s WllEE+b9L /QHnAGUPMTD
N53YZxrGk8413rvZgvRrusZzThxbD8+1tBK] INWTsm7HZZTd /MUIN,/ /XOT IWMUMKNSO
f%imAbquWvarmrfnqungg+er4JDGALUTBPWEEEiNJQ{GUDEIHFB+{ECHAVEGJH
HNF4BD3puTOUCvSqDCiERvVpAnb /xsdX9PHEZZ pDe05p3psMvxpluspkIigpBUIhEgD
xaud42sx,/nk58Lqujfuv+vP0/fBwhgPZuozbzf D1 xykNDD] LAEUMY J1TTOIOZY T dQZ
FMTRNFEQCFdaBkmAGjudeHCF xFLSKPAOMEAYSKKINY IF3LZF7 afMBUSh3MOZ++xACr
wnmdZvtubaIugxbAcqF4mgE+ /bpkvkiTRLGIURVI jugmxLYJ90oDvuUf4tQopkpxax
Ue,/vX+xF IBFE6rhmsERHWTUEIqx 105 1CNPeiFEZ IVIXMVEDQ2ZQEGNIpKmMUzZgMdIsu
QQwyhGyo 1Dyt L1B3bIwsdKuvwRC Yy BN7 elN5ShHGT 7a+ jucIgxNfwgSfgil7t /Ps9
SaEuuGdwWSZimumdewngloarvixkezndNgrCefnkFEbE I 80W PyMuZVWTCXU?XZ?ﬁ
aoulxkKnUy3afFZCds803c1sumpAj21lqtkkE0gpp0TEIdEulxNjet250d1G3E4cld]a
ib+/XeuktuloxivyCf364hd 306X 3FqIX1IVi+i+TT14u7 76D1BLEBW NUVAQIQTAABTIKA
ABQSWMEFAATAAQADVPXNQAAAAAAAAANAAAAAAKAMARTaWdUYXR1CMUZ0GESYdSedkl
gdssecSryR1ImpbrovC3ogmETsDyQIWFTUSLYZFBXZ02 3gaqf 7 55KAUESHCIMFOBAXA
AAAL gAAAFBLAQIUABQACAATAGLTETbNUVAQIQIAABIKAAAHAAAAAAAAAAAAAAANNAN
AAABMAWNTbNNTUESBANQAF AATAAQADVPXNOMF OBAXAAAAL QAAAAKAAAAAAAAAANAAN
AAAWQIAAFNDZ 2 5ShdHVYZ VEL BQYAAAAAAQAC AGWAAADC AQAAAAA=

3. Theremaining information in the license text file isthe license key text. The license key
text is composed of all characters after the label “LicenseKey:” (see highlighted section
of image below).

WCDY—JHRIREL Trensekey LESDEBOAL
;’ Avibet IOBERLDYl OHInAGUPRID
l3rvoagyRruss /ThabDBLITER] NWFsm HezTo MUITHN, XolieMuMENDO
f%ﬁmAbquwvbvrmrfnquapvg+5rf43nnALUTBPWEaﬁim3qfnun21nFB+fEcHAvEGJH
HMEARDIpuTOL cvsabciEhvnanb wecxOpHeZ phelsnipskvepilspe 10peUthegb
xalds2sx nkoBlauifuvewbPd TEwhoes o bz PO ey NBE L AELMY It a0y o
EMFENFEQerd Bk mACTudBRoTxl sk AnESYERETH TR 3] PE 7 afMELERANG L LAl
wWnmdZytuball SxbacgFimgE+ bpkvk I TREGIURVI TUgmxl Y 1900DVUUTA tOopkpxGY
Ue veixf IBEBEFrPMsERMWVTUB Iox lOS (L nPelFEZ iviNmVEROJOEGN PRIz onid i 51
gwyhoyo Dyt LIBSh sk v Yy BN eI NSERHGT Pat il o gxNfugdfgil 7t Psg
SabbuGtewss Lmnndedmoloar v xbEzndNoRc e nkEBbD 200 PyMu:vWTtﬁn?ﬁZgi
aou i xKnlvdat Eocds80de IsUmpa sl I gt Kk B0oppOTEIdbn IR 0t J50d IcaEdeid ia
dht buktubox v P36l RA DG IEaO I Ve 1+ TR 1A U7 TED] BL BWiniv A 10T ASE KA
ABCSWMEE AT AACADVENNOARAAMASNARRASASA ARAETaWdL Y RIcm ZOGE Syl]
gdscecSryRinphrove oamE TsDVOTWETUSI W ER ol ToAnf FEokAlIESHE TmE0BANA
AARE aRARERE ANTIIARAAC SATACT THTRSUUAI IO T ARBTR AANH AN A AARANARARARARAY
ASAER AWM BN LE=BARCAE AATARCARVE SNOmE DB AR AAAR] BAANALAAALAARARAAAAL
Addpin T AAENDT 2 Shd VR EVEL BOYARAARAAL ACWARADC AL AR S

4. Enter theinstallation key (from step 2) into the matching fields in the “ Activation...”
dialog.

5. Click the “Activate >>" button.
6. Choosethe “Manual Activation” radio button.

18

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

7. Pastethe license key text (from step 3) into the “License Key:” text area. The dialog
should now resemble the image below.

TR Activation... r'5_(|

License Type: MfA

Serial Mumber: MfA

Activation Date: MOT ACTIVATED
Expiration Date: MfA

System ID: WTH-PK-RLIF-T2PH

Installation Key: | ¥107H - | gy - | 41318 -|zweoy - | HRIR

Please visit the Cisco Software registration website at: http:/fwww.dsco.com/golicense

™ Online Activation
{* Manual Activation

License Key:

UEsDBEQACAAIAG ITETY AAAAAAAAAAAAAAAAHAAAATGHZW SzZaVWUW HQBB+
S zurGkE413rvZaVRruSZZfoXbDE + 1BEIINW fsmHzzfd MulM/ oo TIwMuMENS0 3ir |
bvrmr fnQujPvg+srf41DoALUTEPWESSIMIQ fouD 2 InFa +/BcHAvgG JHHMF4ED 3puTol

VpAnb fsdX8PHEZZpDe0 5p3pSMYXpOUspkTliQpEUThEgDxau4d 25y fnk SELqujfuy +vF

Zu0ZbzDixykMDDILAEUMY it TolOZY 7dQZFMMRNFEqcFdABkmAGjudeHCFx fLsKPADK —
7IF3LZF 7afBush 3MOz++xACrwnmdZV tubal J9%bAcgF4mgE +bpKvki TRLGIURY 1
DYuUfHQopkprGxUe X +XfIBF86rhmsERHWTUS 1gulOSICnPeiFEZIvImy thg 2QEGI
MdIsuQQW YhGyOIDyil 18 3bIwsdkuvwR CYwidh 7e 1INSShHGI7a +UcJgxM g 9fgil 7t

4 | *

| £

Trial period expired, Please activate to continue using Call Studio.

<< Hide | Activate ‘

8. Click the “Activate” button, and the “ Activation Successful” notification should be
displayed. Click “OK” and Call Studio will continue loading. It isnow licensed.

E Activation...

i J Activation Successful,

19

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Preferences

The Preferences for Call Studio can be set by choosing Window->Pr efer ences from the menu
bar. Most of the settings listed here apply to the Eclipse platform; however, those listed under
Call Studio are specifically intended for Call Studio (see below). If modifications are made to
any of these settings, it isrecommended that Call Studio be restarted so that the new settings can

take effect.
P Preferences |:|@@

type filter text General o

General

ron [C1Expand elements in Elements View
+- An

- Call Studio [#]Expand call flow elements in Outline View
Call Flow Theme Settings

Project
Help
InstallUpdate
Java
Plug-in Development
Run/Debug
Team

Call Flow Theme: |Studio 5§ %

[Restore Defaults] [Apply]

@) I OK l [Cancel]

» Expand elementsin Elements View. This setting controls whether elementsin the
Elements view appear fully expanded or collapsed (the default).

* Expand call flow elementsin Outline View. This setting controls whether call flow
elements in the Outline view appear fully expanded (the default) or collapsed.

= Call Flow Theme. This setting controls the look and feel (i.e., theme) of elementsin the
Callflow Editor.

20

CHAPTER 1: INTRODUCTION USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Builder for Call Studio

The Builder for Call Studio isagraphical user interface for creating and managing voice
applications for deployment on VXML Server. VXML Server is the runtime framework for
Unified CVP voice applications.

A complete dynamic voice application can be constructed within the Builder, including call flow
and audio elements. The philosophy behind the Builder is to provide an intuitive, easy-to-use
tool for building complex voice applications.

The conception and design of voice applications make use of flowchartsto represent the
application call flow. Because flowcharts outline actions, not the processes behind these actions,
they are an effective tool for representing the overall logic of the call flow. The flowcharting
process is useful for mapping all the permutations of a call to ensure that all possible outcomes
are handled appropriately. The schematic nature of flowcharts also make it easier for call flow
designersto see where callers can get lost or stuck as well as how the call flow can be improved.

The Builder works as a flowcharting program tailored specifically for building voice
applications. Most of the familiar features of a flowcharting tool are present in the Builder, with
a palette of shapesthat can be dragged and dropped onto a workspace and labeled, lines
connecting those shapes, multiple pages, and more.

Project Introduction

A Call Studio project contains all the resources required to build and deploy voice applications
that will run on VXML Server.

The cal1fiow folder containsthe xml files which make up that application’s call flow and
element configurations. The app.callflow file will open the Callflow Editor and graphically
represent the call flow based on the information found in these files. Every time the application
is saved, these files are updated.

The deploy folder contains any extra resources required for deployment; for example, local
custom elements and Say It Smart ~ plug-ins.

Creating a Call Studio Project
1. To create a Call Studio project, choose File -> New -> Call Studio Project.

21

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

5 Edit Mavigate Search Project Run Window Help

Mew RIS ies I = Project...

Open File...
T Call Studio Project
= Other...

Deafrach =14

2. Enter aname for the new Call Studio project and select Next. Leave Use default checked
to create the new project in the default workspace directory.

m New Call Studio Project @

call Studio Project v

Create a Call Studio Project Z@

Project name: ‘ MyNewProject] ‘

Use default location

@ l Mext >]I Finish H Cancel]

3. Enter the General Settings for the new Call Studio Project and select Next. General
Settings can always be changed later.

22

CHAPTER 1: INTRODUCTION USER GUIDE FOR CIScO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

B New Call Studio Project El
call Studio Project ™M
General Settings ;uﬁ
Deploy Version: |CaH Services 6.0 v |
Maintainer: [|
Language: [|
Encoding: | v|
Subdialog:
Session Timeout:

VoiceXML Gateway:

VoiceXML Gateway Description
This gateway adapter is compatible with the following voice browser:

Cisco Unified CVP 4.1 with Cisco DTMF

User Management: [_]Enable

Loggers:

ErrorLag Add...
AdminLog

ActivityLog

@ [<Back J[mext> J[_Fmsh][cancel |

4. Enter the Audio Settings for the new Call Studio Project and select Next. Audio Settings
can always be changed later.

m New Call Studio Project @

call Studio Project AL

Audio Settings Sﬁ,ﬁ

Generic Error Message:

Sorry. There has been an error.

Error Audio URI: | [Callservices faudio/error, vox

Suspended Message: Sorry, this voice application has been taken down for maintenance,

Suspended Audio URL: | [callservices faudio/suspend_audio.vox

Initial On-Hold Audio URI: | [callservices faudiofonhald_initial, vox

Main On-Hold Audio URI: | [callservices faudiofonhold_continue.vox ‘
Default Audio Path URI: | ‘

S

(2) l < Back ” Mext > I[Finish H Cancel]

5. Enter the Endpoint Settings for the new Call Studio Project and select Next. Endpoint
Settings can always be changed later.

23

CHAPTER 1: INTRODUCTION

USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO
m New Call Studio Project

Call Studio Project
Endpoint Settings

On Application Start:

Add...

On Application End:

Add...

On Call Start: |-

v

On Call End: | .

vl

[< Back ” Mext = H Finish

H Cancel]

6. Enter the Root Document Settings for the new Call Studio Project and select Finish. Root
Document Settings can always be changed later.

m New Call Studio Project

call Studio Project 5},»,1_‘
Root Doc Settings ﬁ
JavaScript:
Add...
VoiceXML Property Value VoiceXML Yariable Value

The new Call Studio Project will appear in the Navigator view.

24

CHAPTER 1: INTRODUCTION

USER GUIDE FOR CIScO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The new application’s call flow will automatically open in the Callflow Editor.

f.rll:']'\%v:'l:l

[}z MyNewProect
[+ [calfon
(= dealay

.

B Myewsraiect ®

() sart Ufca@

peget |

25

CHAPTER 1: INTRODUCTION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Online help

Detailed descriptions of all Call Studio features, element types, and functionalities can be found
in Call Studio’sonline help. This comprehensive online help can be accessed viathe Help ->
Help Contents menu option:

Welcome. ..

€ Help Contents

Q%"' Search
Dryriarnic Help

Key Assist, .. Ctrl+5hift+.
Tips and Tricks...
Cheat Sheets. ..

Software Updates L
Activation. ..

About Cisco Unified Call Studio

26

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Chapter 2: Unified CVP Components in Detalil

Some components of VXML Server require detailed explanations on how to use them properly,
especially when their functionality requires or is extended by programming. While it is certainly
possible to create avoice application entirely dependent on fixed data, most dynamic
applications will require some programming work.

It isimportant for the non-developer user to be aware of these components and the functions they
serve. The application designer will need to understand in what situations various components
are needed so that a comprehensive specification can be given to a developer responsible for
building these components.

This chapter describes these components in more detail, explaining typical situations where they
would be used. It also describes the Unified CV P concepts utilized in order to develop and use
the components. The Programming Guide for Cisco Unified CVP VXML Server and Cisco
Unified Call Studio describes the components that require programming from the developer’s
standpoint, explaining the process of constructing and deploying them. One can think of the
Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio asa
comprehensive description of what this chapter introduces.

Components

The components discussed in this chapter are:

e Built With Programming. These components require some programming effort.
e Call-Specific. These components are built to be used within individual calls.

* Custom Configurable Elements. A developer may wish to create their own reusable,
configurable elements to supplement the elements Unified CV P provides.

* Standard Action and Decision Elements. For situations where unique, application-
specific functionality is needed, thereby not requiring the flexibility and complexity
of configurable elements.

* Dynamic Element Configurations. For situations where the configuration for a
configurable element can only be determined at runtime.

» Start and End of Call Action. To perform tasks before each call begins and/or after
each call ends.

* Hotevents. To specify the VoiceXML to execute when a certain VoiceXML event
OCCUIS.

* Say It Smart Plugins. To play back additional formatted dataor to extend existing Say
It Smart behavior.

27

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e VXML Server-Specific. These components are built to run on VXML Server as awhole
and do not apply to a specific call.

» Start and End of Application Actions. To perform tasks when a Unified CVP voice
application is loaded and/or shuts down.

* Loggers. Plugins designed to listen to events that occur within calls to an application
and log or report them.

* On Error Notification. To perform tasks if an error causes the phone call to end
prematurely.

e Built Without Programming. These components do not require high-level programming
effort to construct.

» XML Decisions. Unified CVP provides an XML format for writing simple decisions
without programming. The exact XML format is detailed in this chapter.

* VoiceXML Insert Elements. Thiselement isused in situations where the developer
wishes to incorporate custom VoiceX ML content into a Unified CVP application. The
guidelines for building a VoiceXML insert element are given in this chapter.

Variables

Unified CVP offers variables as a mechanism for components to share data with each other, in
four forms: global data, application data, session data and element data.

Global Data

A global data variable isjust that, it is globally accessible and modifiable from all calls to all
applications. Global data is given a single namespace within VXML Server that is shared across
all callsto all applications. If acomponent changes global data, that change is immediately
availableto all calls for all applications. Global data can hold any data, including a Java object.
The lifetime of global dataisthe lifetime of VXML Server. Global datawould be reset if the
application server was to be restarted or the VXML Server web application archive (WAR) was
to be restarted.

Global dataistypically used to store static information that needs to be available to all
components, no matter which application they reside in. For example, the holiday schedule of a
company that applies to all applications for that company.

Application Data

An application data variable is accessible and modifiable from all calls to a particular
application. Application data variables from one application cannot be seen by componentsin
another application. Each application is given its own namespace to store application data. If a
component changes application data, that change is immediately available to all other callsto the
application. Application data can hold any data, including a Java object. The lifetime of

28

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

application datais the lifetime of the application. Application data would be reset if the
application were updated and would be deleted if the application were released.

Application data is typically used to store application-specific information that does not change
on aper call basis and isto be available to al calls. For example, the location of a database to
use for the application.

Session Data

Session data variables are accessible and modifiable from a single call session. Session data
variables in one call cannot be accessed by components handling another call. Each session has
its own session data namespace - session data set by one component will overwrite existing
session data that has the same name. Session data can hold any data, including a Java data
structure. The lifetime of session data is the lifetime of the session or the call. When the call
ends, the session data is deleted.

Any component accessed within a call session, including elements, can create, modify and delete
session data. Session data can even be created automatically by the system in two ways:

e |f the voice browser passes additional argumentsto VXML Server when the call is first
received, these additional arguments will be added as session data with the arguments
name/value pairs translated to the session data name and value (both as st rings). For
example, if the voice browser calls the URL:

http://myserver.com/CVP/Server?audium application=MyApp&SomeData=1234

thiswill create session data named “SomeData’ with avalue of “1234” in every call session
of the application “MyApp” that starts viathis URL.

e [faUnified CVP voice application performs an application transfer to another application
and the developer has chosen to pass data from the source application to the destination
application, then this data will appear as session data in the destination application (the data
is renamed before it is passed to the destination application). Please refer to the Call Studio
documentation for more information on application transfers.

Element Data

Element data variables are accessible from a single call session and modifiable from asingle
element within that call session. As the name suggests, element data can only be created by
elements (excluding start and end of call events, the global error handler, hotevents, and XML
decisions). Dynamic configurations are technically part of an element since they are responsible
for configuring an element, so they can also create element data. Only the element that crested an
element data variable can modify or delete it, though it can be read by all other components. Due
to the fact that the variable belongs to the element, the variable namespace is contained within
the element, meaning two elements can define element data with the same name without

29

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

interfering with each other. To uniquely identify an element data variable, both the name of the
element and the name of the variable must be used. Like session data, the lifetime of session data
is the lifetime of the session or the call. When the call ends, the element datais deleted.

Component Accessibility

Table 2-1 lists each component and its ability to get and set global, application, session, and
element data

Global Application | Session Element

Data Data Data Data
Component Get | Set | Get | Set | Get | Set | Get | Set
Configurable Elements Yes| Yes| Yes | Yes | Yes| Yes | Yes | Yes
Standard Elements Yes | Yes| Yes | Yes | Yes| Yes | Yes | Yes
Dynamic Configurations Yes| Yes| Yes | Yes | Yes| Yes | Yes | Yes
Start and End of Call Actions Yes | Yes| Yes | Yes | Yes| Yes | Yes | Yes
Hotevents No | No | No No | No | No | No | No
Say It Smart Plugins No | No | No | No | No | No | No | No
Start and End of Application Actions Yes| Yes| Yes | Yes | No | No | No | No
Loggers Yes| No | Yes | No | Yes| No | Yes| No
On Error Notification No | No | No No | Yes| No | No | No
XML Decisions No | No | No No | No | No | No | No
VoiceXML Insert Elements No | No | No No | Yes| Yes | Yes | Yes
Table 2-1
Notes.

e Hotevents, being simply VoiceXML code appearing in the root document, do not have access
to any server-side information.

e A Say It Smart Plugin’s sole purpose is to convert avalue into alist of audio files and so do
not have a need to access server-side information.

e A Logger's sole responsibility isto report or log data and therefore has access to all variables
types but cannot set them.

e On Error Notification classes are given the session datathat existed at the time the error
occurred.

APls

To facilitate the development of components requiring programming effort, Unified CVP
provides two application programming interfaces (APIs) for developersto use. Thefirst isa Java
API. The second API involves the use of XML sent viaHTTP, thereby allowing components to

30

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

be built using programming languages other than Java. Some more complex and tightly
integrated components can be built only through the Java API, though in most other aspects, the
two APIs are functionally identical. The APIs themselves and the process of building
components using either API is fully detailed in the Javadocs published with the software and in
the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio.
The two components that do not require the use of high-level programming, XML decisions and
VoiceXML insert elements, are fully explained in this document.

The APIs are used to interface with VXML Server in order to retrieve data or change
information. The API provided to each component has slightly different functionality reflecting
each component’ s unique abilities. The following lists abilities provided by the API that is
common to most components used within a callflow:

e Getting call information such asthe ANI, DNIS, call start time, application name, etc.

e Getting or setting global data, application data, element dataor session data.

e Getting information about the application’s settings such as the default audio path, voice
browser, etc.

e Setting the maintainer and default audio path. Changing the maintainer allows multiple
people to maintain different parts of a single application. Changing the default audio path
allows an application to change the persona or even language of the audio at any time during
the call.

e Sending acustom event to all application loggers (see Chapter 5: VXML Server Logging for
more on logging with VXML Server).

Table 2-2 shows which API can be used to construct the various components listed.

Build Build Using | VoiceXML
VXML Server Component With XML-over- | Knowledge

Java APl | HTTP API | Suggested
Configurable Action and Decision Elements Yes No No
Configurable Voice Elements Yes No Yes
Standard Elements Yes Yes No
Dynamic Element Configurations Yes Yes No
Start or End of Call Actions Yes Yes No
Hotevents Yes No Yes
Say It Smart Plugins Yes No No
Start and End of Application Actions Yes No No
Loggers Yes No No
On Error Notification Yes No No
XML Decisions NA NA NA
VoiceXML Insert Elements NA NA Yes

Table 2-2

31

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Configurable Elements

Most of the elementsin atypical Unified CVP application are pre-built, reusable elements whose
configurations are customized by the application designer. Using a configurable element in a call
flow requires no programming or VoiceXML expertise and since they can encapsulate a lot of
functionality, greatly simplifies and speeds up the application building process. VXML Server
includes dozens of elements that perform common tasks such as collecting a phone number or
sending e-mail. A need may exist, however, for an element with functionality not available in the
default installation. Additionally, while Unified CV P elements have been designed with
configurations that are as flexible as possible, there may be situations where a desired
configuration is not supported or difficult to implement.

To satisfy these concerns, a developer can construct custom configurable elements that, once
built, can be used and reused. The developer can design the element to possess as large or as
small a configuration as desired, depending on how flexible it needs to be. Once deployed,
custom elements appear in Builder for Call Studio in the Element Pane and are configured in the
same way as Unified CVP Elements.

Due to the level of integration with the Unified CV P software required, only the Java API
provides the means for building configurable elements. Using this API, configurable action,
decision, and voice elements can be built. VVoice elements, dueto the fact that they are
responsible for producing VoiceXML, use an additional Java API, the VVoice Foundation Classes
(VFCs). The VFCs are used to abstract the differences between the various voice browsers
supported by Unified CVP. The VFCs follow a design that parallels VoiceX ML itself and only a
developer familiar with VoiceXML and the process whereby a voice browser interprets
VoiceXML will be fully suited to utilize the VFCsto build voice elements.

The Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio
describes the process of building configurable elements including detailing the VFC API for
building voice elements.

Standard Action and Decision Elements

Unlike configurable action or decision elements, a standard action or decision element is
designed more as a one-off as they satisfy an application-specific purpose. As aresult, sandard
action and decision elements do not require configurations.

There are many situations where programming effort is required to perform some task specific to
an application. Since the task is very specialized, pre-existing reusable elements are too general
to perform the effort. Additionally, building a configurable element for this purpose would be
overkill since there is little chance it would be needed anywhere but in this application. The
developer would use a standard action or decision element to perform just thistask. If the task is
applicable to multiple situations, the developer most likely would put in the extra effort to
construct a configurable, reusable element.

32

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Unified CVP provides a means of defining standard decision elements without programming by
writing an XML document directly within Builder for Call Studio. This format should be
investigated when desiring simple or moderately complex standard decision elements, falling
back on the programming API should the built-in format prove insufficient. The XML format
that the Builder for Call Studio user interface produces for ssandard decision elementsis
described later in this chapter.

Dynamic Element Configurations

Each configurable voice, action, and decision element used in an application must have a
configuration. Usually, the configuration will be fixed - it actsthe same for every caller that
visitsit. In these situations, the designer using Builder for Call Studio createsthis configuration
in the Configuration Pane. This configuration is saved as an XML file when the application is
deployed.

There are situations, though, that a configuration for an element depends on information known
only at runtime — it is dynamic. An example would be to configure the Unified CVP audio voice
element to play a greeting message depending on the time of the day. Only at runtime does the
application know the exact calling time and therefore what greeting message to play.

To produce dynamic configurations, programming is required. Dynamic element configurations
are responsible for taking a base configuration (a partial configuration created in the Builder for
Call Studio), adding to it or changing it depending on the application business logic, and
returning the desired element configuration to VXML Server.

Start / End of Call Actions

Unified CVP provides mechanisms to execute some code when a phone call is received for a
particular application or when the call ends. The end of acall is defined as either a hang up by
the caller, a hang up by the system, a move from one Unified CVP application to another Unified
CVP application, or other rarer ways for the call to end such as a blind transfer or session
timeout.

The purpose of the start of call action istypically to set up dynamic information that is used
throughout the call, for example, the current price of a stock or information about the caller
identified by their ANI in some situations. The end of call action istypically used to export
information about the call to external systems, perform call flow history traces, or execute other
tasksthat require information on what occurred within the call.

The start of call action is given the special ability to change the voice browser of the call. This
change applies to the current call only, and allows for atruly dynamic application. By allowing
the voice browser to change, the application can be deployed on multiple voice browsers at once
and use a simple DNIS check to output VoiceXML compatible with the appropriate browser.

33

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Thistask can only be done in the start of call action because the call technically has not started
when this action occurs.

The end of call action is given the special ability to produce afinal VoiceXML page to send to
the browser. Even though the caller is no longer connected to the browser by the time the end of
call action isrun, some voice browsers will allow for the interpretation of a VoiceXML page sent
back in response to arequest triggered by a disconnect or hang-up event. Typically this page will
perform final logging tasks on the browser.

Hotevents

A hotevent is some developer-defined action performed whenever aVoiceXML event is
triggered. Hotevents can take two forms. The first simply moves the caller to anew part of the
call flow when the event istriggered. In this case the hotevent can be defined entirely in the
Builder for Call Studio by the application designer and does not require any additional work by a
developer. The second form of a hotevent executes custom VoiceXML content when the event is
triggered (and may optionally also move to another part of the call flow).

The second form requires a Java class that returns the VoiceX ML to execute when the event is
triggered. Thisclass is accessed once per call, not when the event istriggered. Thisis because
hotevents appear in the VoiceXML root document, which is generated when the application is
started or updated. For this reason the API provided to hotevents do not have access to call
information normally given to other components. The purpose of a hotevent is solely to produce
VoiceXML that will execute when the event istriggered.

A hotevent can be created to react based on a gandard VoiceXML event such as nomatch or
noinput, but a more common use for a hotevent is to be triggered by a developer-specified or a
voice browser-specific event. For example, one can create a hotevent to play audio when a
custom event occurs.

As with any other component that produces VoiceXML, the hotevent utilizes the VFCs and
therefore can only be constructed with the Java API.

Say It Smart Plugins

In VXML Server, developers can create their own Say It Smart plugins. Similar to custom
elements, Say it Smart plugins are pre-built Java classes that when deployed in the Builder for
Call Studio can be used as anew Say It Smart type. Aswith custom elements, the level of
integration required with the Unified CV P software restricts the creation of Say It Smart plugins
to the Java API.

Custom Say It Smart plugins can be constructed to read back formatted data not handled by

Unified CVP Say It Smart plugins, such as spelling playback or reading the name of an airport
from its three-digit code. Plugins can also be created to extend the functionality of existing

34

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

plugins, such as adding new output formats to play the information in another language. For
example, a plugin can define a new output format for the Unified CVP Date Say It Smart plugin
that reads back dates in Spanish.

Refer to the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call
Studio for afull description of the process of building custom Say It Smart plugins.

Start and End of Application Actions

Unified CVP provides mechanisms to execute some code when an application is launched or
shut down. A start of application action isrun when the VXML Server web application archive
(WAR) starts up (which occurs when the application server first starts up or the application
server reloads the WAR), or the application is updated. An end of application action is run when
the application is updated, released, or the web application is shut down (which occursiif the
application server reloads or shuts down the web application or the application server itself is
shut down).

The purpose of the start of application action istypically to set up global data or application data
that would be accessed by components within the callflow. Since global and application data’'s
lifetime is the lifetime of the application and they can contain Java objects, the start of
application action could even set up persistent database connections or other communications to
external systems that would remain connected as long as the application were running. Note that
should an error occur within the start of application class, the application deployment will
continue unchanged. The designer can specify that an error in a particular start of application
class should stop the application deployment. This would be done if the class performs
mandatory tasks that are necessary for the application to run correctly.

The purpose of the end of application action would be to clean up any data, database
connections, etc. that would no longer be needed once the application is shut down. Note that the
end of application action is called even when the application is updated because the update may
have changed the datathat is needed by the application.

Every application deployed on VXML Server has the ability to define any number of start and
end of application actionsthat are executed in the order in which they appear in the application
Settings.

Loggers

The act of logging information about callers to the system is performed by loggers. An
application can reference any number of loggersthat “listen” for logging events that occur.
These events range from events triggered by a call, such as a caller entering an element or
activating a hotlink to administration events such as an application being updated to errors that
may have been encountered. Loggers can take the information on these events and do whatever

35

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

desired with them. Typically the logger will store that information somewhere such as alog file,
database or reporting system.

VXML Server includes default loggers that store the information obtained from logging events
to parse-able text log files. A need may exist, however, for alogger with functionality not
available in the default installation or alogger that takes the same data and stores it using a
different mechanism.

To satisfy these concerns, a developer can construct custom loggers that listen for logger events
and report them in their own way. The developer can design the logger to use a configuration to
customize how the logger functions, depending on how flexible it needsto be. Dueto the level
of integration with the Unified CV P software required, only the Java APl provides the means for
building loggers.

Refer to Chapter 5: VXML Server Logging in the section entitled Application Loggers for
descriptions of the loggers included with VXML Server. Refer to the Programming Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio for a description of the process
of building custom loggers.

On Error Notification

When errors occur on the VXML Server, the application-specific error voice element will handle
how to handle the caller. If specified, the on error notification Java class can be configured to be
activated when an error occurs. The class is given information about the application and some
basic call information to allow the developer to specify the action accordingly. The developer
can write this class to perform whatever they wish.

The most common purpose for the on error notification class isto perform some custom
notification, something to indicate at runtime that an error occurred. This could involve paging
an administrator or integrating with athird-party trouble ticket and notification process. Since the
notification usually involves an administrator whose responsibility isthe entire VXML Server,
the Java class, once specified, will apply to any error that prematurely ends a call on any Unified
CVP application.

Note that this class is used for notification purposes; it does not allow the call to recover from the
error. Note also that there isno XML API equivalent for the on error notification; if done at all, it
must be written in Java.

Unified CVP XML Decisions in Detall

Many commercial applications with decisions driven by business logic utilize an external rules
engine to codify the definition of rules. These rules engines help describe the definition of arule
and then manage the process of making decisions based on the criteriaat hand. VXML Server
bundles arule engine in the standard installation and provides an XML data format for defining

36

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

decision elements within the framework of a voice application. The XML format is simple
enough for an application designer to enter within Builder for Call Studio without requiring
Separate programming resources.

A detailed description of the structure of the XML format is warranted. The centerpiece of arule
IS one or more expressions. An expression is a statement that evaluates to atrue or false. In most
cases, there are two parts (called terms) to an expression with an operator in between. The terms
are defined by VXML Server to represent al of the most common items one would want to base
decisions on in a voice application such as telephony data, element or session data, times and
dates, caller activity, user information, etc. The operators depend on the data being compared.
For example, numbers can be compared for equality or greater than or less than while strings can
be compared for equality or if it “contains’ something. One kind of expression breaks this
format: an “exists’ expression which itself evaluatesto atrue or false and does not need anything
to compare it to. For example: “has this caller called before?’ or “does the system have a social
security number for the user?’ Each of these checks for the existence of something which is itself
acomplete expression.

One or more of these expressions are combined to yield one exit state of the decision element.
Multiple expressions can be combined using “ands” or “ors’, though not a combination. For
example: “if the ANI beginswith 212 OR if the ANI begins with 646 then return the exit state
‘Manhattan’”. If acombination of “ands’ and “ors’ is desired, multiple expressions that return
the same exit state would be used. For example, “if the ANI begins with 212 and the user isa
gold or platinum customer, then return the exit state ‘discount’” would not work asasinglerule
because the discount would be given to callers with a 212 area code who are gold customers and
all platinum customers (there is no way to set precedence). This would have to be expressed as
two rules with the same exit state: 1) “if the ANI begins with 212 AND the user isa gold
customer, return the exit state ‘discount’” and 2) “if the ANI begins with 212 AND the user isa
platinum customer, return the exit state ‘discount’”.

It is possible to define an exit state that returns when all other exit states fail to apply, called the
default exit state. When not specified, all possible cases must be caught by the defined rules. For
example, if arule checks if a number is greater than 5, there should be another rule checking if
the number is less than or equal to 5, unless the default exit state is defined. One can even create
aset of rulesthat start from being restrictive, looking for only very specific matches, to
progressively looser since the first rule to be true will yield an exit state and no more rules are
tested.

37

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

[o nameé f\'—,\r. default_exit_stateé
|string i) ~|.string 2]

L4 nameg * conjugaleg
Lstring 1 I *fenumeration |

operator g
Lffenumeration

+ constant_string

/

/ + call_data|
/' + datag]

_;';;< + user_info
|

|
+ general_date_timeE‘

.-/’-

/ \ + caller_activity
|
| \

+ historical_datag

r

[| ® operator g

| *fenumeration |
L

+ constant_number

.' / + call_data,]

| /

' ' [+ data
+ knowledge _baseg ¢ ruleg] + exit_state {_:.}u' /
\
| — F
|II + number .J{ + user_info

I'|I \ * generaLdale_timeE‘

\ + caller_activityg]

4
+ historical_data

\ i r 1 r

| (3) ® check_existenceg # value

| U*fenumeration i) L*fenumeration |
L J

1
\ // . dataq
[+ bool i/

+ caller_activity|

Y

ey

Figure 2-1

Figure 2-1 shows the main tags of the XML file format for defining a decision. The elementsin
this XML document are:

e rule — Thistag names the rule for the decision. There can only be one <rules taginthe
document. The tag contains any number of exit states that make up the decision. The optional
default exit state attribute liststhe exit state to return if no other exit states apply
(essentially an “else” exit state).

e exit_state — Thistag encapsulates the expressions that when true, return a particular exit
state. The name attribute must refer to the same value chosen when the decision element was

38

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

defined in the Builder for Call Studio. The conjugate attribute can be either and or or. If
the exit state contains only one expression the conjugate attribute isignored. The content of
the <exit states tagisthe type of datato be compared, each type containing different
kinds of data. There can be any number of children to the <exit states tag, each
representing another expression linked with the conjugate.

e string — Thistag represents an expression comparing strings. The operator atribute can be:
contains, not_contains, ends_with, not_ends with, equal, not_equal, starts with, and
not_starts with. There can be only two children to the <string> tag, representing the two
terms of the expression. If there are less than two, an error will occur. If more, the extraones
will be ignored. The content can be tags representing a constant string entered by the
developer, data about the call, session and element data, user information, date and time
information, the activity of the caller, and historical activity of the user. These tags are fully
defined in the following sections.

e number — Thistag represents an expression comparing numbers. The operator attribute can
be: equal, not_equal, greater, greater_equal, less, and less_equal. There can be only two
children to the <number> tag, representing the two terms of the expression. If there are less
than two, an error will occur. If more, the extra ones will be ignored. The content can be tags
representing a constant number entered by the developer, data about the call, session and
element data, user information, date and time information, the activity of the caller, and
historical activity of the user. These tags are fully defined in the following sections.

e Dboolean — Thistag represents an expression which evaluates to a boolean result, requiring
only asingleterm. If the check_existence atributeisyes, and the value attribute istrue, it
is checking if the data defined by the child tag exists. If check existence iSyes, and value
isfalse, it is checking if the data defined by the child tag does not exist. If check existence
isno, the value attribute is used to compare the data defined by the child tag with either true
or false. True means the expression istrue if the data defined by the child tag evaluates to
true. The child tags are a smaller subset of those allowed in <string> and <number>: data
about the call, session and element data, user information, or the activity of the caller (each
of these is fully defined in the following sections). When testing if the child tag's value is
true or false, it must be able to evaluate to a boolean value. If it cannot, the decision will act
asif therule did not activate.

e constant_string / constant_number — These tags store string and number datain the value
attribute. The number can be any integer or floating-point number. Note that the number can
also be treated as a string. For example “if 1234 starts with 12”.

The following sections explain the contents of the individual tags found within the <strings>,
<number> and <booleans> tags.

39

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The <call_data> Tag

+ call_data| | # type
fenumeration |

Figure 2-2

Figure 2-2 shows the term that represents information about the current call. The type attribute
can be ani, dnis, uui, iidigits, source, appname, duration, language, or encoding. The ANI,
DNIS, UUI, and IIDIGITS will be “NA” if it is not sent by the telephony provider. Source isthe
name of the application that transferred to this application or nu11 if this application was the first
to be called. Duration is the duration of the call up to this point in seconds.

The <data> Tag

(5] * sessionf] ' ® nameg

SR string
* da[aE L , . - B
3| * element # nameg # variableg
= string J \string J
Figure 2-3

Figure 2-3 shows the term that represents session or element data. The <session> tag refersto
session data with its name in the name attribute. The <element > tag refers to element data with
the name of the element in the name attribute and the name of the variable inthe variable

attribute.
The <user_info> Tag

A * demographic # type
/ Mfenumeration
! = L - J
! ,
/| * ani_info # type
-’# lenumeration
- "ll.l 3 § r 2 3 r -+
* user_mfoE:: + user_date_time # field g # type g
\ fenumeration fenumeration

I\' A, -y
W * called_from_ani

‘| * account_info # type
Flenumeration

Figure 2-4

Figure 2-4 shows the term that represents user information. Note that if the application has not
been configured to use the user management system, and the call was not associated with a
specific UID, using this term will cause an error. Only one piece of user information can be
returned per tag. Refer to Chapter 4: User Management for more details about the user
management system. The possible user information to be compared is:

40

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e demographic — Thistag refersto the user’s demographic information. The type attribute can
be name, zipcode, birthday, gender, ssn, country, language, customl, custom2, custom3, or
customd.

e ani_info — Thistag refers to the various phone numbers associated with the user account. If
the type atribute isfirst, the first number in the list of numbers isreturned. This would be
returned if there was only one number associated with an account. If the attribute is num_diff
the total number of different phone numbers associated with the account is returned.

e user_date_time — Thistag refers to date information related to the user account. The type
attribute indicates which user-related date to access and the £ie1d attribute is used to choose
which part of the dateto return. Type can be last_modified (indicating the last time the
account was modified), creation (indicating the time the account was created), and last_call
(indicating the last time the user called). Field can be hour_of_day (which returns an integer
from O to 23), minute (which returns an integer from 0 to 59), day_of _month (which returns
an integer from 1 to 31), month (which returns an integer from 1 to 12), day_of week (which
returns an integer from 1 to 7 where 1 is Sunday), or year (which returnsthe 4 digit year).

e called_from_ani — Thistag returns “true” if the caller has previously called from the current
phone number, “false” if not.

e account_info — Thistag refers to the user’ s account information. The type attribute can be
pin, account_number, or external _uid.

The <general_date_time> Tag

+ general_date_time] # field = | # type
Cfenumeration Jfenumeration !

Figure 2-5

Figure 2-5 shows the term that represents general date information. The type attribute indicates
which date to access and the fie1d attribute is used to choose which part of the date to return.
Type can be current (indicating the current date/time) or call_start (indicating the time the call
began). Fie1d can be hour_of day (which returns an integer from 0O to 23), minute (which
returns an integer from 0 to 59), day_of month (which returns an integer from 1 to 31), month
(which returns an integer from 1 to 12), day_of week (which returns an integer from 1 to 7 where
1 is Sunday), or year (which returns the 4 digit year).

41

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The <caller_activity> Tag

[+ nth_elementr{ | [#n g
/-’ \.string |
/ |*nthexitstate] | [#n g
+ caller_activity|/ e, [N
+ times_elemvis ‘e elementg
\ srrlng
\[# times_elemvis_exitz| | [® elementg ‘o exnl_stateg
Lstring 1 .string
Figure 2-6

Figure 2-6 shows the term that represents the activity of the caller in the current call. The
<nth_element> tag returns the nth element visited by the caller where the attribute n is the
number (starting at 1). The <nth _exit states tag returnsthe exit state of the nth element
visited by the caller where the attribute n is the number (starting at 1). The <times elemviss> tag
returns the number of times the caller visited the element whose name is given in the element
atribute. The <times elemvis exits tag returnsthe number of timesthe caller visited the
element whose name is given in the attribute e1ement which returned an exit state whose name
isgivenintheexit state attribute.

The <historical_data> Tag

| [etype E -"—;}’0 field

*fenumeration | X fenumeration

ol
7| * ani 7] ® valueg
B ~listring 1

(o monthE (@ day_of_ monthE (o yearé " hour_of dayg
:,_;.:‘ * startg] ,-'-;{ + constant_date_time Ustring ;trlng Ustring J string
+ historical_data (o mmuleg [o secondg
Lstring J Lstring

(@ monthg * day_of_manthg (@ yeard (@ hour_of dayg

“ end -I:'{‘ constant_date_time \string 4 Lstring Lstring J {string
* minuteg - secondg
Lstring J Lstring i
o ¢ flagy (o nameE
2] string]
Figure 2-7

Figure 2-7 shows the term that represents the historical activity of the user associated with the
call on the current application. Note that if the application has not been configured with a user
management database, using thisterm will cause an error. Refer to Chapter 4: User Management
for more details about the user management system. The type attribute determines what kind of
value isreturned. A value of num means that the value returned is the number of calls matching
the criteria defined by the children tags. A value of last_date time means that the value returned
isthe last date/time a call was received matching the criteria defined by the children tags. A
value of first_date time returns the first date/time a call was received that matched the criteria.
The field attribute isused if the type attribute isfirst_date timeor last_date time and indicates

42

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

which part of the date to compare. rield can be hour_of day (which returns an integer from O to
23), minute (which returns an integer from 0 to 59), day_of month (which returns an integer
from 1 to 31), month (which returns an integer from 1 to 12), day_of week (which returns an
integer from 1 to 7 where 1 is Sunday), or year (which returns the 4 digit year). The children tags
are used to turn on various criteria to add to the search. The different search criteria are:

e caller —If thistag appears, the search looks for calls made by the current caller only. If it
does not appear, it will search all calls made by all callers. Notethat if the call was not
associated with a specific UID, an error will occur if thistag is used.

e ani—If thistag appears, the search looks for calls made by the ANI specified inthe value
attribute. If the value atribute is not included, the ANI of the current caller is used.

o start — If thistag appears, the search looks for calls whose start date/time are between two
times specified by successive <constant date times children tags. The attributes of
<constant date_ time> define the specific date to use. The month attribute must be an
integer from 1to 12. Theday of month attribute must be an integer from 1 to 31. The year
attribute must be a four digit integer. The hour of day attribute must be an integer from 0 to
23. Theminute atribute must be an integer from 0 to 59. The second attribute must be an
integer from O to 59.

e end —If thistag appears, the search looks for calls whose end date/time are between two
times specified by successive <constant date times children tags. See <start> above for
the description of the <constant date times tag.

e flag —If thistag appears, the search looks for calls where a flag with the name given in the
name attribute was triggered.

XML Decision Example #1

An application named “Examplel” would like to play “Welcome back” for callers who have
previously called this application. The users are identified by their ANI (this application usesthe
user management database only for its history tracking). A decision element named
“CalledBefore” would be needed which had two rules, one for those who the application
recognizes and one for the rest (this is being done rather than using the default exit state for
demonstration purposes). In English, the rules are:

Rule | Expression Exit State
1 The caller has called from this ANI before say_welcome back
2 The caller has not called from this ANI before say_welcome

The Unified CVP decision element XML file would be named “CalledBefore’ and be saved in
AUDIUM HOME/applications/Examplel/data/misc

43

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The XML content will be;

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE knowledge base SYSTEM "../../../../dtds/DecisionkKnowledgeBase.dtd">
<knowledge base>
<rule name="CalledFromAni"s>
<exit state name="say welcome back" conjugate="and">
<boolean check existence="no" value="true">
<user info>
<called from ani/>
</user infos
</boolean>
</exit_states>
<exit state name="say welcome" conjugate="and">
<boolean check existence="no" value="false">
<user_ info>
<called from ani/>
</user info> a
</boolean>
</exit state>
</rule> o
</knowledge base>

XML Decision Example #2

An application named “Example2” randomly chooses two letters of the alphabet and gives a
prize to the caller whose name begins with either letter. The letters are chosen by an action
element named “GetRandomL etter” and stored in element data named “letterl” and “letter2”.

A decision element named “IsCallerAWinner” would be needed which has three exit states:

e For auser whose name begins with either letter.
e For users whose name does not begin with the letters.

e For userswhose name is not in the records (this could be an error or could prompt the
application to ask the user to register on the website).

Even if the application assumesthat all users will have their names on filg, it is prudent to add
this third exit state just to make sure. In this example, the default exit state will be set to when the
users do not match.

In English, the rules are:

Rule | Expression Exit State
1 The caller’s name begins with the value stored in the element isa

“GetRandomL etter” with the variable name “letterl” or begins with the value | winner
stored in the element “GetRandomL etter” with the variable name “letter2”

2 The caller’s name does not begin with the value stored in the element not a
“GetRandomL etter” with the variable name “letterl” and does not begin with | winner
the value stored in the element “ GetRandomL etter” with the variable name
“letter2”

3 The caller’s name does not exist no name

44

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The Unified CVP decision element XML file would be named “1sCallerAWinner” and be saved
iN AUDIUM_HOME/applications/Example2/data/misc.

The XML file content will be;

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE knowledge base SYSTEM "../../../../dtds/DecisionKnowledgeBase.dtd">
<knowledge base>
<rule name="NameStartsWith" default exit state="not a winner”>
<exit_state name="no name" conjugate="and">
<boolean value="false" check existence="yes">
<user_ info> N
<demographic type="name"/>
</user infos
</booleans>
</exit_states>
<exit state name="is a winner" conjugate="or">
<string operator="starts with">
<user info>
<demographic type="name"/>
</user infox
<data>
<element name="GetRandomLetter” variable="letterl"/>
</data>
</string>
<string operator="starts with"s>
<user_ info> -
<demographic type="name"/>
</user infos
<data>
<element name="GetRandomLetter” variable="letter2"/>
</data>
</string>
</exit_states>
</rule>
</knowledge base>

Notes:

e The“no name” exit stateis listed first. Thisis because before we try to analyze the user’s
name, we have to first know that it exists. So we check if the name does not exist first and if
it fails it means the name exists and we can go on.

e Thesecond exit state must check if the name begins with the first or second letter but the last
exit state must check if the name does not begin with the first and second letter.

XML Decision Example #3

An application named “Example3” is designed to trigger a flag named “account menu” when a
caller chooses to manage their account. As of June 15, 2004, the menu options were changed for
the account menu. We want to tell people the options have changed, but only if we know they’ ve
visited that part of the application before June 15. If not, there is no reason to say anything
because the caller is experiencing this for the first time. A decision element is needed that
distinguishes between those to play the changed audio to from those who should encounter the
menu normally. A tricky part of the rule isthat it must deal with the day, month, and the year,

45

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

making sure that callers from previous years and future years are handled correctly as well. Since
the current state of the XML format does not allow date comparisons, away must be determined
to make this restriction. The solution is to use multiple rules which progressively get more
restrictive in a sort of process-of-elimination manner. Since all conditions are to be handled, the
rule must include those who do not hear the changed message using the same scheme (there is no
need to use the default exit state). In English, the rules are:

Rule | Expression Exit State

1 The year the last time the caller triggered the flag “account menu” | play changed
is less than 2004

2 The year the last time the caller triggered the flag “account menu” | normal
is greater than 2004

Note: At thistime, if the above two rules were not triggered, the caller triggered the flag in the
year 2004.

3 The month of the year the last time the caller triggered the flag play changed
“account menu” islessthan 6
4 The month of the year the last time the caller triggered the flag normal

“account menu” is greater than 6

Note: At thistime, if the above two rules were not triggered, the caller triggered the flag in June
2002.

5 The day of the month the last time the caller triggered the flag play changed
“account menu” isless than or equal to 15
6 The day of the month the last time the caller triggered the flag normal

“account menu” is greater than 15

The Unified CVP decision element XML file would be named “IsCallerAWinner” and be saved
“1AUDIUM_HOME/applications/Examp1e3/data/misc.

The content of the XML file will be:

<?xml version="1.0" encoding="ISO-8859-1"7?>
<!DOCTYPE knowledge base SYSTEM "../../../../dtds/DecisionKnowledgeBase.dtd">
<knowledge base>
<rule name="NewMessageTest">
<exit state name="play changed" conjugate="and">
<number operator="less">
<historical data type="last date time" field="year"s
<caller/> - B
<flag name="account menu"/>
</historical data>
<constant number value="2004"/>
</numbers>
</exit_states>

46

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

<exit_state name="normal" conjugate="and">
<number operator="greater ">
<historical data type="last date time" field="year"s>
<caller/>
<flag name="account menu"/>
</historical datas>
<constant number value="2002"/>
</numbers>
</exit_states>
<exit state name="play changed" conjugate="and">
<number operator="less">
<historical data type="last date time" field="month">
<caller/>
<flag name="account menu"/>
</historical datas>
<constant number value="6"/>
</numbers>
</exit_states>
<exit_state name="normal" conjugate="and">
<number operator="greater">
<historical data type="last date time" field="month">
<caller/>
<flag name="account menu"/>
</historical datas>
<constant number value="6"/>
</numbers>
</exit_states>
<exit state name="play changed" conjugate="and">
<number operator="less equal">
<historical data type="last date time" field="day of month"s>
<caller/>
<flag name="account menu"/>
</historical datas>
<constant number value="15"/>
</numbers>
</exit_states>
<exit_state name="normal" conjugate="and">
<number operator="greater"s>
<historical data type="last date time" field="month">
<caller/>
<flag name="account menu"/>
</historical datas>
<constant number value="6"/>
</numbers>
</exit_states>
</rule>
</knowledge base>

47

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

VoiceXML Insert Elements

VoiceXML insert elements are different from other elements in that they are built almost entirely
outside VXML Server using VoiceXML directly. One can think of an insert element as away to
insert custom VoiceXML content into a Unified CVP voice application without sacrificing the
ability to interface with other elements in the call flow. While there are guidelines to follow to
make these elements work, there are few restrictions on the VoiceXML content itself.

There are two common reasons an insert element is used, the first being the ability to leverage
VoiceXML content that has already been created and integrate it into a Unified CVP application
without having to do much recoding. The second reason is in situations where the requirement is
to write a VoiceXML-producing element that is a one-off without having to go through the effort
of writing a configurable voice element in Java and the VFCs. Thisis very similar to the reasons
for writing standard action and decision elements instead of producing a configurable element.
Writing VoiceXML is simpler than creating a voice element from scratch since that requires
knowledge of both VoiceXML aswell as the Unified CVP Java API.

One of the disadvantages of using insert elements is the fact that since the VoiceXML must be
written to comply with a specific voice browser, the browser-agnostic capability of the voice
application is lost. If the application is moved to another voice browser, al Unified CVP
elements would automatically work, but the insert elements would have to be retested and
tweaked to conform to the new browser’ s requirements. Another disadvantage is the insert
element’s lack of a configuration. If the desire is a reusable, configurable element, it is preferable
to construct a voice element.

VoiceXML insert elements are accessed viaa VoiceXML <subdialog>. The VoiceXML
specification provides this tag as away of allowing simple reusable functionality. It acts very
much like a“function” in programming where inputs are sent to a function that performs some
actions and returns the results. The subdialog definition itself can be located anywhere accessible
with a URI. Inthisway, the Unified CVP application sees an insert element as simply another
function to access.

The inputs and outputs are the means by which the insert element interfaces with the rest of the
system. Most of the important data available to Unified CV P elements are sent as input to each
Insert element. Once the insert element is complete, the return information contains any element
or session datato create, log entries, the exit state of the insert element, and other datato act
upon.

Restrictions

The following restrictions apply to aVoiceXML insert element. An insert element conforming to
these restrictions will be assured full integration with the Unified CVP application. These
restrictions will be clarified later.

48

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e Theinsert element cannot define its own root document, aroot document generated by
VXML Server must be used.

e Thevariablesto returnto VXML Server, including the exit state, must conform to a strict
naming convention.

e When using the <return> tag, Unified CV P-specified arguments must be returned along with
the custom variables.

Inputs

As with any element in the application, an insert element would need to be able to access
information about the call such as element and session data, call data (such asthe ANI), and even
information found in the user management database if the application is configured to use one.
Normally, this information is available in the Java or XML API. Since an insert element is
written in VoiceXML, this information must be made available for the insert element to use from
within the VoiceXML.

Unified CVP achieves this by creating VoiceXML variables in the root document containing all
the desired information. The variable names conform to a naming convention so the Insert
element developer can refer to them appropriately. This is one reason why Unified CVP requires
the use of the VXML Server-generated root document.

In order to cut down on the number of variables appearing in the root document, the application
designer is given the option of choosing which input groups are passed to the insert element.
Additionally, the designer can individually choose which element and session datato pass. By
minimizing the inputs to only the data required by the insert element, the overhead involved in
using an Insert element is minimized.

Each input type is listed below:

e Telephony. Thisinformation deals with telephony data. The inputs start with
“audium_telephony .

o audium_telephony_ani. The phone number of the caller or “NA” if not sent.
o audium_telephony_dnis. The DNISor “NA” if not sent.

o audium_telephony iidigits. The IDIGITS or “NA” if not sent.

o audium_telephony uui. The UUI or “NA” if not sent.

o audium_telephony_area_code. The area code of the caller’ s phone number. Will not
appear if the ANI is “NA”.

o audium_telephony_exchange. The exchange. Will not appear if the ANI is“NA”.

49

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

e Call. Thisinformation deals with the call. The inputs sart with “audium_call_”.

o

o

o

audium_call_session_id. The session ID.

audium_call_source. The name of the application which transferred to this one. Will not
appear if this application is the first application in the call.

audium_call_start. The start time of the call in the format “DAY MNAME MONTH
HH:MM:SS ZONE YEAR” where DAY isthe abbreviated day of the week (e.g. “Wed"),
MNAME isthe abbreviated name of the month (e.g. “Jun”), HH isthe hour (in military
time), MM isthe minute, SSis the seconds, ZONE isthe time zone (e.g. “EDT"), and

Y EAR isthe four-digit year.

audium_call_application. The name of the current application.

e History. Thisinformation deals with the history of elements visited so far in the call. The
inputs start with “audium_history .

o

audium_history. This entire content of the element history (including exit states) is
contained in this variable. The format is[ELEMENT]:[EXITSTATE]|..[
ELEMENT]:[EXITSTATE] where ELEMENT is the name of the element and
EXITSTATE isthe name of the exit state of this element. The order of the element/exit
state pairs is consistent with the order in which they were visited. Thiswill not appear if
thisinsert element isthe first element in the call.

e Data. Thisisthe element and session data created so far in the call.

o

audium_[ELEMENT]_[VARNAME]. Thisis an element variable where ELEMENT isthe
name of the element and VARNAME is the name of the variable. Note that both the
element and variable names will have all spaces replaced with underscores. There may be
no instances of thisinput if no element variables exist when this insert element is visited.
For example, the variable “audium_MyElement_the value” is element data named “the
value” from the element “MyElement”.

audium_session_[VARNAME]. Thisis a session variable whose name isVARNAME.
Note that the variable name will have all spaces replaced with underscores. The value is
expressed as a string even if the type is not astring (the tostring () method of the Java
classiscalled). There may be no instances of thisinput if no session variables exist when
thisinsert element is visited.

e User Data. This element information associated with the caller. It will only appear if the
application has associated the call with a UID and a user management database has been set
up for this application. The data will appear in the input exactly as in the database. The inputs
start with “user .

o

o

o

o

user_uid. Thisisthe UID of the user.
user_account_number. The account number of the user.
user_account_pin. The PIN of the user.
user_demographics_name. The name of the user.

50

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

o user_demographics_birthday. The birthday of the user.

o user_demographics_zip_code. The zip code of the user.

o user_demographics_gender. The gender of the user.

o user_demographics_social_security. The social security number of the user.
o user_demographics_country. The country of the user.

o user_demographics_language. The language of the user.

o user_demographics_custom1. The value of the first custom column.

o user_demographics_custom?2. The value of the second custom column.
o user_demographics_custom3. The value of the third custom column.

o user_demographics_custom4. The value of the fourth custom column.
o user_account_external_uid. The external UID of the user.

o user_account_created. The datethe account was created in the format. The value isin the
format “DAY MNAME MONTH HH:MM:SS ZONE YEAR".

o user_account_modified. The date the last time the account was modified. The valueisin
the format “DAY MNAME MONTH HH:MM:SS ZONE YEAR".

e User By ANI. This provides historical information about the phone number of the caller with
regards to this application. It will only appear if a user management database has been set up
for this application. The inputs start with “user_by ani_".

o user_by_ani_num_calls. The number of calls made by this phone number.

o user_by_ani_last_call. The last call made by the phone number. Will not appear if there
were no calls made by this phone number in the past.

Outputs

Just like any element, VoiceXML insert elements can create element and session data, set the
UID of the user to associate with the call, send custom logging events, and can return one of a set
of exit states. Like voice elements, insert elements can have internal logging of caller activity
and have global hotlinks and hotevents activated while the caller is visiting the Insert element.
All of these actions involve variable data set within the Insert element and returned to VXML
Server. These are crucial in order to properly integrate with the rest of the elements in the
application. Each of the return arguments is listed below:

e audium_exit_state. The exit state of this VoiceXML insert element. The value of this

variable must be exactly as chosen in the Builder for Call Studio when defining the insert
element.

51

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e element_log [VARNAME] / element_nolog [VARNAM E] These create new element data
for thisVoiceXML insert element whose name is VARNAME and which either sends a
logging event to log the element data value or not, respectively. The datatype will be
assumed to be a string. The variable name cannot include spaces.

e sesson_[VARNAME]. This creates anew session variable whose name isVARNAME. The
datatype is assumed to be a string. The variable name cannot include spaces. If the variable
name already exists, the old value will be replaced with this one. If the old data type was not
astring, the new data type will be a string.

e custom_[NAME]. This sends a custom logging event whose contents is the action named
NAME and the value of the variable being the description.

e st uid. Thisassociates the UID passed to the call.

e audium_hotlink, audium_hotevent, audium_error, audium_action. These four Unified
CVP variables are created in the root document and must be passed along in the return
namelist. The content of each deals with the occurrence of any global hotlinks, hotevents,
errors, or actions (e.g., ahang-up) while in this insert element. Since the subdialog has its
own context and root document, this data has to be explicitly passed for any of these events
to be recognized by VXML Server. The developer should not alter the contents of these
variables.

e audium_vxmlLog. This variable contains the raw content for an interaction logging event.
Adding to the interaction log is not required - the audium vxmlLog Variable can be passed
empty. In order for VXML Server to parse the interaction data correctly, a special format is
required for the content of the audium vxmlLog variable. This format is defined below:

The format for interaction logging is.
“|| |ACTIONS$S$$VALUE™*“ELAPSED”

where:;

e ACTION isthe name of the action. The following lists the possible action names and the
corresponding contents of VALUE:

o audio_group. Thisis used to indicate that the caller heard an audio group play. VALUE is
the name of the audio group.

o inputmode. Thisisused to report how the caller entered their data, whether by voice or
by DTMF key presses. VALUE should be contents of the inputmode VoiceXML shadow
variable.

o utterance. Thisisused to report the utterance as recorded by the speech recognition
engine. VALUE should be the contents of the utterance VoiceXML shadow variable.

o interpretation. Thisisused to report the interpretation as recorded by the speech
recognition engine. VALUE should be the contents of the interpretation VoiceXML
shadow variable.

52

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

o confidence. Thisisused to report the confidence as recorded by the speech recognition
engine. VALUE should be the contents of the confidence VoiceXML shadow variable.

o nomatch. Thisisused to indicate the caller entered the wrong information, incurring a
nomatch event. VALUE should be the count of the nomatch event.

o noinput. Thisis used to indicate the caller entered nothing, incurring a noinput event.
VALUE should be the count of the noinput event.

e ELAPSED isthe number of milliseconds since the VoiceXML page was entered. The root
document provides a JavaScript function named
application.getElapsedTime (START TIME) Which returns the number of milliseconds
elapsed since the time specified in START TIME.

The root document created by VXML Server for usein all VoiceXML insert elements contains a
VoiceXML variable named audium element start time millisecs that must beinitialized
with the time in order for the elapsed time intervals to be calculated correctly. This variable need
only be initialized once in the first VoiceXML page of the insert element. All subsequent pagesin
the VoiceXML insert element must not initialize the variable because VXML Server requiresthe
elapsed time from the start of the element, not the page. So, in VoiceXML, the line to appear
must look like:

<assign name="audium element start time millisecs" expr="new Date().getTime()" />

For best results, this should appear as early as possible in the first page, preferably ina<blocks
inthe first <forms of the page, certainly before any additional logging is done.

In VoiceXML, setting the value of an existing variable requires the <assign> tag. Since the
expression contains a JavaScript function, the expr attribute must be used. Additionally, in order
to avoid overwriting previous log information, the expression must append the new datato the
existing content of the variable. For example, to add to the interaction log the fact that the xyz
audio group was played, the VoiceXML line would look like

<assign name="audium vxmlLog" expr="audium vxmlLog + '|||audio group$$s$xyz
+application.getElapsedTime (audium element start time millisecs)"/>

In another example, the utterance of afield named xyz is to be appended to the log. The
VoiceXML would look like

<assign name="audium vxmlLog" expr="audium vxmlLog +'|||utterancess$'+ xyz.Sutterance
+ ' + application.getElapsedTime (audium element start time millisecs)"/>

AAA,

See Chapter 5: VXML Server Logging for more detail about Unified CV P logging.

53

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Root Document

The subdialog context written by the developer must refer to a Unified CVP-generated root
document. Thisis essential for proper integration of the VoiceXML insert element with VXML
Server. The root document call must look like:

“/CVP/Server?audium vxml root=true&calling into=APP&
namelist=element log_ value|RTRN1|RTRN2|.."

Where APP is the application name and RTRNX represent the names of all the element data,
session data, and custom log entries (delimited by ‘| characters) the insert element returns, using
the same naming convention described in the outputs section above.

The purpose for this requirement is related to how events are handled within the root document.
The Unified CVP-generated root document catches events such as the activation of a global
hotlink or a hangup, which then requires the call flow to leave the insert element. The insert
element, however, may have created element and session data or added custom content to the
log. Thisinformation is stored in VoiceXML variables that would be deleted once the subdialog
context is exited. So the root document needs to be told which VoiceXML variables to send
along to VXML Server when one of these events istriggered so that it can store them
accordingly. In order to avoid problems that might occur if aglobal hotlink or hotevent was
activated right after the insert element began the variables to be returned should be declared as
near the start of the VoiceXML insert element as possible, even if they are not assigned initial
values.

Notes:

e The ability to use a standard ampersand in the root document URL instead of escaping it (as
“&”) isvoice browser dependent. Most browsers will accept the escaped version so try
that first.

e |[f theinsert element does not need to send back any datain the name1ist parameter, only the
element log value Variable need be included (the parameter should look like this:

“..namelist=element log value”).

Example

In the example below, a block is used to log the playing of the initial prompt audio group.
After this action, some inputs passed to it from VXML Server are played. Once thisis done, it
creates two element variables named var1 and var2 and a session variable named sessvar.
After this, it goes through afield that catches a number and when done saves the utterance to the
activity log and returns the exit state less if the number is less than 5 and greater_equal
otherwise. The <return> tag returns the exit state, log variable, the four variables from the root
document (error, hotlink, hotevent, and action), the two element data variables, the session data
variable and a custom log entry (the number captured). Also notethat these last four variables
are also passed to the root document call in the <vxm1 > tag so that events triggered within the

54

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

insert element will correctly pass the data if it was captured by then. Note that the VoiceXML
listed below may not function on all browsers without modification.

<?xml version="1.0"?>
<vxml version="1.0"
application="/CVP/Server?audium vxmlroot=true&calling into=MYAPP&namel
ist=element log varl|element nolog var2|session sessvar|custom custlog">
<form id="testform">
<block>This is the initial prompt

<assign name="audium element start time millisecs" expr="new
Date() .getTime ()" />

<assign name="audium vxmlLog"

expr=""'|||audio group$$$initial prompt™""!
+application.getElapsedTime (audium element start time millisecs)"/>
</blocks>

<block>In the VoiceXML element.

The ani is <value expr="audium telephony ani"/>.

The element history is <value expr="audium history"/>.

User by ani num calls is <value expr="user by ani num calls"/>.
Element data foo from element first <value expr="audium first foo"/>.
Session variable foo2 <value expr="audium session foo2"/>.

</blocks>

<var name="element log varl" expr="'log me'"/>

<var name="element nolog var2" expr="'do not log me'"/>
<var name="session_ sessvar" expr="'session data value'"/>

<field name="custom custlog" type="number"s>
<property name="inputmodes" value="voice" />
<prompt>Say a number.</prompt>
<filleds>
<assign name="audium vxmlLog" expr="audium vxmlLog +
"| | |lutterance$$$' + custom custlog.$utterance + '*7°
+application.getElapsedTime (audium element start time millisecs)"/>
<if cond=" custom custlog < 5">
<assign name="audium exit state" expr="'less'"/>
<else/>
<assign name="audium exit state" expr="'greater equal'"/>
</if>
<return namelist="audium exit state audium_ vxmlLog audium error
audium hotlink audium hotevent audium action element log varl
element nolog var2 session sessvar custom custlog" />
</filled>
</field>
</form>
</vxml>

55

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Chapter 3: Administration

Administration is an essential feature of any enterprise system. Once started, a system must
remain operational for long periods of time with no downtime so it must expose ways for an
administrator to manage it at runtime. This applies to both changes and updates to the application
as well as providing information concerning its health. The more flexible and informative a
system, the better an administrator will be able to ensure it runs efficiently and detect any issues
with the system quickly.

VXML Server has been designed to afford maximum flexibility for administrators to control
how it runs and to monitor vital statistics of its health. Administrators can add, remove and
change applications deployed, are able to get information on the system and the applications, and
even change the behavior of the system or components, without requiring a restart of VXML
Server.

This chapter details the administration functions and statistics exposed by VXML Server and the
mechanisms by which these functions can be accessed and executed.

Introduction to VXML Server Administration

VXML Server exposes three methods for an administrator to control it and obtain information.
Each method is accessed differently and exposes different levels of functionality or information.
The first method, and the most flexible, is the IMX-compatible management interface. The
second method is through the use of administration scripts. The third is via the system
information web page.

JMX Management Interface

Java Management Extensions (IMX) is a Java technology specifically designed for managing
Java applications. It is part of the standard Java Virtual Machine and defines a standard interface
for clients and servers. An application that wishes to be managed by IMX will register MBeans
to the IMX context. An MBean can be used to expose information about the system that an
administrator can fetch (for example the total simultaneous calls on the system). An MBean can
also be used to expose a function that an administrator can execute (for example to suspend an
application). A client application communicates with the server viathe IMX interface to allow
administrators access to the information and function that is exposed.

VXML Server, being a server application, exposes many informational MBeans for information
regarding itself as well as the applications deployed on it. It also exposes administrative MBeans
for controlling important administrator functions. It doesthisin a fully IMX-complaint manner
so that any IMX-compatible client will be able to interface with VXML Server to gain access to
the information and functions. One such client is JConsole, which is a client bundled with JIDK's
provided by Sun Microsystems and others. Some JVMs and application servers provided by
other companies may utilize alternative IMX-compatible clients that should work as well.

57

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

It is also possible for a developer to create their own custom MBeans for exposing functions or
information that will then be viewed by a IM X-compatible client alongside the MBeans exposed
by VXML Server. See the Programming Guide for Cisco Unified CVP VXML Server and Cisco
Unified Call Studio for more on creating custom MBeans.

Most VMs do not start up with IM X enabled by default and require a parameter to be passed to
the VM to turnit on (for example, Sun Microsystems JVMs require the parameter -

Dcom. sun.management . jmxremote). Any change to the VM parameters must be implemented
prior to the Java application server is started.

Once VXML Server is started, aJMX client can then be launched and configured to point to the
machine on which VXML Server runs, whether it be on the same machine or aremote one. Once
connected, the client provides a graphical interface for displaying the information and functions.
The client will be able to display information about the VM itself and typically the Java
application server will publish its own set of MBeans. VXML Server information will be
displayed where the MBeans are listed in its own “domain”. The domain is typically rendered in
atree structure and will list global information and functions (i.e. information having to do with
VXML Server itself) as well as information on the deployed voice applications. Detailed
explanations of the individual MBeans are provided in the following sections.

To address security, IMX client consoles will request a user name and password if they attempt
to connect to aremote server (no user name or password is required to connect to alocal VXML
Server because the client already has access to the local system). These credentials can be
defined at installation time. Security is most important for the administration functions as they do
affect the live system and if misused could cause instability. Note that many JMX clients do not
provide role-based authentication, so once a user has successfully logged in, the user has access
to al information and the ability to run all administrator functions. Therefore it is recommended
to provide this user name and password only to desgnated administrators.

Of the available administration interfaces, the IMX interface for VXML Server provides the
greatest functionality and flexibility. It does, however, require the VM to have IMX active and a
JMX-compatible client. It also has a higher risk and overhead due to this flexibility.

Administration Scripts

Most of the administration functions and some of the information about VXML Server are
provided via command-line scripts that can be executed by an administrator manually or an
automated system directly. The administrator scripts do not use the IMX interface described in
the previous section and are functional by default without requiring any configuration on the
administrator’ s part. The included scripts act asthe client. The scripts are provided in two forms:
batch scripts for Microsoft Windows (ending in .bat) and shell scripts for Unix (ending in . sh).

Scripts are provided to execute global functions (on VXML Server itself) or functions for
individual applications. The scripts used for global administrator functions are found in the

58

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

admin directory of VXML Server. The scripts used for individual application administration are
located in the aamin directory of each application.

The provided scripts are primarily used to expose VXML Server functions to administrators such
as loading a new application, updating an existing application, suspending VXML Server, etc.
Some scripts provide information, such as the number of active simultaneous calls on the server.
This chapter describes in detail all available scripts and their functionality.

Security is an important concern when it comes to administration functions that are access from
the command-line. There are several precautions Unified CVP sets up to allow only the
appropriate people access to these scripts. First, by providing scripts or batch files (as opposed to
through a graphical or web interface), the administrator must be logged into the machine in order
to access them. Therefore, accessing these programs is as secure as the remote login process
(such as SSH) and the permissions given to these scripts or the entire admin folder. Secondly,
VXML Server will only accept commands from the local machine, so even scripts stored on one
machine cannot issue commands to an instance of VXML Server running on another machine.
These two precautions ensure that only authorized administrators can access these functions.

Since the global administration scripts are stored in a different location from application scripts,
each directory can be assigned different permissions. That way an administrator can be given
access to the global administration scripts while still allowing the application scripts to be
accessed by voice application developers.

Finally, every administration script can be configured to ask for confirmation before the action is
taken, to prevent the accidental execution of the script. By default the confirmations are on. They
can be turned off by passing the command-line argument “noconfirm” to the script. This can be
useful if the administration scripts are executed by automated systems like cron jobs.

While not as flexible as the IMX interface, administration scripts provide easy accessto VXML
Server functions for both administrators and automated systems out of the box. The risk potential
issimilar to that of the JXM interface although there is less overhead because IMX is not
enabled.

System Information Page

The system information page provides basic information about VXML Server including the
license information, the deployed gateway adapters and applications, the status of information on
the application server on which VXML Server is running, and some miscellaneous system and
Java information such as the version and memory usage. It does not provide the ability to
execute any functions, it is meant to be a quick way to check relevant information. It isalso the
easiest of the three methods to obtain information because all that is needed is aweb browser.
The system information page can be seen by pointing a web browser to the URL:

59

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

http://[HOST] [:PORT] /CVP/Info

where;
e HOST isthe host name of the machine on which VXML Server isinstalled.

e PORT isthe port the application server is configured to listen on. If the application server is
configured to use port 80, there is no need to include the port in the URL.

The system information page can only be reached after proper authentication using the
administrator user name and password defined during installation time. This is the same user
name and password used when configuring VXML Server licenses.

The system information page is the easiest and safest way of obtaining administrative
information, though it is also the least flexible.

Administration Information

Using the tools listed above, an administrator can obtain a significant amount of information
regarding VXML Server and the applications that are deployed on it. This information aids the
administrator in determining the health of the system, detecting signs of issues that should be
caught early, and debugging issues as they occur.

Much of the information made available by VXML Server can be found only viathe IMX
interface as that is the strength of IMX. Some of the more important information is available via
scripts and some of the static information is available through the system information page.

Application and System Status

VXML Server provides functions for reporting the status of a specific voice application or all
voice applications running on the system. They are provided as functions to allow the
administrator to query VXML Server to get the latest information immediately.

The application status function reports the following information:

e Whether the application is running, suspended, or has been suspended before being slated for
removal.

e How many active sessions are currently visiting the application. Active sessions are defined
as the number of callersthat are interacting with the application at the time the status script is
called.

e How many sessions are waiting to end. When an active caller ends their application visit,
VXML Server delaysthe closing of the corresponding session to allow the completion of the
session accessed by the final logger and end of call class actions. A session waiting to end
does not take up alicense port. The amount of time a session remains open after acall endsis
aVXML Server configuration option (see Chapter 6: VXML Server Configuration for more).

60

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e How many open sessions are experiencing the most recent past version of the application.
Open sessions are the sum of active callers visiting the application and those sessions that are
in the process of ending. The reason open sessions are listed here is because both active and
ending sessions do need access to session information and an administrator would need to
know when it is safe to disable any systems that the old application configuration depends
on. Thisinformation is helpful for an administrator when performing an application update or
suspension in order to determining when the executed function is complete. Seethe
following sections for more on updating and suspending applications.

e How many callers are on hold waiting to get into the application. A call that is received when
the system has used up all the allowed sessions defined in the license will hear a message
asking them to stay on the line. This call then checks if a license session has become
available and then lets the call into the application.

The VXML Server status function provides an easy to read report with the following
information:

o |If VXML Server itself has been suspended, this fact is listed first. Seethe following sections
for more on suspending VXML Server.

e Thetotal number of concurrent active callers visiting applications on this instance of VXML
Server, how many concurrent sessions the license allows, the number of available ports (the
license sessions minus the active callers), and the number of callers on hold (which would
only appear if the number of current callers exceeds the number of license sessions).

e How many active callers, sessions ending, and callers on hold for each application currently
deployed on the system. This data is the same as would be displayed by the application-
specific status function. Note that no on hold column will appear unless there are callers on
hold.

e Whether each application is running or suspended.

JMX Interface

To get an application’s status using the IMX interface, use aJMX client connected to the server
to navigate to the voiceapplication/APPNAME/Command MBean, where appNanME is the name of
the application to update. The operations tab of this MBean will list a function named “ status’.
Pressing this button will display a dialog box with the application status. To get the status of all
applications using the IMX interface, navigate to the c1obal/command MBean and click on the
function named “status’ in the operations tab. Pressing this button will display a dialog box with
the status of each application deployed on VXML Server in atable.

Administration Scripts

The script for obtaining an application status is found in the admin folder of the application to be
updated. Windows users should use the script named status.bat and Unix users should use the
script named status . sh. The script for obtaining the status of all applicationsis found in the

61

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

admin folder of VXML Server. Windows users should use the script named status.bat and
Unix users should use the script named status. sh. The scripts do not take any parameters.

VXML Server Information

VXML Server reports information about itself that is static so the administrator knows exactly
what is installed. The following information is reported:

e The exact name and version of VXML Server.

e Theingtallation key, expiration date, number of ports, and the supported gateway adapters
listed in the VXML Server license. Note that the gateway adapter list is not a comprehensive
list of the adaptersinstalled on VXML Server but rather alist of the gateway adaptersthe
license allows the system to use.

e A detail of the version numbers of all components included with VXML Server. This
information can be helpful for tracking changes made to individual components of the
software installed at different times and this detailed information will typically be requested
by Cisco support representatives when a question is raised about the software. The
components whose versions are displayed are:

o The VXML Server web application archive (WAR) and the components residing within
Audium Home. Notethat this version is different from the VXML Server product version
asthat isaversion for the whole system and this one is only for the WAR file.

o Thecore VXML Server elements, Say It Smart plugins, and loggers (both application and
global) included with the software.

o The Gateway Adaptersinstalled on the system.

JMX Interface

To obtain VXML Server information using the IMX interface, navigate to the info MBean. The
attributes tab displays all the information listed above. To see all the gateway adapters supported
in the license, one must open the value for the “LicensedGWAdapters’ attribute (in JConsole this
is done by double-clicking on the value). The same procedure applies for obtaining the
component versions by opening the value for the “ ComponentVersions’ attribute.

Administration Scripts

The only VXML Server information available via script is the versions of the components
installed on VXML Server, though the name and version of VXML Server is displayed when it
initializes and the license ports is always displayed using the global status script.

The script is found in the admin folder of VXML Server. Windows users should use the script
named getversions.bat and Unix users should use the script named getversions. sh. Inorder
to report on the version of the VXML Server web application archive (WAR), the script should
be passed as an argument the full path of the WAR location (e.g.

“C:\Cisco\CVP\V XML Server\Tomcat\webapps\”).

62

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

System Information Page

The same information is displayed in the system information page at the top of the table. It will
also provide alist of the applications deployed on VXML Server as well as information on the
application server, operating system, and Java memory usage.

Server Status Checks

Many load balancers can be configured to periodically access a URL that is used to determine if
aserver isrunning. Such load balancers make a request to the URL and if a response comes
back within an acceptable time period, they consider the server available to handle connections.
To gauge the health of VXML Server, include the parameter probe=true inthe request URL,
using one of the following formats:

1. http://[DOMAIN] [:PORT]/CVP/Server?probe=true
2. http:// [DOMAIN] [: PORT] /CVP/Server?application=[APPLICATION] &probe=true

The first URL format (without the application parameter) resultsin asimple HTML page with
the following text if the VXML Server is accessible and is not suspended:

The Cisco Unified CVP VXML Server is up and running
However, if it is suspended (viathe suspendserver administrative script), it will respond with:

The Cisco Unified CVP VXML Server is running, however it has been suspended.
This URL format has several optional parameters that may be used in conjunction with it:

e activeCalls=true

This optional parameter causes the response HTML to include information about how
many call sessions are active on the VXML Server instance. This is formatted as
illustrated in the following example:

running;activeCalls=12;
e onHoldCalls=true

This optional parameter causes the response HTML to include information about how
many call sessions are in an “on hold” status on the VXML Server instance. This is
formatted as illustrated in the following example:

running;onHoldCalls=3;

e activeCalls=true&onHoldCalls=true

63

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Specifying both of the optional parameters results in both data items being returned, as
illustrated in the following example:

running;activeCalls=77;onHoldCalls=0;

The second URL format (with the application parameter), resultsin a VoiceXML page which
includes a <submit> to the listed voice application. If that VoiceXML page is returned, then
VXML Server is accessible. This format is intended for use with load balancers that require the
probe URL to match the URL through which actual content is retrieved. This format cannot be
used to obtain additional information (i.e., active and on-hold calls) beyond that the server is
accessible.

Configuration Updates

When an administrator monitorsaVXML Server installation, they want to be aware of any
warning signs that the system is overloaded. In these scenarios, it is advantageous if the
administrator is able to tweak afew settings to better handle the given load without worrying
about updating or suspending applications or shutting down the Java application server. These
tweaks may enable a system to better handle spikes in call activity with no adverse effects. To
thisend, VXML Server exposes some of its configuration options and allows an administrator to
change them at runtime. It also allows the administrator to change some application settings
values for deployed application.

It is important to note that the administrator must be very careful when altering these
configuration options at runtime as improperly chosen values could make the system unstable
and achieve the opposite effect than desired.

The ability to change VXML Server configuration options and application settings is available
only through the IMX interface. The configuration options are exposed as attributes of an
MBean, one for the VXML Server configuration options and one for each application’s settings.
Those attributes that allow their values to be changed will have editable values. When a new
value is given, it takes affect immediately with no confirmation so it is important to ensure that
the value entered is correct. There is some simple validation that takes place by VXML Server
and if the value entered is inappropriate (such as entering -1 where a positive integer is required),
the change will not take place and the original value will remain unchanged. The administrator
will know that their entry was accepted if the value does not revert back.

It is very important to note that any changes made to these attributes are not persisted. The
changes affect VXML Server in memory and do not affect the XML filesthat hold these values.
As aresult, should the Java application server or the VXML Server web application be restarted
or for application-specific attributes the application is updated, the attributes will revert back to
the values specified in their respective XML files.

64

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

VXML Server Configuration Options

To view the VXML Server configuration options using the IMX interface, navigate to the
Global/Configuration MBean. There are five attributes listed. The first, named
“LoggerEventQueueSize”, will show the current size of the queue that holds logger events
waliting to be sent to loggers and is not editable. The next three are related in that they control
aspects of the logger thread pool. The final configuration option deals with a period of time
VXML Server waits after acaller ends their call before the call session is invalidated. All of
these options affect the performance of the system and are defined fully in Chapter 6: VXML
Server Configuration. Use the following table to reference the IMX attribute name with the
global config.xml tag name.

JMX Attribute Name Tag Name
LoggerMaximumT hreadPoolSize | <maximum thread pool sizes inthe <loggers tag.
LoggerMinimumT hreadPoolSize <minimum thread pool sizes inthe <loggers tag.

Logger ThreadKeepAliveTime <keep alive times inthe <loggers tag.
SessionlnvalidationDelay <session_invalidation delay>
Table 3-1

Tuning Logger Options

The most important indication of whether VXML Server is encountering issues with loggers is
the “LoggerEventQueueSize” attribute. A brief explanation of how VXML Server handles
loggers is warranted (for more details refer to Chapter 5: VXML Server Logging). In order to
prevent logging from holding up calls, all logging is done in separate threads. The threads are
managed within athread pool, which has a maximum and minimum value. When VXML Server
starts up, the thread pool allocates the minimum number of threads. As calls begin to be handled,
they generate logger events, which are put into a queue of events. The activation of alogger
event also prompts VXML Server to request athread from the pool and in that thread have the
appropriate logger handle the top most event in the queue. The length of time this thread handles
the event depends on the logger, but the event is typically handled in avery short period of time,
measured in milliseconds. However as call volume on the system increases, more threads are
used simultaneously to handle the increase in logger events added to the queue. As more threads
are needed, the thread pool grows until it reaches the maximum number of threads allowed. At
that point the queue would grow until threads become available. Threads that complete their
work and cannot find new logger events to handle because the queue is empty will be garbage
collected after a certain amount of time being idle (this is governed by the

Logger ThreadKeepAliveTime option).

Under typical operation, the logger event queue size should not be alarge number (one might see
it set to 0 to 10 most of the time). There could be spikes where the queue grows quickly but with
plenty of available threads to handle the events, the queue size should shrink rapidly. The
administrator should take note if the queue size shows a high number, though should be very
wary if this number seems to grow over time (minutes, not seconds). A growing queue size isan
indication that either the load on the system is too high for the thread pool to handle (which is

65

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

more likely the smaller the maximum thread pool size is set) or for some reason loggers are
taking longer to do their logging. In the latter case this could be due to a sow database
connection, overloaded disk 10 or other reasons. Regardless of the cause, a growing queueisa
warning sign that if the call volume is not reduced, the Java application server is at risk of
encountering memory issues and, in the worst case, running out of memory.

It is for this reason that choosing an appropriate maximum thread pool size is important. While
the temptation to give the maximum number of threads a very high number this can also cause
problems on the system as severe as memory issues. Using too many threads could cause what is
called “thread starvation” where the system does not have enough threads to handle standard
background processes and could exhibit unpredictable inconsistent behavior and could also cause
the Java application server to crash.

The IMX interface supports the ability to change the maximum and minimum thread pool size at
runtime. The administrator should only do thisif they believed the change could avert an issue
listed above. For example, if the system is encountering atemporary spike in activity and the
administrator sees the LoggerEventQueueSize attribute report a growing number, then they can
increase the maximum thread pool size to potentially allow for a more rapid handling of the
gueued events. Once the queue shrinks to a manageable number the maximum thread pool size
can then be changed back to its original value.

The maximum number of threads set by default in VXML Server is sufficient to handle a very
heavy load without issues so the administrator is urged to use caution when changing these
values.

Session Invalidation Delay Option

The session invalidation delay option is also an important value that an administrator could be
tuned should they see the need. A brief explanation of what this option does is warranted (for
more detailsrefer to Chapter 6: VXML Server Configuration). When a caller ends the call by
either hanging up, going to another application, or the application hangs up on the caller, VXML
Server must perform some final clean up of the call session. Thisis primarily for processing
logging events that occurred when the call ended. Additionally, application developers can
configure their applications to execute code at the end of a call to perform their own clean up
operations. In sophisticated applications this could involve closing database connections or
generating call detail records. These end of call operations can take a non-trivial amount of time
and may require access to information about the call session, such as element or session data. As
aresult, VXML Server waits for a preset period of time after a call ends before it invalidates the
session, allowing all activities requiring additional time to complete. This period of time is
governed by the SessionlnvalidationDelay attribute and is measured in seconds.

It isimportant to understand the consequences of changing this value. If too low atimeis given
then there could be situations where the system under load cannot handle the end of call tasks in
the given time and the global error log may see many errors containing the Java exception

TllegalStateException Which occurs when attempting to access datafrom an invalidated call

66

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

session. One has to understand that system resources are limited and when it is under load what
may have taken 100ms to complete could take longer and depending on what it is that needs to
be done, could take much longer.

The administrator should refrain from the temptation of making this number too large. Thisis
because while a call session is still valid but not representing a live call, all that information
remains in memory. This may not be much but could be significant depending on the amount of
data stored in element and session data by the application. Even though the session has not been
invalidated, since the call has ended, VXML Server isready and will accept new calls, which
will allocate additional memory. Under high load, the Java application server could encounter
memory issues if call sessions remain in memory for too long a period.

The IMX interface supports the ability to change the session invalidation delay at runtime. The
administrator would increase this setting if 111egalStateException €rors appear in the logs.
They would lower the value if the VM memory usage stays close to the maximum after each
garbage collection. Keep in mind that there are many potential causes for VM memory
utilization to rise and is certainly not limited to this cause.

The default value of the session invalidation delay is sufficient to handle a heavy load without
issues so the administrator is urged to be cautious when changing this value.

Application Configuration Options

To view the configuration options of an application using the IMX interface, navigate to the
VoiceApplication/APPNAME/Command MBean, where appNaME iS the name of the application.
There are four atributes listed:

e DefautAudioPath - this shows the audio path defining where the audio files are located
(assuming the application was designed to take advantage of it).

e GatewayAdapter - this shows the gateway adapter that the application is using and is not
editable. It is for informational purposes only.

e SessionTimeout —this shows the length of time, in seconds, of inactivity to consider a call
session timed ouit.

e SuspendedAudioFile — The path for the audio file to play to callers when calling into an
application that is suspended.

An administrator may choose to change the default audio path of an application at runtime
should there be a need to change the audio callers hear quickly. One use case would be if the
server that hosts the audio files is being restarted and the administrator wishes all audio to be
fetched from a backup server. Note that the effectiveness of this change will be based on how
consistently the application was designed to use the default audio path and also if the application
explicitly setsthe default audio path itself, which would override the value passed here.

67

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

An administrator may choose to change the session timeout value at runtime as part of the
process of debugging a problem. Under normal circumstances no session should time out
because the voice browser and VXML Server should be in constant communication regarding
when acall starts and ends. An administrator experiencing some sessions timing out may choose
to increase this attribute to seeiif it resolves the issue and if not, should look into network issues.
The administrator should be careful not to set this value too small a number because there isa
risk that a normal call could time out dueto the caller visiting a particularly large VoiceXML
page or taking their time entering along DTMF input. Too large a number will mean that
sessions that are no longer valid will remain in memory longer and the administrator would not
be able to see which sessions are timed out until the timeout period elapsed.

An administrator may choose to change the suspended audio file at runtime if the application
needed to be suspended due to a specific reason. For example, if a weather event required an
application to be suspended, the administrator could point the suspended audio message to a
recording explaining why the application is suspended rather then just pointing to a generic
message. The administrator is taking advantage of the fact that this change is not persisted since
it is expected that the event that caused the application’ s suspension is temporary.

Administration Functions

VXML Server exposes several functions that alow an administrator to make both small and
large changes to the applications and VXML Server at runtime. They are divided into two
categories: those that affect a specific application and those that affect all applications running on
VXML Server. An administrator can use the IMX interface as well as administration scriptsto
execute these functions.

Each administrator function, when activated, prompts VXML Server to send alogger event
reporting the function and its result so that any loggers listening to these events can log the
information. The logs will then maintain a history of administration activity that can be analyzed
later.

Administrator functions include the ability to add, update, and remove applications as well as
suspend both an application and VXML Server itself. This section describes all functions
available.

Graceful Administration Activity

Administration functions are used primarily to alter an application, whether it be to update its
contents or suspend its activity. Whenever changes are made to a live system handling callers, a
concern is how these changes affect live callers. A robust, reliable system should strive for
maximum uptime and minimal disruptions of live calls, and VXML Server doesthis by
implementing a “graceful” process for managing changes.

In the graceful process, existing callers continue to experience the application as it existed before
the change, while new callers experience the change. Only after all existing callers have naturally

68

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

ended their calls will the change apply to al live callers. At thistime, VXML Server will
perform any necessary cleanup required to remove the old application configuration. In this
manner, changes can be made to applications at any time, the administrator need not worry about
the impact of the change on live callers as the transition will be handled gracefully.

Due to the interactive nature, when using administration scripts to perform graceful functions,
the script will display a count down of callersthat are actively visiting the application as they
end their calls. Thisis provided as an aid to the administrator in determining how many callers
are still experiencing the application before the change. Command line arguments passed to the
scripts can turn off this countdown if desired.

When using the IMX interface or if the countdown is turned off in the administration script, the
only way to track the number of callersthat are gill experiencing the old configuration would be
to get the system status.

Updating Applications

Occasionally, an application will need to be updated. Possible changes can be small, such as
renaming an audio file or altering a TTS phrase, or large, such as adding another item to a menu
and creating a new call flow branch. They can involve simple configuration changes or may
involve new or changed Java class files. While most changes are implemented during
development time, there is a requirement to support updating an application at runtime.

The update functionality acts gracefully in that any callers on the system, at the time of update
continue to experience their calls as if the application had not been updated, while new callers
experience the updated voice application. In this manner, there is no downtime when achange is
implemented for an application, the callers are handled as expected.

VXML Server exposes an update function for every application deployed. Thiswill update just
that application. It also has a function that will update all applications at once.

There are afew items to note when updating individual voice applications.

e The gracefulness of the update applies only to those resources controlled by VXML Server.
These include the application settings and call flow, element configurations, Unified CVP
decision elements, and Java classes placed inthe java / application directory of the
application. The following changes are not managed by VXML Server and therefore will not
be gracefully updated:

o Javaclasses placed anywhere else (including the common folder),
o XML content passed to VXML Server viathe XML API.
o The content of VoiceXML insert elements.

o Other applications that the updated application transfersto or visits as part of a
subroutine.

69

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

o External back-end systems such as web services and databases (including the user
management database).

o Web servers hosting static content used by the application such as audio or grammar
files.

When each of these resources become unavailable or change, all callers would be affected.
For small changes such as arevised audio file, this situation may be acceptable. For large-
scale changes that span multiple systems, this could cause problems such as callers who are
visiting an application when the update is made experiencing an error because a database is
down.

For large changes, the application should be suspended and the changes made once all callers
have left the system (see the following section on suspending applications). Once the
application is fully suspended, the administrator is free to make the changes and when done,
the application should be updated followed by resuming it from its suspended state. This
way, no caller will be in the system when the changes are made. The only disadvantage to
this approach is that it will make the application unavailable for a period of time as opposed
to atransparent change if the update feature alone is used. This may be a necessary tradeoff
considering the consequences.

e When the update occurs, the event created by VXML Server to send to any loggers that are
listening will reflect when the update function was executed, not when it completed.

e [f anerror occurs during the update process, e.g., due to an incorrectly configured XML file,
adescription of the error is displayed and sent to any loggers listening to the appropriate
logger events and the update is cancelled.

JMX Interface

To update an application using the IMX interface, use aJMX client connected to the server to
navigate to the voiceapplication/<APPNAME>/Command MBean, where appNaME iS the name of
the application to update. The operations tab of this MBean will list a function named
“updateApplication”. Pressing this button will cause the application to be updated and the result
of the update will be displayed in a dialog box.

The administrator should be aware that there is no confirmation when this function is called, the
update happens immediately once executed.

Note that while the function returns immediately, the old application may still be active if there
were calls visiting the application at the time of the update. Only when all existing callers end
will the old application configuration be removed from memory. To determine when that occurs,
use the status function.

To update all applications at once using the IMX interface, navigate to the c1obal/command
MBean and click on the function named “updateAllApps’ in the operations tab. The results will
be displayed in adialog box, listing each application updated. As with the application-specific

70

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

update, use the status function to determine if there are callers experiencing old versions of the
applications.

Administration Scripts

The scripts for updating an application are found in the admin folder of the application to be
updated. Windows users should use the script named updateapp . bat and Unix users should use
the script named updateapp. sh.

The script will first ask for confirmation of the desired action to prevent accidental execution. To
turn off the confirmation, pass the parameter “noconfirm”. By default, the script does not return
to the command prompt until all pre-update callers are finished. Interrupting the countdown will
not stop the update process, only the visual countdown. To turn off the countdown, passthe
parameter “nocountdown”. If the countdown is interrupted or the script is passed the
nocountdown parameter then the only way to determine how many callers are experiencing the
old application is to execute the status script for the system, which displays this information.

The script to update all applications is found in the admin folder of VXML Server. Windows
users should use the script named updateallapps.bat and Unix users should use the script
named updateallapps.sh. The script behavior isthe same as if the update script for each
application deployed on VXML Server were executed in series.

The updatenllapps script aso displays a confirmation prompt which can be turned off by
passing the “noconfirm” parameter. Unlike the updateapp script, the updateal1apps script does
not display a countdown of callers, it lists all the applications that are updated. The administrator
would need to execute the status function to determine how many callers are visiting the old
versions of the applications.

Suspending Applications

There are many situations when an application needs to be temporarily suspended. There could
be scheduled maintenance to the network, the voice application could have an expiration date
(say it runs a contest that must end at a specific time), or the application isto be turned off while
enterprise-wide improvements are made. There may also be situations where all applications are
to be put in suspension if modifications are being made that affect all applications. In each of
these situations, a caller would need to be played a designer-specified message indicating that the
application has been temporarily suspended, followed by a hang-up. Thisis preferable to simply
not answering or taking down the system, which would cause a cryptic outage message to be
played.

First, the application designer defines the suspended message in the Application Settings pane in
Builder for Call Studio. When the suspend order is given, VXML Server produces aVoiceXML
page containing this suspended audio message to al new calls followed by a hang-up. Since
VXML Server gracefully allows all calls currently on the system to finish normally when the
command was issued, existing callers are unaware of any changes. VXML Server will keep track
of the active callers visiting the application and make that information available for the

71

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

administrator to access. Only when this number reaches O will it be safe for the administrator to
perform the system maintenance that required the suspension.

VXML Server exposes suspend and resume functions for every application deployed that acts on
just that particular application. It also exposes afunction that will suspend VXML Server itself,
which has the effect of suspending all applications. A separate resume function resumes VXML
Server that restores the previous state of each application. So if an application was already
suspended when VXML Server was suspended, resuming VXML Server leaves the application
in a suspended state.

There are afew items to note when suspending a voice application:

e Only when all existing callers have exited the system will the application be officially
suspended. Depending on the average length of calls to the voice application, this may take
some time. Note though that the application status will appear as suspended since new callers
cannot enter the application and will hear the suspended audio message.

e |If changes were made to an application while it was suspended, the application should first
be updated before being resumed (see the previous section on the update administration
function).

e The suspension applies only to those resources under the control of VXML Server. External
resources such as databases, other web servers hosting audio or grammar files, or servers
hosting components via XML documents over HTTP are accessed at runtime by VXML
Server. If any of these resources become unavailable while there are still pre-suspension
callers on the system, those calls will encounter errorsthat will interrupt their sessions. Any
maintenance made to backend systems should be initiated after the application status shows
that all pre-suspended callers are finished with their calls.

e When the suspension occurs, the event created by VXML Server to send to any loggers that
are listening will reflect when the suspend function was executed, not when it completed.

e [f an error occurs during suspension, a description of the error is displayed and sent to any
loggers listening to the appropriate logger events and the update is cancelled.

e Suspending avoice application still requires VXML Server (and hence the Java application
server) to be running in order to produce the VoiceXML page containing the suspended
message. |f the application server itself requires arestart, there are four possible waysto
continue to play the suspended message to callers. Remember to execute the suspend
function before any of these actions are taken as this is the prerequisite. The solutions are
listed in order of effectiveness and desirability.

o Load balance multiple instances of VXML Server. In aload-balanced environment, one
machine can be shut down, restarted, or reconfigured while the rest continue serving new
calls. Once removed from the load balance cluster, a machine will not receive new call
requests. Eventually, all existing callers will complete their sessions, leaving no callson

72

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

the machine removed from the cluster. That machine can then be safely taken down
without affecting new or existing callers.

o Use aweb server as a proxy. Inasmaller environment, aweb server can be used as a
proxy for an application server so that when that application server becomes unreachable,
the web server itself can return a gatic VoiceXML page containing the suspended
message to the voice browser. The web server need not be on the same machine as the
application server. Once the web server is configured, VXML Server can be suspended to
flush out al existing callers, then the application server can be taken down and the proxy
server will take over producing the suspended message VoiceXML page. The
disadvantage of this approach is that the web server setup is done outside of Unified CVP
and if the suspended message changes it would need to be changed in both the Builder for
Call Studio and the web server configuration.

o Redirect the voice browser. The voice browser can be configured to point to another URL
for calls coming on the specific number. This can point to another machine running
VXML Server or even just aweb server with asingle static VoiceXML document
playing the suspended message. A separate file would be needed for each application.
Thisisamanual process and requires another machine with at least a web server (it can
be on the same machine which would allow the Java application server to be restarted but
would not allow the machine itself to be restarted).

JMX Interface

To suspend an application using the IMX interface, use aJMX client connected to the server to
navigate to the voiceapplication/APPNAME/Command MBean, where appNaME IS the name of
the application to be suspended. The operations tab of this MBean will list afunction named
“suspendApplication”. Pressing this button will cause the application to be suspended and the
result will be displayed in a dialog box. To resume the application, select the function named
“resumeApplication”. The result will be displayed in adialog box.

The administrator should be aware that there is no confirmation when these functions are called,
the suspension and resumption occurs immediately once executed.

Note that while the suspend function returns immediately, the application may still be active if
there were calls visiting the application at the time of the suspension. Only when all existing
callers end their calls will the application be fully suspended and the administrator is safe to take
down any resources that the application depends on. To determine when all calls have ended, use
the status function.

To suspend VXML Server itself using the IMX interface, navigate to the c1obal /Command
MBean and click on the function named “ suspendV XML Server” in the operations tab. The
results will be displayed in adialog box. As with the application-specific suspension, use the
application-specific status function to determine if there are callers still visiting the applications.
Click on the function named “resumeV XML Server” to resume VXML Server and restore the
previous states of the applications.

73

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Administration Scripts

The scripts for suspending and resuming applications are found in the admin folder of the
application to be suspended. Windows users should use the script named suspendapp . bat and
Unix users should use the script named suspendapp . sh. To resume the application, use the
SCI’ipt named resumeApp.bat OF resumeApp.sh.

It is possible to suspend all applications at once by accessing a script found in the admin folder
of VXML Server. Windows users should use the script named suspendserver.bat and Unix
users should use the script named suspendserver . sh. To restore all applications to their
original status, use the script named resumeServer.bat Or resumeServer.sh. Notethat these
scripts do not resume all applications; they simply restore the administrator-specified status of
each application. So if an application was already suspended when the server was suspended,
resuming the server leaves the application in a suspended state.

Adding Applications

When VXML Server starts up, it will load all applications that have been deployed to its
applications folder. A new application that is created in Builder for Call Studio and deployed
to amachine on which VXML Server is aready running cannot begin accepting calls until

VXML Server loads the new application. To load the application, execute the deploy application
function. If the application is already deployed, executing this function will do nothing. If
multiple new applications are to be deployed together, one can execute the deploy all
applications function and all new applications will be deployed, and leave existing applications
untouched.

JMX Interface

To deploy all new applications using the IMX interface, use a JMX client connected to the server
to navigate to the c1obal/command MBean and click on the function named
“deployAllINewApps’ in the operations tab. Pressing this button will display a dialog box with
the status of each application’s deployment.

Alternatively, to deploy a single new application, first use the function named “listAlINewApps’
in the operations tab to get alist of new application names. Then use the “deployNewApp”
function to deploy the desired application by name.

Administration Scripts

The script for deploying a specific application is found in the admin folder of the application to
be deployed. Windows users should use the script named deployapp . bat and Unix users should
use the script named deployapp . sh. The script for deploying all new applications at once is
found in the admin folder of VXML Server. Windows users should use the script named
deployAllNewApps .bat and Unix users should use the script named deployAllNewApps. sh.

74

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Removing Applications

VXML Server exposes two administrative functions to handle the removal of application(s) from
memory at runtime. Determining which function to use will depend on the operating system and
whether the application being removed is actively handling calls.

The first method involves executing the release application function of the application to be
removed. This prompts VXML Server to first suspend the application then remove it from
memory when all the active callers at the time the function was executed, have naturally ended
their sessions. It suspends the application first to prevent new callers from entering the
application. Once all active callers are done visiting the application the folder of the application
can be deleted (or moved) from the VXML Server applications folder. This function affects
only asingle application so if multiple applications are to be removed using this method, the
administrator would have to execute this function for each application.

Note that on the Microsoft Windows operating system, a user attempting to delete an application
folder after the releaseApp function is called may be prevented from doing so by the operating
system if the application references Java application archive (JAR) files placed within the
java/application/lib OF java/util/1lib directories. Thisis due to the system keeping an
open file handle for JAR files that will not be released until a garbage collection event occurs. As
aresult, the administrator will have to wait until the garbage collector activates before being able
to delete the directory. The time to wait will be determined by how often garbage collection is
run. A rule of thumb is that a high load system or one with a small amount of memory will
encounter garbage collection often, alow volume system or one with a large amount of memory
will take longer.

The second method supports the ability to delete multiple applications at once. Thistime one
must first delete (or move) the folders holding the desired applications to be deleted. After
which, the flush all old applications function is executed and VXML Server will suspend then
remove from memory all the applications that it no longer finds in the applications folder. As
with the other method, the application is not removed from memory until all callers have ended
their visits.

There are certain issues with the second method:

o If anapplication relies on files found within its folder a runtime, there may be problems with
existing callers reaching a point where these files are needed and they will not be found.

e Thisprocess may not work on Microsoft Windows since Windows will not allow the deletion
of afolder when resources within it are open. For example, the application loggers may have
open log files located within the application’s 1o0gs folder. This may work if no loggers are
used or the only loggers used are those that do not manage files stored in the 10gs folder.

75

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

JMX Interface

To delete an application using the IM X interface, use aJMX client connected to the server to
navigate to the voiceapplication/<APPNAME>/Command MBean, where appNaME iS the name of
the application to update. The operations tab of this MBean will list afunction named
“releaseApplication”. Pressing this button will cause the application to be suspended and then
removed from memory when all active callers visiting the application at the time the function
was executed have completed.

The administrator should be aware that there is no confirmation when this function is called, the
application is suspended and removed from memory immediately once executed.

Note that while the function returns immediately, the application will remain active if there were
calls visiting the application at the time of the release. Only when all existing callers end the call
will the application be removed from memory. To determine if there are active callers, use the
status function.

To delete all applications whose folders have been removed from the applications folder of
VXML Server using the IMX interface, navigate to the c1obal /command MBean and click on
the function named “releaseAllOldApps’ in the operations tab. The results will be displayed in a
dialog box, listing each application deleted. As with the application-specific update, use the
status function to determine when the callers finish their visits to the applications.

Administration Scripts

The scripts for deleting an application are found in the adamin folder of the application to be
updated. Windows users should use the script named releaseapp.bat and Unix users should
use the script named releaseApp. sh.

The script will first ask for confirmation of the desired action to prevent accidental execution. To
turn off the confirmation, pass the parameter “noconfirm”. By default, the script does not return
to the command prompt until all callers are finished with their calls. Interrupting the countdown
will not stop the release process. To turn off the countdown, pass the parameter “nocountdown”.
If the countdown is interrupted or the script is passed the nocountdown parameter then the only
way to determine how many callers are actively in the application is to execute the status script
for the system.

The script to release all applications whose folders have been removed from the applications
folder of VXML Server isfound in the admin folder of VXML Server. Windows users should
use the script named f1ushAl10ldapps.bat and Unix users should use the script named
flushAlloldapps . sh. All applications whose folders have been removed will be suspended and
when their active calls have ended will be removed from memory.

The f1ushal101dapps script also displays a confirmation menu which can be disabled by

passing it the “noconfirm” parameter. Unlike the releasenpp script, the f1usha1101dapps
script does not display a countdown of active callers, it will list all the applications that were

76

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

deleted. The administrator would need to execute the status function to determine how many
callers are actively in the applications.

Updating Common Classes

When performing an application update, all the data and Java classes related to an application
will be reloaded. Java classes placed in the common folder of VXML Server are not included in
the application update. VXML Server provides a separate administrative function to update the
common folder.

There are afew items to note about this function:

e Theupdate affects all applications that use classes in the common folder, so executing this
function could affect applications that have not changed. Therefore, take precaution when
executing this function.

e The update affects all classes in the common folder, whether they were changed or not. This
is usually not aissue unless those classes contain information in them that reloading would
reset (such as static variables).

e Dueto thefact that this function reloads classes that affect all applications, and those classes
may themselves prompt the loading of configuration files from each application that uses
those classes, the function may take some time to complete depending on the number of
classes in the common folder and the number and complexity of the deployed applications.

e Changes are immediate, they are not done gracefully. Since this potentially affects all
applications, the administrator must be aware of this.

JMX Interface

To update common classes using the IMX interface, use aJMX client connected to the server to
navigate to the clobal/command MBean and click on the function named
“updateCommonClasses’ in the operations tab. The results will be displayed in a dialog box.

Administration Scripts

The script for updating common classes is found in the admin folder of VXML Server. Windows
users should use the script named updatecommonClasses.bat and Unix users should use the
script named updateCommonClasses . sh. The script will ask for confirmation of the desired
action to prevent accidental execution. To disable the confirmation, pass the parameter
“noconfirm”.

Getting/Setting Global and Application Data

Global data holds information that applications decide to share across other applications
deployed on VXML Server. Application data holds information that applications decide to share
across al callsto the application. The VXML Server IMX interface provides the ability for an

77

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

administrator to view the contents of these variables, change their values, and even create new
variables.

This functionality provides an administrator direct access to live datathat is being created on the
system and can provide them some control of how applications operate. This is only possible
when the application designers design that functionality into the applications. For example, an
application designer for a utility company can build their application to look for the existence of
aglobal data variable reporting a power outage. The administrator then creates the global data
variable when a power outage occurs and automatically the applications will start reporting the
power outage to callers. The administrator can then delete the global data variable to signify the
power has been restored. While this same functionality could be achieved with a database, thisis
asimpler approach to handle predictable situations without the need to use a database.

Global Data Access

To access global data using the IMX interface, navigate to the clobal /Data MBean. The
Attributestab lists all the global data variable names in an attribute named
“AllGlobalDataNames’ (the value may need to be expanded in order to see all the global data
names). The Operations tab lists four functions that can be executed by the administrator for
global data:

e setGlobalData — This function allows the administrator to create a new global data variable.
The function takes two inputs, the first being the name of the variable and the second being
the value. Click on the button to set the global data and the result will appear in a dialog box.
Notethat if there exists global data with the same name it will be overridden.

e removeGlobalData — This function allows the administrator to delete a global data variable.
The function takes one input: the name of the global data variable to delete. Click on the
button to remove the global data and the result will appear in the dialog box.

e removeAllGlobalData — This function allows the administrator to delete all global data,
whether it was created by the administrator or applications. Click on the button to remove all
global data and the result will appear in the dialog box. Be careful when using this function
as it could affect the performance of applications that rely on global data.

e getGlobalData — This function allows the administrator to retrieve the value of a global data
variable. The function takes one input: the name of the global data variable to retrieve. Click
on the button to display a dialog box showing the value of the global data.

Application Data Access

To access application data using the IM X interface, navigate to the
VoiceApplication/APPNAME/Data MBean, where appNanME iS the name of the application
whose application data is to be accessed. The Attributes tab lists all the application data variable
names in an attribute named “ AllApplicationDataNames’ (the value may need to be expanded in
order to see all the application data names). The Operations tab lists four functions that can be
executed by the administrator for application data:

78

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e setApplicationData — This function allows the administrator to creaste a new application data
variable. The function takes two inputs, the first being the name of the variable and the
second being the value. Click on the button to set the application data and the result will
appear in adialog box. Note that if there is already application data with the same name it
will be overridden.

e removeApplicationData — This function allows the administrator to delete a application data
variable. The function takes one input: the name of the application data variable to delete.
Click on the button to remove the application data and the result will appear in the dialog
box.

e removeAllApplicationData — This function allows the administrator to delete all application
data, whether it was created by the administrator or applications. Click on the button to
remove all application data and the result will appear in the dialog box. Be careful with this
function as it could affect the performance of the application.

e getApplicationData — This function allows the administrator to retrieve the value of a
application data variable. The function takes one input: the name of the application data
variable to retrieve. Click on the button to display a dialog box with the value of the
application data.

Administrator Log Access

VXML Server shipswith various default loggers, including administration history loggers that
store a history of the administration activity taken such aswhen VXML Server started up, when
an application was updated, the results of he suspension of VXML Server, etc. These logs, which
arerotated daily, are useful to an administrator as an audit history of administrator activity. Asa
convenience, the IMX interface exposes methods for the administrator to access the contents of
these logs instead of viewing the files in atext editor.

Please note that the application designer and administrator has the ability to define any loggers
desired for the applications as well as for VXML Server, including removal of the default
administration history loggers. If this is done, then these functions will return error messages that
explain that the log files could not be found.

To view an application’s administration history log using the IMX interface, use aJMX client
connected to the server to navigate to the voiceapplication/<APPNAME>/Command MBean,
where arpNaME iS the name of the application to view. The operations tab of this MBean will list
functions named “retreiveAdminHistoryToday” and “retreiveAdminHistoryAll”. Clicking on the
first will open up a scrollable window listing the contents of the administration history log file
from the day the function is called. Clicking on the second will open up a scrollable window
listing the contents of all administration history logs concatenated.

Toview VXML Server’ administration history log using the IMX interface, navigate to the
Global/command MBean. The operations tab of this MBean list functions with the same name

79

CHAPTER 3: ADMINISTRATION

USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

and functionality as the application functions do except that the files accessed are for the global
administration history.

Administration Function Reference

The following lists al the administration functions provided by VXML Server and whether they
are available from the IMX interface and/or via script.

Application-Level Functions

Function JMX | Script | Description

Suspend Application | Yes | Yes | Suspends the application in which the function belongs.

Resume Application | Yes | Yes | Resumesthe application in which the function belongs.

Deploy Application | No | Yes | Prompts VXML Server to load the application in which
the function belongs (does nothing if the application is
already deployed).

Update Application | Yes | Yes | Prompts VXML Server to reload into memory the
configuration of the application in which the function
belongs.

Release Application | Yes | Yes | Prompts VXML Server to remove from memory the
application in which the function belongs so that its
folder can be deleted.

Table 3-2
VXML Server-Level Functions

Function JMX | Script | Description

Suspend Server | Yes | Yes | Suspendsall applications deployed on VXML Server.

Resume Server | Yes | Yes | Restoresthe status of each application to the original state
a thetime VXML Server was suspended.

Deploy All New | Yes | Yes | All applications deployed to VXML Server since the last

Applications time the application server started up or the deploy all new
applications function was called are now loaded into
memory and can handle calls.

List All New Yes | Yes | Liststhenamesof all new voice applications so that their

Applications names may be known to be deployed using Deploy New
Application.

Deploy New Yes | No Loads and deploys the specified voice application.

Application

Flush All OId Yes | Yes | Whencalled, all applicationsin VXML Server whose

Applications folders were deleted are removed from memory.

Update Al Yes | Yes | Promptseach application deployed on VXML Server to

Applications load its configuration from scratch from the application
files.

Update Common | Yes | Yes | Reloadsall classes deployed in the common directory of

80

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

| Classes | | | VXML Server.
Table 3-3

VXML Server Metrics

The more information an administrator has, the better he will be in determining the health of the
system. VXML Server provides a significant amount of information on various metrics to alow
the administrator to understand what is going on within the system. Armed with this information,
the administrator will be able to react quickly to situations which could degrade the stability of
the system.

The information falls into three categories: aggregate information, information on pesaks, and
average information. Aggregate information, such as the total number of calls handled, is helpful
in determining how much work VXML Server has done so far. Peak information, such as the
maximum concurrent calls occurring in the last 10 minutes, is very helpful in understanding how
load is distributed on the system and can help the administrator understand how the volume is
changing. Average information, such as the average HTTP request completion time, helps the
administrator compare current metrics against historical averages.

The metrics maintained by VXML Server is available only through the IMX administration
interface. To view the metrics, navigate to the Global/Metrics MBean. The Operations tab lists
15 separate functions that the administrator can call to obtain very specific information
concerning how the system is running as well as how it has performed in the past. Many of the
functions take atime duration as an input. It will display information of the specified period up
to a maximum of 60 minutes.

The following list describes each function and the information it returns:

e totalCallsSinceStart — Returnsthe total cumulative number of calls handled by VXML Server
since it launched. This number will continually rise and only resets only when VXML Server
or the Java application server isrestarted.

e maxConcurrentCallsinLast — Returns the most number of simultaneous callers that occurred
inthe last X minutes where X is entered by the administrator (maximum of 60 minutes) and
when the maximum was reached. Thisis helpful in determining how close the call volume
reached the license limit on simultaneous callers. Knowing when the maximum value is
reached can be very helpful in determining if call volume isrising. For example if the peak
call volume for the last 10 minutes was achieved very close to present time, that would
indicate that call volume isrising.

e avgConcurrentCallsinLast — Returns the average number of simultaneous callers encountered
inthe last X minutes where X is entered by the administrator. This datais helpful in
determining if a peak was an isolated occurrence or asign of atrend. For example if the
maximum number of concurrent calls in the last hour was 100 but the average is 10, then
thereislessto be alarmed about since the 100 peak did not last long and can be attributed to

81

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

atemporary spike. If the average were 90, then this would indicate that the call volume is
very steady.

e maxReqRespTimelnLast — Returns the maximum time, in milliseconds, it took VXML Server
to produce an HTTP response in the last X minutes where X is entered by the administrator
and when the maximum was reached. A voice browser makes an HTTP request to VXML
Server, which then must respond with a VoiceXML page. Clearly alarge response time
would be cause for concern as a slow performing system will cause callers to think that the
application has encountered errors and in extreme cases could cause the voice browser to
time out arequest and end a call with an error.

e avgRegRespTimelnList — Returns the average time, in milliseconds, it took to produce an
HTTP response in the last X minutes where X is entered by the administrator. This value
gives the administrator agood idea of how long it takes VXML Server to handle responses
given the call volume. This could help the administrator decide if the system is overloaded
and beginning to affect the perception of callers regarding the responsiveness of the
application. It also establishes a baseline to compare with the maximum response time. A
maximum response time significantly higher than the average could be an indication that
there is a problem with an external resource accessed by a custom element such as a database
or web service and the few calls that visited that element suffered from bad performance. It
could also help determine if the maximum response time was an isolated event or an
indication of atrend. For example if the maximum response time were 500ms which
occurred near the present, the average was 400ms, the fact that the peak was 500ms is not
alarming, because the average is so high. In this situation the administrator may choose to
throttle down the calls being handled by the system to bring the response times back down to
more acceptable levels.

e timeoutCallsinLast — Returns the total number of calls that ended with a timeout in the last X
minutes where X is entered by the administrator. More specifically, this counts calls where
the “result” action of the “end” category is timeout. See Chapter 5: VXML Server Logging in
the section entitled The Application Activity Logger for more on the different results and
how ended values. Under normal circumstances a call should never time out. Many different
types of conditions can yield session timeouts on VXML Server and so knowing if there are
timeouts in the last period of time would tell the administrator how widespread these issues
are.

e failedCallsinLast — Returns the total number of calls that ended with an error in the last X
minutes where X is entered by the administrator. More specifically, this counts calls where
the “result” action of the “end” category iserror. See Chapter 5: VXML Server Logging in
the section entitled The Application Activity Logger for more on the different results and
how ended values. This helps the administrator determine how widespread a bug or other
issue that caused acall to end in an error is. For example, if the last 60 minutes yielded only
one failed call, while the issue should be investigated, it may not be a symptom of a larger
more prevalent issue.

82

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e timeoutCallsSinceStart — Returns the total number of calls that ended with atimeout since
VXML Server launched. More specifically, this counts calls where the “result” action of the
“end” category istimeout. See Chapter 5: VXML Server Logging in the section entitled The
Application Activity Logger for more on the different results and how ended values. This
information is good to compare with the number of timed out callsin the past X minutes as if
the numbers are close it could mean that the issue that is causing the timeouts is a recent
occurrence. It also gives an indication of the stability of the system and will alow the
administrator to calculate the percentage of callsthat had encountered timeouts.

e failedCallsSinceStart — Returns the total number of calls that ended with an error since
VXML Server launched. More specifically, this counts calls where the “result” action of the
“end” category iserror. See Chapter 5: VXML Server Logging in the section entitled The
Application Activity Logger for more on the different results and how ended values. This
information is good to compare with the number of failed calls in the past X minutes as if the
numbers are close it could mean that the issue that is causing the errorsis a recent
occurrence. It also gives an indication of the stability of the systemis and will allow the
administrator to calculate the percentage of callsthat had errors.

e maxLoggerEventQueueSizelnLast — Returns the largest the logger event queue got in the last
X minutes where X is entered by the administrator and when the maximum was reached. For
an explanation of the logger queue, see the section titled Tuning Logger Options earlier in
this chapter. This value will help the administrator understand, in an abstract way, how much
VXML Server islogging. While it is not unusual for this number to be large, the
administrator can track atrend and if this number continually increases it could be an
indication that the system cannot handle the logger event load and could eventually result in
memory problems. The time when the maximum was reached can help indicate if VXML
Server is able to handle the incoming stream of logger events.

e maxLoggerThreadCountinLast — Returns the most simultaneous threads VXML Server was
using to handle loggersin the last X minutes where X is entered by the administrator and
when the maximum was reached. For an explanation of the logger thread pool, see the
section titled Tuning Logger Options earlier in this chapter. This would be another indication
of whether VXML Server is able to keep up with the stream of logger events as if the number
is close to the maximum thread pool size it is an indication that VXML Server has almost
reached its limit in handling events. When the maximum was reached will help determine if
this is happening recently. Keep in mind that when all the threads in the pool are actively
handling logger events, the logger event queue will rise rapidly. So if thisvalue is at the
maximum thread pool size, then the maxL oggerEventQueueSizel nLast function would
display rapidly increasing queue sizes.

e callTransferRate — Returns the percentage of calls that ended in a blind telephony transfer.
More specifically, this counts calls where the “how” action of the “end” category is
call_transfer. This could help the administrator determine what percentage of callers decided
to speak to an agent rather than complete the call in the automated voice application.

83

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

callAbandonRate — Returns the percentage of calls that ended with the caller hanging up.
More specifically, this counts calls where the “how” action of the “end” category is hangup.
See Chapter 5: VXML Server Logging in the section titled The Application Activity Logger
for more on the different results and how ended values. Keep in mind, though, that despite
the name, a caller hanging up is not necessarily a bad thing since the caller could hang up
right before the application hung up on the caller and the end category would still be hangup.
This value would therefore be a good indication of how callers interact with the applications
on the system.

callCompleteRate — Returns the percentage of calls that ended normally. More specifically,
this counts calls where the “result” action of the “end” category is normal. See Chapter 5:
VXML Server Logging in the section titled The Application Activity Logger for more on the
different results and how ended values. This does not count calls into a suspended
application, calls ending in an error or timeout, or calls ending due to an element manually
invalidating the session. It is expected that this percentage be close to 100%.

averageCallDuration — Returns the average duration of all calls handled by VXML Server, in
seconds. This helps the administrator determine if a particular call being analyzed represents
atypical call since a particularly long call could indicate a caller having trouble with the
application and a short call could indicate caller frustration with the application.

84

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Chapter 4: User Management

VXML Server includes a user management system for basic personalization and user activity
tracking. The primary reason for a user management system is to facilitate the customization of
voice applications depending on user preferences, demographics, and prior user activity. It is not
meant to be a replacement for fully featured commercial user management systems and can be
used in conjunction with those systems. Additionally, Unified CV P voice applications do not
require he presence of a user management system, it is provided as an aid to application
designers.

While the bulk of the user management system is designed to track individual users, its most
basic form can still prove useful for those applications that do not need (or want) to track
individual users but would still like to be able to provide very simple personalization such as
playing “Welcome back” when a call isreceived from a phone number that has called before.
When turned on, the user management system automatically keeps track of information based on
the phone numbers of callers. This is available automatically; the developer need not do any
additional work.

The user management system is fully integrated into VXML Server. An APl isincluded to
provide two different interfaces to the user management system. The first interface is used to
manage the user database, allowing separate, external processes to populate, maintain, and query
the system. The second interface is provided for dynamic components of a voice application to
allow runtime updates and queries to the system. This second interface allows a voice application
to perform tasks such as playing a customized message to registered users, making decisions
based on user demographics or history, and even adding new users after the caller completes a
successful registration process. The API has both Javaand XML versions. These APIs are fully
detailed in the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified
Call Studio.

Deployment

The user management system is simply a database accessed by VXML Server. Each hosted voice
application may refer to a separate user management database or may share databases if users are
to be shared across applications. The user management system can be activated by providing a
JNDI name for the relational database the user data is to be stored. This is done in the settings
pane for the application in the Builder for Call Studio. Currently, the databases supported are
MySQL and SQL Server. Note that the application server must be set up to manage connections
to this database beforehand.

Once the database itself is set up, VXML Server automatically handles the process of creating
the database tables.

85

CHAPTER 4: USER MANAGEMENT

Database Design

Figure 4-1 displays an ER diagram of the database tables comprising the user management

USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

system. The following sections describe each table individually and its purpose.

applications

PK

app id

application_name

e i i Call History Data ———————— o] [UserData ~—=——=——=————
| |
I I I
I ! I
| | |
| : | I :
: flags sessions : | users_by_ani users
| PK |[call id | : PK |ani PK |uid
I | |
I Fk1 | call id > source | I |FK1 |app_id external_uid
: fla = name FK2 | app_id : | call_count account_created
| fl g_t' ani | : last_call account_modified
| ol dnis | | account_number
: uui : | pin
| iidigits | : name
| area_code | | > b_if‘thday
| exchange | | zip_code
: FK1 | uid : | gender
] start_time | : social_security
| end_time | | country
I : | user_phone language
| | : custom1
| | | custom?2
| | | custom3
! I | phone custom4
: | ! FK1 |uid
1 | |
L o s i | s s
Figure 4-1
Applications

Thistable is used to provide a primary key for the voice applications utilizing this user
management database. Most voice applications will utilize their own user management system in
which case this table will have only one entry in it. For those applications that share a common
user management system, this table’ s key is used to keep track of the activities of users visiting
each application, should that separation be necessary.

=

Column Type Description

app_id integer (primary key) | Automatically generated application ID.

application_name | varchar(50) The name of the application with the specified
application ID.

86

CHAPTER 4: USER MANAGEMENT

User Data

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The tables under this category are used to sore information about the users in the system.

users

Thistable is the main user table. Each row contains the information for a single user. Both
demographic and account information are stored here. The table specification is as follows:

Column Type Description
uid integer Thisisauser ID automatically generated by the system to
(primary identify a particular user. Once acall is associated with a
key) UID, the system knows the caller’ s identity. The user

management system relies on this UID throughout.

external_uid varchar(50) | If an external user management systemisused in
conjunction with this one there must be away to link a
user on the Unified CVP system with one in the external
system. This column storesthe ID for this user on the
external system to provide that link. Can be null if the
Unified CVP user management system is used
exclusively.

account_created datetime This stores the time the user was added to the system. It
will always have a value.

account_modified | datetime This stores the time of the last update to this user in the
system. It will always have a value.

account_number varchar(50) | Some voice applications identify users by account
numbers. If so, the account number should be stored here,
otherwise it can be null.

pin varchar(20) | If the voice application uses a PIN to verify the user, the
PIN is stored here. Null if no PIN isused or required.

name varchar(50) | The user’s name. Can be null.

birthday varchar(50) | The user’s birthday. Can be null.

Zip_code varchar(10) | Theuser’s zip code. Can be null.

gender varchar(10) | Theuser’s gender: “male’, “femal€e’, or null if not stored.

social_security varchar(10) | The social security number of the user. Can be null.

country varchar(50) | Theuser’s full country name. Can be null.

language varchar(50) | The language the user speaks or prefers. This can be used
to provide audio content in different languages. Can be
null.

customl-customd4 | varchar(200) | These columns are provided to allow the developer to

place custom user-related data in the system. It can be
used for such data as e-mail addresses, financial account
balances, proprietary I1Ds, etc. Can be null.

87

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

user_phone

Thistable is an adjunct to the main user table. It isused to store the phone numbers associated
with the user. The reason this data is placed in a separate table is to allow an application to
associate more than one phone number with a user. For example, a voice application allowing a
user to associate with their account both their home and work numbers can automeatically
recognize who the caller is when calls are received from either number, rather than requiring
themto log in. If multiple phone numbers are not required or necessary, this table can contain
one entry per account or remain empty. Since there may be multiple rows in the system with the
same UID, thereis no primary key to this table. The table specification is as follows:

Column Type Description
phone varchar(10) A phone number to associate with this account.
uid integer The UID identifying the user.
(foreign key)
users_by_ani

Thistable is used to track calls made from specific phone numbers (ANISs). Thistableis
automatically updated by VXML Server and need only be queried by the developer when
information about a caller is desired. The table contains information about the number of calls
and the last call made from a phone number. This information can be used to welcome a caller
back to the application or warn that menu options have changed since their last call even if the
application itself is not set up to track individual users through logins. The table specification is
asfollows:

Column Type Description

ani varchar(10) The phone number of the caller.

app_id integer The application the caller called into. This exists in case
multiple applications share a common user management
system.

call_count integer The number of calls received by this phone number to
this application.

last_call datetime The last time a call was received by this phone number to
this application.

88

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

CHAPTER 4: USER MANAGEMENT

Historical Data

Tracking user information is only part of a user management system. Many applications benefit
from knowing information about the past history of a user’s interaction with the phone system.
This component of the user management system is automatically updated by VXML Server and

need only be queried by the developer when information about user(s) is desired.

sessions

Thistable contains records of every call made to the system. It stores telephony information
about the call as well as when the call was made. The table specification is as follows:

Column

Type

Description

cal_id

integer

Thisis an automatically incremented ID for the call. It is
used exclusively within the user management system.

source

varchar(50)

This column contains the name of the application which
transferred to this one or is null if the application was
called directly.

app_id

integer

The application ID of the application called. If the user
management system is not shared across multiple
applications, this 1D would be the same for al calls.

ani

varchar(10)

The ANI of the originating caller. IsNA if the ANI was
not sent by the telephony provider.

dnis

varchar(10)

The DNIS of the originating caller. ISNA if the DNIS
was not sent by the telephony provider.

uui

varchar(100)

The UUI of the originating caller. IsNA if the UUI was
not sent by the telephony provider.

iidigits

varchar(100)

The [IDIGITS of the originating caller. IsNA if the
[IDIGITS was not sent by the telephony provider.

area_code

varchar(10)

The area code of the originating caller. Isnull if the ANI
iSNA.

exchange

varchar(10)

The exchange of the originating caller. Isnull if the ANI
isNA.

uid

integer

The UID of the caller if the call was associated with a
user. If not, it will appear as null.

start_time

datetime

The date and time the visit to the application began. If no
other application can transfer to this one, thiswill be the
time the call was made.

end_time

datetime

The date and time the visit to the application ended. If
this application cannot transfer to any other application,
thiswill be the time the call ended in a hang-up or
disconnect.

89

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

flags

This table contains records of the flags triggered by every call made to the system. Since flags
are used to indicate important parts of the voice application, knowing what areas of the voice
application people visited in the past can be very useful. The table specification is as follows:

Column Type Description

cal _id integer Thisrefersto the call 1D of the call.

flag_name varchar(100) | Thisisthe name of the flag that was triggered.
flag_time datetime Thisis the date and time the flag was triggered.

90

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Chapter 5: VXML Server Logging

Logging plays an important part in voice application development, maintenance, and
improvement. During development, logs help identify and describe errors and problems with the
system. Voice applications relying heavily on speech recognition require frequent tuning in order
to maximize recognition effectiveness. Voice application design may also be changed often,
taking into account the behaviors of callers over time. The more information an application
designer has about how callers interact with the voice application, the more that can be done to
modify the application to help callers perform their tasks faster and easier.

For example, a developer could determine the most popular part of the voice application and
make that easier to reach for callers. If alarge proportion of callers ask for help in a certain part
of the application the prompt might need to be rewritten to be clearer. After analyzing the
utterances of various callers, the effectiveness of grammars can be determined so that additional
words or phrases can be added or removed. None of this is possible without detailed logs of
caller behavior. While each component of a complete VR system such as the voice browser and
speech recognition system provide their own logs, VXML Server provides logs that tie all this
information together with the application logic itself. This chapter explains everything having to
do with logging on VXML Server.

Due to the importance of logging VXML Server has been designed to offer the maximum
flexibility with regards to what can be logged, how it islogged, and where it is logged. The logs
generated by VXML Server by default can be customized to fit the needs of a deployment. In
addition, a Java APl exists that alows developers to create their own ways of handling logging
for better integration with the deployed environment or tailored specifically for special needs.

Loggers

VXML Server handles all logging activity through the use of loggers. Loggers are plugins to
VXML Server that listen for certain logging events and handle them in a custom manner, from
storing the information in log files, sending the information to a database, or even to interface
with areporting system. Any number of loggers can be used, even multiple instances of the same
logger. A logger may or may not require a configuration that will allow the designer to
customize how the logger performs.

VXML Server comes with several loggers that provide all necessary information in text log files.
Some provide configurationsto allow for alevel of customization in how the loggers perform.
VXML Server exposes a Java API to allow developers the flexibility of creating their own
loggersto allow for even more customization. See the Programming Guide for Cisco Unified
CVP VXML Server and Cisco Unified Call Studio for detailed information on how to build
custom loggers.

91

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

VXML Server communicates with loggers by triggering logging events that the loggers listen for
and then deal with. VXML Server activates loggers in a fully multi-threaded environment to
maximize performance.

Loggers are divided into two categories: global loggers and application loggers. Global loggers
are activated by logging eventsthat apply to VXML Server as awhole and that is not directly
related to any particular application (for example a record of all calls made to the VXML Server
instance). Application loggers are activated by logging eventsthat apply to a particular
application running on VXML Server (for example a call visiting an element). Each logger type
is constructed using separate Java APIs and deals with a separate list of possible logging events.
Each logger type is also given a separate areato store logs, though alogger may choose to ignore
this area in the case that it does not log to files.

Global Loggers

Theglobal config.xml file found inthe conf directory of Audium Home is used to define the
global loggers VXML Server isto use. The administrator can define any number of global
loggers to be simultaneously active, even multiple instances of the same logger class. Thisfile
also lists the names of the configuration files for these loggers, if they are configurable. The
configuration files must be placed in the same cont directory asthe global config.xml file.
Theglobal config.xml file and any configuration files must be edited by hand, thereisno
interface for editing them. Refer to Chapter 6: VXML Server Configuration for more details
about this file and how to define global loggers within it.

Global loggers will be loaded by VXML Server when it starts up and remain in memory until it
is shut down. Any change made to the global config.xml filewill not be loaded until VXML
Server isrestarted.

VXML Server providesthe 10gs folder of Audium Home for log file storage should the Global
Loggersrequireit. To keep each logger instance’s logs separate, a subfolder with the name of
the logger instance is created and all logs generated by the logger instance are stored there.

By default, VXML Server utilizes three loggers to create text log files containing VXML Server-
specific information: alog that keepstrack of calls made to the system, a log for tracking
VXML Server administration activity, and an log that shows errorsthat occur on the VXML
Server level (as opposed to the application level). The global error logger requires a
configuration that allows for detailed control over how the logger operates.

The following sections describe these three pre-built global loggers, their configurations (if any),
and the information stored in their logs.

The Global Call Logger

The global call logger records asingle line for every application visit handled by VXML Server
into atext call log. Most calls will begin and end in a single application so in that case alinein

92

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

the call log is equivalent to a physical phone call. For situations where one application performs
an application transfer to another application, a separate line will be added to the call log for each
application visit despite the fact that they all occur in the same physical call. Since each
application visit is logged separately in each application’s own log file, the call log provides a
way to stitch together a call session that spans multiple applications.

The call log file names are in the format “call_logYYYY-MM-DD.txt” where YYYY, MM, and
DD arethe year, month, and day when the call log was first created. By default, the log folder for
is named “GlobalCallLogger” (though the nameis set inthe global config.xml fileand can
be changed by the administrator). Call log files are rotated daily. The file isorganized in a
commardelimited format with 6 columns:

e CalllD. Thisisanon-repeating value generated by VXML Server to uniquely identify calls. It
is designed to be unique even across machines, as the log files of multiple machines running
the same applications may be combined for analyses. The format of the session ID is
IP.SECS.INCR where IP isthe IP address of the VXML Server instance on which the call
originated, SECS isalarge integer number representing the time the application visit was
made and INCR is an automatically incremented number managed by VXML Server. Each
part is delimited by dots and contains no spaces. For example:
192.168.1.100.1024931901079.1.

NOTE: If avoice application uses a Subdialog Invoke element to transfer across multiple
VXML Server instances, the IP address included in the CallID isthe | P address of the
instance the call started on. Because of this, it is possible that a CallD in log files on one
machine may contain an I P address for another machine. This allows a physical call to be
traced across multiple servers (from a logging standpoint), even if Subdialog Invoke is used
to transfer to between various voice applications.

e SessionID. The session ID is used to track avisit to a specific application. Therefore, with
application transfers, one call ID may be associated with multiple session IDs. For this
reason, session IDs are simply the call ID with the application name appended to the end. For
example: 192.168.1.100.1024931901079.1.MyApp.

e callers. Thisinteger represents the total number of callers interacting with the system at the
time the call was received (including the current call).

e order. A number indicating the order of each application visited in acall. The order begins at
1. This column exists to report the order in which a caller visited each application should the
data be imported to a database.

e Application. The name of the application visited.

e Time. A timestamp of the application visit in the format “MM/DD/YYYY
HH:MM:SS.MMM” where the hour isin 24-hour time and MMM represents a 3-digit
millisecond value. This represents when the call was received or the application transfer
occurred.

93

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The Global Error Logger

The Global Error Logger records errors that occur outside the realm of a particular application.
Application-level errors are logged by application-level loggers, which are described later in this
chapter. Another type of error that the Global Error Logger receives is an application-level error
that encountered trouble with its logging. In order to prevent the loss of the data, VXML Server
activates a global logger event with the original application error as a backup.

The error log file names are in the form “error_logYYYY-MM-DD.txt” where YYYY, MM, and
DD arethe year, month, and day when the error log was first created. By default, the log folder is
named “GlobalErrorLogger” (though the name is set inthe global config.xml fileand can be
changed by the administrator). Global error log files are rotated daily. Note that if no error
occurred on a particular day, no error log will be created. Thefile is organized in a comma-
delimited format with 2 columns:

e Time. Thetime the error occurred.

e Description. The error description. One possible value can be max_ports, indicating the caller
was put on hold because all the Unified CVP license ports were taken. While the call was
eventually handled correctly, thisis placed here as a notice that the license may not have
enough Unified CVP portsto match caller volume. Another value isbad url:[URL],
indicating that arequest was made to VXML Server for a URL that could not be recognized.
This most likely will occur if the voice browser refersto an application that does not exist.
The last description iserror, indicating that some other error occurred.

Note that the global error log is not designed to be parsed, even though the columns are separated
with commas. This is because when the error log reports a Java-related error, it may include what
is called a“Java stack trace”, which contains multiple lines of outpui.

The Global Error Logger utilizes a configuration to control how it logs certain types of errors and

how often the log files should be purged. The configuration is specified as an XML file created
by the designer and placed in the conf directory of Audium Home.

94

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

version = . nameg
Lstring J string

— (7| * stacktraces

@ + warnings

+ log_details | (7| * on_hold_calls "# application_ nameg
*fenumeration
7| * http_parameters @ IE“Q“’E
.string

+ configuration z_

e + htip_headers

_|*fileage{ | #older mang
. 7 .string
L (3 +* purgeE:-‘\ - .
| * file_count "# greater_ mang
\.string
Figure 5-1

Figure 5-1 displays the format for the XML Global Error Logger configuration file. The main tag
for the configuration, configuration, hastwo atributes, name and version. Name is expected
to contain the logger instance name. The version is expected to include the version of the
configuration, which is currently “1.0”. The subsequent sections describe the functionality of the
various tags in the configuration.

Global Error Logger Configuration: Log Details

The <10g details> tag controls which errorsto log and what information to include about those
errors. The possible child tags are:

e <stacktraces>. Thisoptional tag is used to indicate that any Java errorsthat occur should also
have their stack traces printed in the log. The absence of this tag indicates not to include stack
traces.

e <on_hold_calls>. Thisoptional tag is used to indicate that a call that was put on hold should
be logged. The application name étribute can have the values t rue and false, true being
to include the name of the application the caller attempted to reach when being put on hold
and false to not include the application name.

e <http_parameters>. This optional tag is used to indicate that an error caused by an
unrecognized URL (such as arequest for an application that does not exist) should include the
HTTP parameters passed to the URL. This can be helpful to know since it could help
determine why the request was made. The 1ength attribute provides a limit, in a number of
characters, to be included in the log. This prevents the log from being filled up with too much
parameter data. Note that the parameter data appears on one line, no matter how long.

95

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e <http_headers>. Thisoptional tag is used to indicate that an error caused by an unrecognized
URL (such as arequest for an application that does not exist) should include the HTTP
headers passed to the URL. This can be helpful to know since it could help determine why the
request was made. The 1ength attribute provides a limit, in a number of characters, to be
included in the log. This prevents the log from being filled up with too much header data
Note that the header data appears on one line, no matter how long.

Global Error Logger Configuration: File Purging

The Global Error Logger can be configured to automatically delete files that conform to certain
criteria. Properly configured, thiswill allow an administrator to avoid having the system’s hard
drive fill up with logs, which would prevent new calls from being logged.

A few notes about file purging must be given:

e Since loggers are activated only when events occur in acall, the file purging activity will
only take place when an error event occurs. As aresult, a system that encounters no errors
will not automatically delete files until a new error occurs.

e When the Global Error Logger starts up for the first time, it will apply the purging strategy
on any filesthat exist in the logger directory. Therefore, if an application server is shut down
with files in the logger directory and then restarted a long time later, these files could be
deleted when the application server starts up and the logger initializes.

e The Global Error Logger applies its purging strategy to any files found in its logger directory,
including non-error log files. So should other files be added to the logger folder after the
application server has started could be deleted when the Error Logger encounters a new error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the
configuration, no file purging will take place. The tag can contain one of the following child

tags:

e file_age. The Global Error Logger will delete error log files older than X days, where X isan
integer greater than O specified inthe older than atribute.

e file_count. The Global Error Logger will delete error log files if the logger folder contains
greater than X files, where X isan integer greater than O specified inthe greater than
attribute. When the files are deleted, the oldest ones are deleted first until the folder reaches
the desired file count.

Global Error Logger Configuration Example #1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLoggerl"s>
<log details>
<stacktraces/>
<http parameters length="100"/>
<http headers length="300"/>

96

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

</log detailss>
<purge>
<file age older than="14"/>
</purge>
</configuration>

This configuration has the following features:

e Javastack traces will appear in the error logs. Note that since stack traces span multiple lines,
including stack traces may complicate the process of importing the error logs into
spreadsheets or databases. This israrely done for error logs anyway.

o |If thereisabad URL error message, it will include 100 characters of the URL input
parameters and 300 characters of the HTTP headers, all on one line in the log file.

e Nothing islogged for acall that is put on hold.

e When anew file isadded to logger instance’ s dedicated directory by the Global Error
Logger, if the directory contains files that are older than 14 days (2 weeks), the files will be
deleted.

97

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Error Logger Configuration Example #2

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLogger2">
<log detailss>
<on_hold calls application name="true"/>
</log detailss>
<purge>
<file count greater than="100"/>
</purge>
</configurations>

This configuration has the following features:

e Javastack traces will not appear in the error logs. When a Java exception occurs, only the
error message itself will appear in the error log without the stack trace.

e Whenacall isput on hold, that fact will be logged along with the application name that the
caller was attempting to visit.

e |fthereisabad URL error message, only the URL itself will be logged without any HTTP
parameters or headers.

e No file purging will take place. The administrator is responsible for maintaining the logs on
the system.

The Global Administration History Logger

The Global Administration History Logger records administration events that occur on VXML
Server itself. Application-level administration history is logged by application-level loggers,
which are described later in this chapter. These events are triggered by an administrator
executing administration script (see Chapter 3: Administration for more on administering VXML
Server).

The administration log file names begin with “admin_historyYYYY-MM-DD.txt” where
YYYY, MM, and DD arethe year, month, and day when the administration log was first created.
By default, the log folder for is named “Global AdminLogger” (though the name is set in the
global config.xml fileand can be changed by the administrator). Administration history log
files arerotated daily. Note that if no administration activity occurred on a particular day, no
administration history log will be created.

The file contains three columns: the time, what script was run, and its result, separated by

commas. The result isusually “success’ and if not, contains the description of the error
encountered. The possible values of the result are:

98

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e server_start - Listed when the VXML Server web application archive initializes. Thiswould
occur if the Java application server on which VXML Server isinstalled starts up or the
administrator of the application server explicitly started up the VXML Server web
application archive.

e server_stop - Listed when the VXML Server web application archive is stopped. Thiswould
occur if the Java application server on which VXML Server is installed shuts down or the
administrator of the application server explicitly stopsthe VXML Server web application
archive.

e deploy_all_new_apps - Listed when the dep1loyal1Newapps SCript isrun.
e flush_all_old_apps - Listed when the f1usha1101dapps Script isrun.

e suspend_server - Listed when the suspendserver script isrun.

e resume_server - Listed when the resumeserver script isrun.

e update_common_classes - Listed when the updat eCommonClasses SCript isrun.

Note that running the status script does not trigger an administration event and thus does not
update the history log.

Application Loggers

Application loggers are defined in the settings for that application. The application designer can
choose any number of application loggers they wish to listen to events for a particular
application, giving each instance a name. A logger may or may not require a configuration that
will allow the designer to customize how the logger performs. The configuration files must be
placed inthe data/application directory of the deployed application.

Unique to application loggers is the ability for one to specify that all logging events for acall be
passed to the logger it in the order in which they occurred in the call. Some application loggers
may even reguire thisto be turned on as their functionality depends on the events arriving in
order. The application designer can choose to ensure this is the case even for application loggers
that do not explicitly require it to have logs appear orderly. There is some performance
degradation as a result of this so an application logger that does not require this should not
enable it.

VXML Server providesthe 10gs folder of a particular application for log file storage should the
loggersrequireit. To keep each application logger instance’s logs separate, a subfolder with the
name of the instance is created and all logs created by the logger instance are stored there.

By default, VXML Server includes four loggersthat provide various application-specific
information: an activity logger that records caller behavior, an application administration history
logger that records administration activities, an error logger that lists errorsthat occur within
callsto the application, and a debug logger that provides additional information useful when

99

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

creating and debugging a new application. The activity logger and error logger require
configurations that allow for detailed control over how the loggers operate.

The following sections describe these four pre-built application loggers, their configurations (if
any), and the information stored in their logs.

The Application Activity Logger

The Activity Logger is the main application logger included with VXML Server. It records into
text log files all the activity taken by callers when they visit an application. It sores information
about the call itself such asits ANI, what elements the caller encountered and in what order, and
even detailed actions such as the values entered by the caller or the confidences of their
utterances. The names of the log files created by the Activity Logger begin with “activity log”
and are delimited for easy importing into spreadsheets and databases. These logs have a fixed
number of columns:

e SessionID. The session ID of the application visit as described in the VXML Server Call Log
section.
e Time. A timestamp of the event in areadable format.

e [Element name]. The name of the current element the activity belongs to. Only functional
elements (voice elements, action elements, decision elements, and insert elements) can
appear here. This column would be empty if the activity does not apply to an element.

e Category. The category of the action. A list of categories is given below:
o start. Information on new visits to the application.
o end. Information on how the application visit ended.

o element. Information on the element visited and how the element was exited. The element
column is empty for the start and end categories.

o interaction. Detailed information about what a caller did within a voice element.
o data. Element datato be logged.
o custom. Custom developer-specified datato log.
e Action. A keyword indicating the action taken. A list of actionsis given in Table 5-1.
e Description. Some qualifier or description of the action.

The following table lists all possible category and actions that can appear in the activity log and
descriptions on what they represent.

100

CHAPTER 5: VXML Server LOGGING

USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Category

Action

Description

start

newcall
or
source

newcall is used when the application visit isanew call. The
description is empty. source is used when another application
transferred to this application. The name of the application
transferred from is listed in the description.

start

ani

The description isthe ANI of the caller. NA if the ANI is not sent.

Start

areacode

The area code of the ANI. NA if the ANI is not sent.

Start

exchange

The exchange of the ANI. NA if the ANI is not sent.

Start

dnis

The description is the DNIS of the call. NA if the DNIS is not sent.

start

lidigits

The description isthe IIDIGITS of the call. NA if the IIDIGITS s
not sent.

Start

uui

The description is the UUI of the call. NA if the UUI is not sent.

Start

uid

The application visit is associated with auser. The UID islisted in
the description.

Start

parameter

An HTTP parameter attached to the initial URL that sarts a
Unified CVP application. The description lists the parameter name
followed by an “=" followed by the value. A separate line will
appear for each parameter passed.

start

error

An error occurred in the on call start action (either a Java class or
XML-over-HTTP). The description is the error message.

end

how

How the call ended. The description is either hangup to indicate
the caller hung up, disconnect to indicate the system hung up on
the caller, application_transfer: APPNAME to indicate atransfer to
another Unified CVP application occurred (where APPNAME
stands for the name of the destination application), call_transfer to
indicate atelephony blind transfer occurred, or
app_session_complete to indicate that the call session ended via
another means such as atimeout or the call being sent to an IVR
system outside of Unified CVP.

end

result

The description explains why the call ended. normal indicates the
call ended normally, suspended indicates the application is
suspended, error indicates an error occurred, timeout indicates that
the VXML Server session timed out, and invalidated indicates the
application itself invalidated the session.

end

duration

The duration of the call, in seconds.

error

An error occurred in the on call end action (either a Java class or
XML-over-HTTP). The description is the error message.

101

CHAPTER 5: VXML Server LOGGING

USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Category | Action Description

element enter The element was entered. The description isempty. Thisis always
the first action for an element.

element hotlink A hotlink was activated while in the element. This can be either a
global or local hotlink. The description lists the hotlink name.

element hotevent A hotevent was activated while in the element. The description
lists the hotevent name.

element error An error occurred while in the element. The description lists the
error message.

element flag A flag was triggered. The description lists the flag name.

element exit The element was exited. The description lists the exit state of the
element or isempty if a hotlink, hotevent or error occurred within
the element.

interaction | audio_group | Anaudio group was played to the caller. The description isthe
audio group name.

interaction | inputmode How the caller entered data. The description can be dtmf or speech.

interaction | utterance The caller said something that was matched by the speech
recognition engine. The description lists the match it made of the
utterance. This action will always appear with the interpretation
and confidence actions.

interaction | interpretation | In agrammar, each utterance is mapped to a certain interpretation
value. The description holds the interpretation value for the caller’s
utterance. This action will always appear with the utterance and
confidence actions.

interaction | confidence | The confidence of the caller's matched utterance. Thisis a decimal
value from 0.0 to 1.0. DTMF entries will always have a confidence
of 1.0. This action will always appear with the utterance and
interpretation actions.

interaction | nomatch The caller said something that did not match anything in the
grammar.

interaction | noinput The caller did not say anything after a certain time period.

data [NAME] When an element creates element data, one can specify if to log the
element data. Element data dated to be logged will appear here
with the element data name as the action and the value as the
description.

custom [NAME] Anywhere the developer adds custom name/value information to

the log will have the name appear as the action and the value
stored within as the description.

Table 5-1

102

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Notes on the Activity Logger:

e Dueto its complexity, the Activity Logger requires that the enforce call event order option to
be set for the logger instance using it and will throw an error if it is not set.

e When one Unified CV P application performs an application transfer to another application,
the reported timestamps of the end category of the source application and the start category
of the destination application could be imprecise when the source application ends with the
playing of audio content. This is due to the fact that voice browsers typically request
VoiceXML pages in advance if the current page contains only audio and a submit to the next
page. In other words, the browser could be playing audio to the caller while making a request
for the next VoiceXML page. If that page were the last of an application, the subsequent
reguest would begin the process of entering the new application including having the
Activity Logger handle start and end of call logging for the two applications. It would then
report the end time for the source application as being before the time the caller actually
“experienced’ the destination application by hearing its audio.

The Activity Logger utilizes a configuration to control the finer details of the information it
storesin its log files. The configuration controls five different aspects of the Activity Logger: the
format of the files, how much datato store in them, how often to rotate the files, how caching
should work, and how often should log files be purged. This configuration is specified as an
XML file created by the designer in Builder for Call Studio.

versiong # nameg
Lstring J \string

(@ delirnitelé (@ remove_delimiter_from_conten(é G end_of_lineé (@ date_granulaliwé

+ format Lstring *lenumeration “lstring Flenumeration
date_formatg

C*fenumeration

logging_levelg

string J
[e nameé
_string]
‘0 scope] * deﬁniu’ons# “{,|’ level] ‘}‘,|’ eventE| (eid g
string

+ by_da [# eve

/ + by_hour (o evenré
1 L J

Fi
/
A
/
s
\
N
Y
N
\,

AY + by_call
Lstring J

;'—,‘;‘ * cacheE‘ * per_caIIE| C kb_limité [® allocate E
- |string J *fenumeration

+ file_age[[older_thang
, Lstring

Lstring J
Figure 5-2

103

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Figure 5-2 displays the format for the XML Activity Logger configuration file. The main tag for
the configuration, configuration, hastwo attributes, name and version. Name is expected to
contain the logger instance name though can be given any name desired. The version is expected
to include the version of the configuration, which is currently “1.0”. The subsequent sections
describe the functionality of the various tags in the configuration.

Activity Logger Configuration: Format

The <format> tag allows for the modification of how the activity log files are formatted. All
Activity Logger configurations are required to define aformat. The possible attributes are:

e delimiter. Thisrequired attribute defines the delimiter to use to separate columns on aline.
Delimiters can be any string value, though typically will be acomma or tab. To use a special
white space character such as a new line or tab, use the escaped version. The possible values
are“\n” (denoting anew line), “\t” (denoting atab), “\r” (denoting areturn), and “\f”
(denoting a line feed).

e remove_delimiter_from_content. When this required attribute is set to true, the Activity
Logger will attempt to eliminate the delimiter from any content appearing in the logs to
ensure that the log file can be imported flawlessly. For example, if the delimiter isacomma
and the configuration is set to remove the delimiter, when it isto log the content “This, isthe
description”, it will appear in the log as“This is the description” so as not to affect the
accuracy of the importing process. This extra step, though, does incur a slight performance
hit. This step will not be performed if this attribute is set to false.

e end_of_line. Thisoptional attribute controls the delimiter used to separate lines. The
recommended option isto not include the attribute. In this case, the Activity Logger will
separate lines appropriate to the operating system on which VXML Server isrunning. Set the
attribute to explicitly set the new line delimiter. Delimiters can be any string value, though
typically will be awhite space character. To use a special white space character such asa
new line or tab, use the escaped version. The possible values are “\n” (denoting a new line),
“\t” (denoting atab), “\r” (denoting areturn), and “\f” (denoting a line feed).

e date_format and date_granularity. These required attributes set how the second column of the
activity log references a date when the event occurred. The format and granularity are
specified. There are three possible values for the date format attribute:

o standard. Thisis astandard readable date format in the form “MM/DD/YYY'Y
HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are the
milliseconds. The seconds and milliseconds are displayed with brackets to indicate that
their appearance are based onthe date_granularity atribute. For adate granularity
attribute set to minutes, just the hours and minutes of the time will be displayed. For a
granularity set to seconds, just the hours, minutes and seconds will be displayed. For a
granularity set tomilliseconds, al components will be displayed.

104

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

o minimal. Thisisaminimal time value that omits the date and is in the form
“HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are
the milliseconds. The seconds and milliseconds are displayed with brackets to indicate
that their appearance are based on the date granularity éttribute. For a
date granularity attribute set to minutes, just the hours and minutes will be
displayed. For agranularity set to seconds, just the hours, minutes and seconds will be
displayed. For agranularity set to milliseconds, all components will be displayed.

o number. Thisdisplays alarge integer number representing the full date and time asan
elapsed time since January 1, 1970, 00:00:00 GMT. For adate granularity dtribute
set to minutes, the number will be 8 digits in length (representing the number of minutes
elapsed since that date). For a granularity set to seconds, the number will be 10 digitsin
length (representing the number of seconds elapsed since that date). For a granularity set
tomilliseconds, the number will be 13 digits in length (representing the number of
milliseconds elapsed since that date).

Activity Logger Configuration: Scope

The Activity Logger configuration provides the administrator the ability to control what is
logged based on their own needs. This is done by defining logging levels and the events that each
level contains. During the debugging stage, for example, the logging level can be set to record all
events and once in production, the logging level can be set to record more important events.

The <scope> tag defines the logging level to useinthe 1ogging level attribute. The child tag
<definitions> encapsulates all possible logging levels. All Activity Logger configurations are
required to define a scope with at least one logging level.

To define alogging level, a separate <1evel> tag is added within the <definitions> tag and
given aname in the name attribute. Thistag will include a separate <event > tag for each event
the logging level includes. The iq attribute defines the name of the event. Table 5-2 lists all
possible event 1Ds and describes when that event occurs.

Note that a minimum, the start and end events are required for any logging level as these events

are used by the Activity Logger to maintain information about its log files and which calls are
using them.

105

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

Event ID Event Description

start This event occurs when a new visit is made to the application (could be a
new call or visit via an application transfer). This event isrequired in all
logging levels.

end This event occurs when an application visit ends. Thisevent isrequired in all
logging levels.

elementEnter This event occurs when an element is entered. This appliesto both standard
and configurable elements as well as VoiceXML Insert elements.

elementExit This event occurs when an element exits (either normally or due to
something occurring within it that took the call flow elsewhere).

elementFlag This event occurs when a flag element is visited by a caller.

defaultl nteraction

This event occurs when a voice element returns interaction logging content
as aresult of caller activity within aVoiceXML page.

elementData This event occurs when element datais created that has been configured to
be stored in the log.

custom This event occurs when custom content is to be added to the log, either by
visiting an element whose configuration specified content to add or by
executing custom code using either the Java or XML APIsthat specifiesto
add to the log.

hotlink This event occurs when a global or local hotlink that points to an exit state
(as opposed to throwing aVoiceX ML event) is activated by the caller.

hotevent This event occurs when a hotevent that has an exit state is activated in the
call.

warning This event occurs when awarning is encountered.

systemError This event occurs when VXML Server encounters an internal error (i.e. an

error that does not originate from a custom component). This event will
include a stack trace.

javaApiError

This event occurs when a custom component created with the Unified CVP
Java APl encounters an error. This event will include a stack trace.

xmlApiError This event occurs when a custom component created with the Unified CVP
XML API encounters an error. This event will not include a stack trace.
vxmlError This event occurs when an error event is received from the voice browser.

This event will not include a stack trace.

Table 5-2

106

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Activity Logger Configuration: File Rotation

In any system that stores information in log files, high volume can make these files get very
large. The desire isto have a strategy for creating new log files in order to avoid files that are too
large. Additionally, file rotation strategies can help separate the log files into more logical parts.
The Activity Logger defines several rotation strategies to choose from. Note that in order to
ensure that the information for asingle call is not split across multiple log files, the Activity
Logger ensures that al call information appears in the log that was active when the call was
received. Asaresult, it is possible for calls to be updating both pre and post rotation log files
simultaneously. Each rotation strategy determines how the log files are named (though all
activity log filenames begin with “activity _log”).

The <rotation> tag defines the rotation strategy to use by containing one of the following tags:

e <by day>. Thisstrategy will create anew log file every X dayswhere X is an integer value
greater than O specified in the every attribute. Typically thisvalue is 1, meaning that every
day at midnight, anew log file is created. For low volume systems, the value can be given a
larger value. For example, when set to 7, anew log file is created once aweek. The log files
are named “activity logYYYY-MM-DD.txt” where YYYY isthe year, MM is the month,
and DD isthe day that the file is created.

e <by hour>. Thisstrategy will create anew log file every X hours where X isan integer value
greater than O specified in the every attribute. There is no upper bound on this value, so it
can be greater than 24. The log files are named “activity _logYYYY-MM-DD-HH.txt” where
YYYY isthe year, MM isthe month, DD isthe day, and HH isthe hour that the file is
created. Notethat the hour is measured in 24-hour time (0 - 23).

e <by call>. Thisstrategy will create a separate log file for each call made to the application.
The log files are named “activity logYYYY-MM-DD-HH-SESSIONID.txt” where YYYY is
the year, MM isthe month, DD isthe day, and HH is the hour that the file is created (in 24-
hour time) and SESSIONID isthe VXML Server session ID (e.g. “activity _|0g2000-01-01-
17-192.168.1.100.1024931901079.1.MyApp.txt”). The session ID is included in the filename
to ensure uniqueness of the files. Note that care must be taken before using this log file
rotation strategy on systems with high load as this will create a very large number of files.

e <by_ size>. This strategy will create a separate log file once the previous log file has reached
X megabytes in size where X is an integer value greater than O specified inthemb limit
attribute. Note that dueto the fact that multiple calls will be updating the same file and that
the Activity Logger will ensure that all data for a single call appear in the same log file, the
final log file may be slightly larger than the limit. The log files are named
“activity_logYYYY-MM-DD-HH-MM-SS.ixt” where YYYY isthe year, the first MM isthe
month, DD is the day, HH isthe hour (in 24-hour time), the second MM is the minute, and
SSisthe second that the file is created. The time information is included in the file name in
order to ensure uniqueness.

107

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Activity Logger Configuration: Caching

The Activity Logger has the ability to use a memory cache to store information to log until either
the cache fills or the call ends. Using a cache has several advantages. The first isthat it increases
performance by waiting until the end of the call to perform the file 10. Without a cache, the log
file would be updated each time an event occurred. Another advantage is that with caching on,
the log file will be more readable by grouping the activities belonging to a single phone call
together. Without the cache, the events for all calls being handled by every application running
on VXML Server would be intermingled. While one can still sort the calls after the log is
imported to a spreadsheet or database, it is much more difficult to track a single call when simply
reading the log file without the cache. The one disadvantage of using a cache isthat the log file is
not updated in real-time, only after a call has completed. Should there be a desire to have the logs
updated immediately after the events occur, then caching should be left out of the configuration.

The <cache> tag has only one child tag: <per calls, indicating that the cache's lifetimeisa
single call to an application. <per calls definestwo attributes: kb 1imit, aninteger value
greater than O that defines the size of the cache in kilobytes, and a11ocate that defines the cache
alocation strategy. The attribute can be set to two different values:

e once. TheActivity Logger will allocate the full memory needed for the cache once and then
fill it up with logging information. When filled, the cache is flushed to the log file and the
same section of memory is cleared and then refilled.

e as_needed. The Activity Logger will allocate memory as events arrive in the call until the
total amount of memory has been allocated. When it is to be flushed, the memory is released
and then the allocation begins again.

The advantage of allocating the memory at once is that since a contiguous section of memory is
being used, the updating, maintenance, and flushing of that memory will be slightly faster.
Additionally, with only one area of memory per call less memory allocations take place, which
can affect how often Java garbage collection runs. A disadvantage is that the cache size should
be chosen carefully. Too small a cache will incur performance hits as the cache fillsup and is
logged multiple times within acall. Too large a cache would mean that alarge amount of
memory is allocated and then never used, potentially starving the rest of the system. A good
cache size would be approximately the size of alog for atypical call to the application. Since the
cache is flushed at the end of acall, there is little reason to make the cache much larger.

The advantage to allocating the memory as needed is that this minimizes the memory used since
only the memory needed to store the information is used. The cache size is not as important, and
making it larger will not affect the overall memory usage as drastically as if the cache was
allocated all at once since the memory would not be allocated unless needed.

It is recommended to configure the cache to be allocated once for performance and as needed if
memory on the system istight.

108

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Activity Logger Configuration: File Purging

The Activity Logger can be configured to automatically delete files that conform to certain
criteria. Properly configured, thiswill allow an administrator to avoid having the system’s hard
drive fill up with logs, thereby preventing new calls from being logged. A few notes about file
purging that must be understood:

e A logger has control only over the files appearing under the logger instance’s dedicated log
folder and cannot control those files managed by other logger instances. This even appliesto
multiple instances of the same logger since each logger instance is given its own unique
folder within the 10gs folder of the application. Activity Logger file purging therefore
applies only to those files appearing under the logger instance’s folder.

e Since loggers are activated only when events occur in acall, the file purging activity will
only take place when a call ends. As aresult, a system that receives no calls at all will not
automatically delete files until a new call is received and completes.

e When the Activity Logger starts up for the first time, it will apply the purging strategy on any
files that exist in the logger directory. Therefore, if an application server is shut down with
filesin the logger directory and then restarted along time later, these files could be deleted
when the application server starts up and the logger initializes. This appliesto any file
appearing in the logger directory, not just activity logs.

e TheActivity Logger keeps information about the activity log files in memory and acts on
that to determine whether to delete them rather than by monitoring the remaining hard drive
space on the system. This is done to avoid having to do file 10 to determine if afileisto be
purged and so minimizes overhead (though there still is overhead in simply deleting files).
One consequence of thisisthat the logger keeps track only of those files it is managing. The
logger is unaware of any files added to the directory after the application server initializes. So
the purging strategy will affect those files only.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the
configuration, no file purging will take place. The tag can contain one of the following child

tags:

e file_age. The Activity Logger will delete activity log files older than X days, where X isan
integer greater than O specified inthe older than attribute.

e file_count. The Activity Logger will delete activity log files if the logger folder contains
greater than X files, where X isan integer greater than O specified inthe greater than
attribute. When the files are deleted, the oldest ones are deleted first until the folder reaches
the desired file count.

109

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Activity Logger Configuration Example #1

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLoggerl"s>
<format delimiter="\t" remove delimiter from content="true"
end of line="\n" date format="standard" date granularity="milliseconds"/>
<scope logging level="Complete">
<definitions>
<level name="Minimal">
<event id="start"/>
<event id="end"/>
</levels>
<level name="Complete">
<event id="start"/>
<event id="end"/>
<event id="elementEnter"/>
<event id="elementExit"/>
<event id="elementFlag"/>
<event id="defaultInteraction"/>
<event id="elementData"/>
<event id="custom"/>
<event id="hotlink"/>
<event id="hotevent"/>
<event id="warning"/>
</levels>
</definitions>
</scope>
<rotations>
<by day every="2"/>
</rotations>
<cache>
<per call kb limit="10" allocate="once"/>
</cache>
<purge>
<file age older than="3"/>
</purge>
</configurations>

This configuration has the following features:

e Theactivity logswill be delimited with atab (“\t”) and will have any tabs that appear in the
content removed.

e Theactivity logs will use a Unix-style new line character (“\n”) to delimit lines. As aresult,
these log files would not appear orderly on Windows Notepad because it does not recognize
these new line characters.

e Datesin the activity logs will appear in the standard format with millisecond granularity. For
example: “05/09/2006 15:45:02.654"

e Two logging levels are defined: Minimal, which logs only when a caller entered and exited
an application, and Complete, which logs all events. The Complete logging level isthe one
that will be used.

e Theactivity log fileswill be rotated every two days, meaning each log file will contain 2
days worth of calls before anew file is created.

110

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e Thecacheisset to 10K or 5000 characters and is allocated once at the start of a call.
o Filesthat are older than 3 days that appear in the logger instance’s dedicated directory will be
purged.

Activity Logger Configuration Example #2

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLogger2">
<format delimiter="," remove delimiter from content="false"

date format="minimal" date granularity="minutes"/>
"~ <scope logging level="MyLoggingLevel"s
<definitions>
<level name="MyLoggingLevel">
<event id="start"/>
<event id="end"/>
<event id="elementEnter"/>
<event id="elementFlag"/>
<event id="elementExit"/>
</levels>
</definitions>
</scope>
<rotations>
<by size mb_limit="100"/>
</rotations>
</configurations>

This configuration has the following features:

e Theactivity logs will be delimited with a comma and will not remove any commas that
appear in the content potentially complicating any importing of these logs into spreadsheets
or databases.

e Theactivity logs will end each line with the character appropriate for the operating system on
which it is generated. So if this system is running under Windows, the activity logs will look
fine under Notepad and if this system is running under Unix, the activity logs will use the
Unix end of line characters that would not be recognized if opened by Windows Notepad.

e Datesin the activity logs will appear in the minimal format with minute granularity. For
example: “15:45”.

e Only one logging level is defined that logs when calls enter and exit an application, enter and
exit an element, and when a flag element is visited.

e A new activity log is created when the previous one has reached approximately 100MB in
size, regardless on whether the calls spanned weeks or hours.

¢ No logging cache is used, meaning that when a logging event occursin acall, it is placed into
the activity log immediately. This allows for real-time logging but incurs a performance
overhead in managing much more 1O operéations.

e No file purging will take place. The administrator is responsible for maintaining the logs on
the system.

111

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The Application Error Logger

During the voice application development process, errors can be introduced by configuring
elements incorrectly, spelling mistakes in audio filenames, or by Java coding bugs. In each of
these cases errors occur while running the application. While the Activity Logger does report
errors, it is preferable to isolate errors in a separate file so that they are easily found and dealt
with. Additionally, when reporting Java errors, a stack trace is desired. The application Error
Logger provides a place for these errorsto appear. The error log file names are in the form
“error_logYYYY-MM-DD.txt” whereYYYY, MM, and DD are the year, month, and day when
the error log was first created and is rotated daily.

Note that the application Error Logger will report information on errorsthat are affiliated with
the application in which it is configured. It can even report errors encountered by other loggersin
the same application only if the Error Logger is listed before other loggers in the application. If
another logger is loaded before the Error Logger, any errors it encounters will be logged instead
to the VXML Server Call Error Log. It is for this reason that by default Builder for Call Studio
putsthe Error Logger at the top of the list of loggersto use for anew application.

The columns of the error log are:

e SessionID. The session ID of the application visit described in the VXML Server Call Log
section.

e Time. Thetime the error occurred.

e Description. The error description including a Java stack trace if applicable.

The Error Logger utilizes a configuration to control two different aspects of the error logs: the

format of the files and how often should log files be purged. This configuration is specified as an
XML file created by the designer in Builder for Call Studio.

. version E # name
Lstring Lstring

delimiter 0 remove_delimiter_from_content, 0 date_granulari # date_format=|
E E E =}
.string fenumeration Jenumeration "-,"enumerallnn

Q pnnt_stacl(tra(esE
Jenumeration

Lstring

“~_ # file_count [@ greater_ thang
Lstring

Figure 5-3

Figure 5-3 displays the format for the XML Error Logger configuration file. The main tag for the
configuration, configuration, hastwo atributes, name and version. Name is expected to
contain the logger instance name. The version is expected to include the version of the
configuration, which is currently “1.0”. The subsequent sections describe the functionality of the
various tags in the configuration.

112

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

Error Logger Configuration: Format

The <format> tag allows for the modification of how the error log files are formatted. All Error
Logger configurations are required to define a format. The possible attributes are:

delimiter. This required attribute defines the delimiter to use to separate columns on aline.
Delimiters can be any string value, though typically will be acomma or tab. To use a special
white space character such as a new line or tab, use the escaped version. The possible values
are“\n” (denoting anew line), “\t” (denoting atab), “\r” (denoting areturn), and “\f”
(denoting a line feed).

remove_delimiter_from_content. When this required attribute is set to true, the Error Logger
will attempt to eliminate the delimiter from any content appearing in the logs to ensure that
the log file can be imported flawlessly. For example, if the delimiter isa comma and the
configuration is set to remove the delimiter, when it isto log the content “This, isthe
description”, it will appear in the log as “This is the description” so as not to affect the
accuracy of the importing process. This extra step, though, does incur a slight performance
hit. This step will not be performed if this attribute is set to false. Notethat should the error
log contain Java stack traces, the error logs could be difficult to import as stack traces fill
multiple lines (though their content will be cleaned of the delimiter if desired).

date_format and date_granularity. These required attributes set how the second column of the
error log references a date when the event occurred. The format and granularity are specified.
There are three possible values for the date format attribute:

o standard. Thisis a standard readable date format in the form “MM/DD/YYY'Y
HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are the
milliseconds. The seconds and milliseconds are displayed with brackets to indicate that
their appearance are based onthe date_granularity atribute. For adate granularity
attribute set to minutes, just the hours and minutes of the time will be displayed. For a
granularity set to seconds, just the hours, minutes and seconds will be displayed. For a
granularity set tomilliseconds, al components will be displayed.

o minimal. Thisisaminimal time value that omits the date and is in the form
“HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are
the milliseconds. The seconds and milliseconds are displayed with brackets to indicate
that their appearance are based onthe date granularity éttribute. For a
date granularity attribute set to minutes, just the hours and minutes will be
displayed. For agranularity set to seconds, just the hours, minutes and seconds will be
displayed. For agranularity set to milliseconds, all components will be displayed.

o number. Thisdisplays alarge integer number representing the full date and time asan
elapsed time since January 1, 1970, 00:00:00 GMT. For adate granularity dtribute
set to minutes, the number will be 8 digits in length (representing the number of minutes
elapsed since that date). For a granularity set to seconds, the number will be 10 digitsin
length (representing the number of seconds elapsed since that date). For a granularity set

113

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

tomilliseconds, the number will be 13 digits in length (representing the number of
milliseconds elapsed since that date).

e print_stack_traces. Thisrequired attribute is set to either true or false and determines
whether the error log will contain Java stack traces. Stack traces are very useful to a
developer in tracking down the cause of a Javaerror so it is recommended to keep this option
on.

Error Logger Configuration: File Purging

The Error Logger can be configured to automatically delete files that conform to certain criteria.
Properly configured, thiswill allow an administrator to avoid having the system’s hard drive fill
up with logs, which would prevent new calls from being logged.

A few notes about file purging must be given:

e Since loggers are activated only when events occur in a call, the file purging activity will
only take place when an error event occurs. As aresult, a system that encounters no errors
will not automeatically delete files until a new error occurs.

e When the Error Logger starts up for the first time, it will apply the purging strategy on any
files that exist in the logger directory. Therefore, if an application server is shut down with
filesin the logger directory and then restarted along time later, these files could be deleted
when the application server starts up and the logger initializes.

e Unlike the Activity Logger, the Error Logger applies its purging strategy to any files found in
its logger directory, including non-error log files. So should other files be added to the logger
folder after the application server has started could be deleted when the Error Logger
encounters anew error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the
configuration, no file purging will take place. The tag can contain one of the following child

tags:

e file_age. The Error Logger will delete error log files older than X days, where X isan integer
greater than O specified inthe older than attribute.

e file_count. The Error Logger will delete error log files if the logger folder contains greater
than X files, where X is an integer greater than O specified inthe greater than attribute.
When the files are deleted, the oldest ones are deleted first until the folder reaches the desired
file count.

114

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Error Logger Configuration Example #1

<?xml version="1.0" encoding="UTF-8"?>

<!DOCTYPE configuration SYSTEM
"../../../../dtds/ApplicationErrorLoggerConfig.dtd" >
<configuration version="1.0" name="MyErrorLoggerl":>

<format delimiter="," remove delimiter from content="true"
date_format="standard" date granularity="seconds" print stack traces="true"/>
<purges
<file count greater than="10"/>
</purge>
</configurations>

This configuration has the following features:

e Theerror logswill be delimited with a comma and will have any commas that appear in the
content removed.

e Datesintheerror logswill appear in the standard format with seconds granularity. For
example: “05/09/2006 15:45:02"

e Javastack traces will appear in the error logs. Note that since stack traces span multiple lines,
including stack traces may complicate the process of importing the error logs into
Spreadsheets or databases. Thisisrarely done for error logs anyway.

e When anew file isadded to logger instance’ s dedicated directory by the Error Logger, if the
directory contains more than 10 files the oldest file will be deleted.

Error Logger Configuration Example #2

<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM
"../../../../dtds/ApplicationErrorLoggerConfig.dtd" >
<configuration version="1.0" name="MyErrorLogger2">

<format delimiter="***" remove delimiter from content="false"
date format="minimal" date granularity="seconds" print stack traces="false"/>
</configurations>

This configuration has the following features:

e Theerror logswill be delimited with the string “***” and will not attempt to remove that
string from the content. Note that the delimiter does not need to be limited to asingle
character and can be a multi-character string. Usually, though, it is a single character to make
importing into spreadsheets and databases straightforward.

e Datesintheerror logswill appear in the minimal format with seconds granularity. For
example: “15:45:02"

e Javastack traces will not appear in the error logs. When a Java exception occurs, only the
error message itself will appear in the error log without the stack trace.

e No file purging will take place. The administrator is responsible for maintaining the logs on
the system.

115

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The Application Administration History Logger

Whenever an application-specific administration script isrun, alog file is updated with
information on the script that was run. The administration log file names are in the form
“admin_historyYYYY-MM-DD.txt” where YYYY, MM, and DD arethe year, month, and day
when the administration history log was first created and is rotated daily. The file contains three
columns: the time the script was run, what script was run, and its result. The result is usually
“success’ and if not contains the description of the error encountered. The possible values are:

e server_start - Each application’s history log contains records of each time the application
server starts.

e deploy_app - Listed when the dep1oyapp script is run.

e suspend_app - Listed when the suspendapp script isrun.

e resume_app - Listed when the resumeapp Script is run.

e update_app - Listed when the updateapp Script isrun.

e release_app - Listed when the releasenpp script isrun.

e update_common_classes — Listed when the global updatecommonclasses script isrun. The
reason this global admin event is logged by the Application Administration History Logger is
because elements that appear in the common directory are reloaded by this command,
prompting those elements to reload their application-specific configurations.

Running the status script does not update the history log.
The Administration History Logger does not utilize a configuration.

The Application Debug Logger

At times when debugging an application it would be advantageous to see information concerning
the HT TP requests made by the voice browser and the corresponding HT TP responses of VXML
Server. The Debug Logger creates asingle file per call that contains all HTTP requests and
responses that occurred within that call session. The log files are named “debug_logYYY'Y-MM-
DD-HH-SESSIONID.txt” where YYY'Y isthe year, MM is the month, DD isthe day, and HH is
the hour (in 24-hour time) that the file is created and SESSIONID isthe VXML Server session
ID (e.g. “debug_|og2000-01-01-17-192.168.1.100.1024931901079.1.MyApp.txt”). The session
ID isincluded in the filename to ensure uniqueness of the files. The debug log contains:

e A timestamp of when each HTTP request was received from the voice browser as well as
when the response was sent back by VXML Server.

e All headers of the HTTP request.

e All arguments passed with the HTTP request, whether they be set via GET or POST.

e Theentire VoiceXML page returned in the HTTP response.

116

USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER

CHAPTER 5: VXML Server LOGGING
AND CISCO UNIFIED CALL STUDIO

e [tisrecommended to usethe Debug Logger only when performing debugging and not in a
production environment as it incurs overhead on the system in creating and managing file IO
and replicating the HT TP response, which must be generated once for the voice browser and
once for each Debug Logger instance. Note the Debug Logger does not require the enforce
call event order to be turned on, however without it there could be situations where under
load the HTTP requests and responses are out of order or mixed together in the file.

117

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Chapter 6: VXML Server Configuration

VXML Server can be configured to tailor its behavior. This chapter explains all configuration
options and how to change them.

Out of the box, VXML Server uses default values for these configuration options and will
function without modification. Only an experienced administrator should consider changing
these options as improperly chosen values can cause significant performance degradations and
could even prevent VXML Server from functioning correctly.

Global Configuration File

The mechanism to edit the VXML Server configuration is through an XML file named
global config.xml found inthe aAuniuM HOME/conf directory. Thisfile must be edited by
hand, there is no graphical interface.

Thisfileisloaded by VXML Server when it isinitialized and cached in memory. Loading the
file is one of the first tasks performed by VXML Server when it starts up since the configuration
options affect how it runs. Any changes to this file will require VXML Server to be restarted in
order for the changes to take affect.

Note that when performing an upgrade of VXML Server, the administrator will have to re-
implement the configuration changes.

Configuration Options

;\'?‘,-| + adminisuau‘on_port%

(7| * default_browserg

.'\'?_‘;‘ * default_suhdialog%

;\'—_,_"-‘ + session_invalidalion_delay%

(7) * convert_old_appsg

* minimum_mread_pool_size%

;\'—!‘;‘ + loggerg] ‘0 maximum_mread_pool_size%

+ keep_alive_timeg

;\'?"-‘ * debugger* pon%

L@ * global_loggersq o * Iogger_instancea D _nameé D _classé ;\'?_"-'0 _conﬁgurau'oné
{string J string J \string J

Figure 6-1

119

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Figure 6-1 displaysthe DTD diagram of the global config.xml file. The elementsin the XML
document are:

e administration_port — This tag defines the port on which administration activity takes place
and can be any positive integer. By default, the port is set to 10100. See Chapter 3:
Administration for more on administration activities.

e error_class — Thistag defines the fully qualified Java class name of a class to execute when
an error occurs for notification purposes. By default no class is defined. See the
Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio for
more on how to write the On Error Notification class.

e default_browser — This tag defines the real name of the gateway adapter that should be used
by default when VXML Server needs to produce a VoiceXML page in a scenario where the
current application is unknown and therefore the gateway adapter for that application is
unknown. One such scenario is an error where the VXML Server session is unrecognized.
The reason this exists is because some gateways require the VoiceXML to be formatted in a
specific way (such as requiring an XML namespace to appear in the document) that if the
VoiceXML page were produced in a different format would cause an error on the gateway.
An application lists its gateway in its settings and normally thisis available to VXML Server
to produce the correct VoiceXML. However in rare cases, an error occurs and VXML Server
does not have access to the session and hence the application that the call belonged to and
would need to know which gateway to have the resulting VoiceXML page conform to. By
default, if left blank in global config.xml, VXML Server will search through the directory
of installed gateway adapters and use the first oneit finds.

e default_subdialog — Thistag defines whether to treat acall that is not associated with an
application asif it were a VoiceXML subdialog and whose possible values are true and
false. Some gateways (such as Cisco gateways) call all VXML Server applications as
VoiceXML subdialogs. VXML Server must be aware of this because it determines how the
VoiceXML it produces looks and if not produced correctly would cause an error on the
gateway. Typically, acall is made to an application which defines in its settings whether to
treat the application as a subdialog. However in rare cases, an error occurs and VXML Server
does not have access to the session and hence the application that the call belonged to and
would need to know whether to treat the call as a subdialog. By default, if left blank in
global config.xml, VXML Server will consider a call to the application to not be a
subdialog.

e session_invalidation_delay — Thistag defines the amount of time in seconds that VXML
Server will wait for after a call session ends before actualy invalidating that session (this can
be any integer greater than or equal to 0). This configuration option is needed because there
may be various activities taken by loggers and end of call classes that require the session to
remain alive to access data within it (such as element or session data) and if the session were
invalidated would cause errors to occur when attempting to access the data. If this value were
too small (such as 0 seconds), many errors could occur for routine actions like logging at the
end of acall. If this value were too high, too many sessions would remain in memory for too

120

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

long, potentially causing memory issues. It is therefore highly recommended to keep the
default value of 30 seconds or to test the system should this value be changed.

e convert_old_apps — Thistag defines whether to convert applications deployed from aversion
of Call Studio that VXML Server detectsisold (possible values are true and false). By
setting this configuration option to true, a deployed application can be copied to the
applications directory of VXML Server without requiring the application to be re-
deployed from the latest version of Call Studio. Note that for new application settings, the
converter will choose default values. Also note that this converter is limited to converting the
XML filesthat define an application with regards to Call Studio and VXML Server and will
not convert any other files or Java classes for the application. By default this configuration
option ison.

e logger — Thistag acts as the parent tag for three additional tags having to do with loggers.
The first two tags, <minimum thread pool sizes and <maximum thread pool sizes
define the minimum and maximum size of the thread pool that is used for handling logger
threads. The minimum thread pool size value can be any positive integer and the maximum
thread pool size value can be any positive number as long as it is greater than the minimum
thread pool size value. Note that if the maximum number of logger threads are used, VXML
Server will queue the logger events to be used when a thread becomes available so the data
will not be lost. Since these values affect thread usage, it is highly recommended that any
deviation from the default values (1 minimum / 500 maximum) be fully tested for any
complications. For example, if the maximum is set to alow value and the system encounters
high load, VXML Server could encounter a situation where the queued logger events
accumulate faster than the logger threads can handle them, leading to a scenario where the
application server runs out of memory. On the other hand, if the maximum value were set
too high and the system encounters high load the system on which VXML Server runs could
run out of threads to allocate, which could cause many other problems with the application
server as well as the operating systemitself. Of all the VXML Server configuration options,
these two have the highest potential for causing major problems if misused.

The third child tag, <keep alive time> definesthe amount of time in seconds that athread
should be idle for before it is removed from the thread pool. This allows for the thread pool
size to shrink over time as logger volume decreases. This value allows for optimum thread
pool size based on the call volume. The default value is 30 seconds. It is recommended not to
change greatly from the default as too high a number will keep unnecessary resources around
and too low a number will reduce efficiency and defeat the purpose of using a thread pool
completely. Refer to Chapter 5: VXML Server Logging for more on logging.

e debugger — Thistag defines the RMI registry port for the Call Studio debugger. This
configuration option is used only by VXML Server implementations used by Call Studio for
debugging purposes and should not be used in a production environment. The default is 8099
and the value can be any positive integer.

e global_loggers — Thistag defines the global loggersto use within VXML Server.
Administrators can add additional global loggers as well as change or remove the loggers

121

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

listed by default: the global call, admin, and error loggers. Each logger instance is defined by
aseparate child tag <1ogger instances. The required name attribute gives the logger
instance a name and must be unique. The required c1ass attribute gives the fully qualified
Java class name that defines the global logger. The optional configuration attribute gives
the name of a configuration file for the global logger if needed. This configuration file is
expected to reside in the same aunp1uM HOME/conf directory. Refer to Chapter 5: VXML
Server Logging for more on logging and the Programming Guide for Cisco Unified CVP
VXML Server and Cisco Unified Call Studio for more on creating custom loggers.

122

CHAPTER 5: STANDALONE APPLICATION BUILDER USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Chapter 7: Standalone Application Builder

Normally a designer builds an application in Call Studio and then deploysto VXML Server. Call
Studio has the ability to deploy an application locally as well asto aremote system viaFTP.
Deploying an application becomes more difficult in an environment where many designers are
working on a single application or when the enterprise follows a strict deployment policy to the
runtime servers. In the first scenario, multiple designers are adding content to a source repository
system and no single designer may have the full application necessary to perform the deployment
and even if possible, would require coordination among all designers involved. In the second
scenario, the production environments do not allow direct access via FTP and require an
automated system to place new content on to those environments, providing the flexibility to
control exactly how and when the content is deployed. The desire isto extract the ability to
create aVXML Server application from the Call Studio project without requiring a person to
launch Call Studio and deploy.

Unified CVP provides atool to support this requirement named the Standalone Application
Builder. It is packaged with Call Studio and allows for the deployment of an application through
a command-line interface. By exposing this as a command-line tool, an administrator can
integrate this tool into any process that has the ability to execute scripts. For example, the
administrator can configure a crontab to launch this utility every day with the latest content
checked into a source repository. Another example is to modify existing build and deploy Ant
scripts to deploy the application once all other components such as elements, grammars, etc. are
assembled.

This chapter explains what the Standalone Application Builder does and how to useiit.

Standalone Application Builder Introduction

The Standalone Application Builder is a utility that deploys a Call Studio application project to a
format that is required by VXML Server. It is launched via a batch script (for Windows) named
buildapp.bat Or shell script (for Linux) named buildApp. sh.

The Standalone Application Builder is bundled with Call Studio as a ZIP file (for Windows) or
tar.gz (for Linux). The archive can be decompressed on to any location and is completely
independent of Unified CVP software. Additionally, there is no license required to use the utility.
Only the following 32-bit operating systems are supported: Microsoft Windows XP, Microsoft
Windows Vista, and Red Hat Enterprise Linux WS 4 for x86.

When launched, the Standalone Application Builder will first validate the Call Studio project to
ensure it isavalid application, and if successful, deploysthe VXML Server version of the
application to the destination folder. If there are validation errors, those errors are displayed in
the output similar to validation errorsthat are displayed in Call Studio. The tool only deploys a

123

CHAPTER 5: STANDALONE APPLICATION BUILDER USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

single application at atime. To deploy multiple applications, the script can be called repeatedly
pointing to different projects.

Script Execution

The command-line usage of the Standalone Application Builder is as follows:
buildApp <project path> <deploy path> [-quiet <log file>] [-debugl

where:;

e <project path> represents the directory in which the Call Studio project to convert resides.
This path should point to the location where Call Studio is configured to store application
projects. By default thisis the workspace folder within the ec1ipse folder.

e <deploy path> represents the directory to deploy the application to. If the Standalone
Application Builder is installed on the same machine as VXML Server, one can pass the
VXMLServer/applications directory of Audium Home so that the application is deployed
directly to the VXML Server instance. All that would be needed to make the application live
would be to call the deployapp VXML Server administration script.

e -quiet <log file> is an optional parameter that is designed to pipe the output the script usually
produces into atext file whose name is passed as <1og files. Thisisuseful for scenarios
where the Standalone Application Builder is executed from an automated system that does
not display data printed to the console. By piping the datato afile, any results can be
analyzed later.

e -debug isan optional parameter that produces additional output to use for debugging
purposes should the deployment fail. This option should not be used unless directed to by
customer support.

Script Output

The following is how the output of the Standalone Application Builder will look for a successful
deployment:

Cisco Unified Call Studio 6.0 (Standalone Application Build Mode)

© 1999-2007 Cisco Systems, Inc.

All rights reserved. Cisco, the Cisco logo, Cisco Systems, and the Cisco Systems
logo are trademarks or registered trademarks of Cisco Systems, Inc. and/or its
affiliates in the United States and certain other countries.

Start: Tue Jan 1 11:47:56 EDT 2000
x% Loading project.

x% Validating project ‘MyApp’.
*** Building project ‘MyApp’.

*** Unloading project ‘MyApp’.

**% Done.

End: Tue Jan 1 11:47:58 EDT 2000

124

CHAPTER 5: STANDALONE APPLICATION BUILDER USER GUIDE FOR Cisco UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The following is the output for a deployment that encounters validation errors:

Cisco Unified Call Studio 6.0 (Standalone Application Build Mode)

© 1999-2007 Cisco Systems, Inc.

All rights reserved. Cisco, the Cisco logo, Cisco Systems, and the Cisco Systems
logo are trademarks or registered trademarks of Cisco Systems, Inc. and/or its
affiliates in the United States and certain other countries.

Start: Tue Jan 1 11:47:56 EDT 2000

x Loading project.

x% Validating project ‘MyApp’.

Error: Project is not valid. Aborting. See details below:

[Start Of Call] Exit States Error: Please connect all the exit states for this
element.

125

APPENDIX A: SUBSTITUTION TAG REFERENCE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Appendix A: Substitution Tag Reference

The following table lists the contents of tags used for setting value substitution. To represent
each of the data values, the tag is rendered with braces containing the tag content listed below,
case sensitive. The fragments rendered in underlined green represent values replaced by the
application designer. Optional information is encapsulated in brackets ([]).

Tag Content Description
CallData.ANI The ANI of the current call or “NA” if not
sent.
CalData.DNIS The DNIS of the current call or “NA” if not
sent.
CalData UUI The UUI of the current call or “NA” if not

sent.

CalDatallDIGITS

The lIDIGITS of the current call or “NA” if
not sent.

CallData. SOURCE

The name of the application that transferred to
this one.

CallData APP_NAME

The name of the current application.

CallData DURATION

The duration, in seconds, of the call up to this
point.

CallDataLANGUAGE

The VoiceXML encoding for the application,
up to thispoint in the call.

CallData ENCODING

The language for the application, up to this
point in the call.

Data.Session.VAR

The value of Session Data where VAR
represents the name of the session variable.
The object stored there will be represented as
astring.

Data.Element. ELEMENT.VAR

The value of Element Datawhere ELEMENT
represents the name of the element and VAR
represents the name of the element variable.

CallerActivity.NthElement.N

The name of a certain element visited in the
call where N represents the number for the nth
element.

127

APPENDIX A: SUBSTITUTION TAG REFERENCE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Tag Content

Description

CallerActivity.NthExitState. N

The name of a certain element’s exit state
visited in the call where N representsthe
number for the nth element.

CallerActivity. TimesElementVisited.
ELEMENT

The number of times an element was visited
inthe call where ELEMENT represents the
name of the element.

CallerActivity. TimesElementVisitedExitState.
ELEMENT.EXIT_STATE

The number of times an element was visited
in the call with a particular exit state where
ELEMENT isthe name of the element and
EXIT_STATE isthe exit state.

GeneralDateTime.HourOfDay.CURRENT

The current hour.

GeneralDateTime.HourOfDay.CALL_START

The hour the call started.

GeneralDateTime.Minute. CURRENT

The current minute.

GeneralDateTime.Minute. CALL_START

The minute the call started.

GeneralDateTime.DayOfMonth. CURRENT

The current day of the month.

GeneralDateTime.DayOfMonth.CALL_START

The day of the month the call started.

GeneralDateTime.Month. CURRENT

The current month.

GeneralDateTime.Month.CALL_START

The month the call started.

GeneralDateTime.DayOfWeek.CURRENT

The current day of the week.

GeneralDateTime.DayOfWeek.CALL_START

The day of the week the call started.

GeneralDateTime.Y ear. CURRENT

The current year.

GeneralDateTime.Year.CALL_START

The year the call started.

The following tags will cause an error if the User Management System is inactive. Additionally,
these tags relate to the current user and will cause an error unless the call is linked to a UID.

Tag Content

Description

UserInfo.Demographic. NAME

The name of the current user.

UserInfo.Demographic.ZIP_CODE

The zip code of the current user.

Userlnfo.Demographic.BIRTHDAY

The birthday of the current user.

UserInfo.Demographic. GENDER

The gender of the current user.

UserInfo.Demographic.SSN

The social security number of the current user.

128

APPENDIX A: SUBSTITUTION TAG REFERENCE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Tag Content

Description

Userinfo.Demographic. COUNTRY

The country of the current user.

UserInfo.Demographic._LANGUAGE

The language of the current user.

UserInfo.Demographic. CUSTOM 1

The contents of the first custom column of the
current user.

UserInfo.Demographic. CUSTOM2

The contents of the second custom column of
the current user.

UserInfo.Demographic. CUSTOM3

The contents of the third custom column of the
current user.

UserInfo.Demographic. CUSTOM4

The contents of the fourth custom column of
the current user.

Userlnfo.Anilnfo.FIRST

The first phone number associated with the
current user’s account.

Userlnfo.Anilnfo.NUM_DIFF

The total number of different phone numbers
associated with the current user’s account.

Userinfo.UserDateTime.HourOfDay.
LAST_MODIFED

The hour of the last time the current user's
account was modified.

Userinfo.UserDateTime.HourOfDay.
CREATION

The hour of the last time the current user’'s
account was created.

Userinfo.UserDateTime.HourOfDay.
LAST _CALL

The hour of the last time the current user
called.

Userlnfo.UserDateTime.Minute.
LAST _MODIFIED

The minute of the last time the current user's
account was modified.

Userlnfo.UserDateTime.Minute. CREATION

The minute of the last time the current user’'s
account was created.

Userlnfo.UserDateTime.Minute.
LAST _CALL

The minute of the last time the current user
called.

Userinfo.UserDateTime.DayOfMonth.
LAST_MODIFED

The day of the month of the last time the
current user’'s account was modified.

Userinfo.UserDateTime.DayOfMonth.
CREATION

The day of the month of the last time the
current user’s account was created.

Userinfo.UserDateTime.DayOfMonth.
LAST _CALL

The day of the month of the last time the
current user called.

129

APPENDIX A: SUBSTITUTION TAG REFERENCE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Tag Content

Description

Userlnfo.UserDateTime.Month.
LAST _MODIFIED

The month of the last time the current user’'s
account was modified.

Userlnfo.UserDateTime.Month.CREATION

The month of the last time the current user’'s
account was created.

Userinfo.UserDateTime.Month.LAST_CALL

The month of the last time the current user
called.

Userinfo.UserDateTime.DayOf\Week.
LAST_MODIFED

The day of the week of the last time the current
user’s account was modified.

Userinfo.UserDateTime.DayOf\Week.
CREATION

The day of the week of the last time the current
user’s account was crested.

Userinfo.UserDateTime.DayOf\Week.
LAST _CALL

The day of the week of the last time the current
user called.

Userlnfo.UserDateTime.Y ear.
LAST _MODIFIED

The year of the last time the current user’s
account was modified.

Userlnfo.UserDateTime.Y ear. CREATION

The year of the last time the current user’s
account was cregted.

Userinfo.UserDateTime.Year.LAST_CALL

The year of the last time the current user
called.

Userlnfo.CalledFromAni

“true” if the current user has made calls from
the current phone or “false” if not.

Userlnfo.Accountlnfo.PIN

The PIN number of the current user’s account.

Userlnfo.Accountinfo. ACCOUNT_NUMBER

The account number of the current user’'s
account.

Userlnfo.Accountinfo.EXTERNAL_UID

The external UID of the current user’s account.

These tags relate to historical data. While still requiring the User Management System to be
active, these do not require a user to be associated with the call.

Tag Content

Description

GeneralAnilnfo.AniDateTime.HourOfDay.
LAST_CALL[.ANI]

The hour of the last time a call was received
from the current phone number. Use ANI to
get the last time a call was received from
another number where ANI is the number.

GeneralAnilnfo.AniDateTime.Minute.

The minute of the last time a call was received

130

APPENDIX A: SUBSTITUTION TAG REFERENCE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Tag Content

Description

LAST_CALL[.ANI]

from the current phone number or ANI if
specified.

GeneralAnilnfo.AniDateTime.DayOfMonth.

LAST_CALL[.ANI]

The day of the month of the last time a call was
received from the current phone number or
ANI if specified.

GeneralAnilnfo.AniDateTime.Month.
LAST_CALL[.ANI]

The month of the last time a call was received
from the current phone number or ANI if
specified.

GeneralAnilnfo.AniDateTime.DayOfWeek.
LAST_CALL[.ANI]

The day of the week of the last time a call was
received from the current phone number or
ANI if specified.

GeneralAnilnfo.AniDateTime.Y ear.
LAST_CALL[.ANI]

The year of the last time a call was received
from the current phone number or ANI if
specified.

General Anilnfo.AniNumCallg.ANI]

The number of calls received from the current
phone number or ANI if specified.

Notes:

e Each Date/ Timetag evaluates to 0-23 when referring to the hour, 0-59 when referring to the
minute, 1-12 when referring to the month, 1-31 when referring to the day of the month, 1-7
when referring to the day of the week (where 1 is Sunday), and the year isrepresented as a

four-digit number.

e |f any datarepresented by the tag ends up as null, substitution will render it as an empty
string. For example, if a setting contained “source{ CallData. SOURCE} " and there was no
application that transferred to the current application, the setting would be evaluated as
“source”. In this case, awarning appears in the Error Log for the application noting that a
substitution value was null and was replaced with an empty string.

131

APPENDIX B: THE DIRECTORY STRUCTURE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Appendix B: The Directory Structure

The directory in which the installation is made (referred to asthe INSTALLATION_PATH
directory) contains all the files necessary for the various components of Unified CVP software.
The following table describes what each folder inthe INSTALLATION_PATH isused for. Each
folder isdescribed in detail in subsequent sections.

Folder Description

VXML Server This directory contains the files required for VXML Server to run, including
all voice applications.

CallStudio This directory contains Call Studio and Builder for Call Studio

UninstallerData | The application inside this folder is used to uninstall Unified CV P software.

The 1NsTALLATION PATH\VxMLServer folder (also referred to asthe Audium Home directory)
contains the following folders:

Folder Description

admin This directory holds the scripts that perform administrator functions affecting
all applicationson VXML Server.

admin/appScripts | This directory holds copies of the application-level administration scripts.
Should an application’s administration scripts require refreshing, the
contents of this folder can be copied to the
applications\ [APPNAME] \admin directory.

agent SNMP agent related files.

applications The voice applications built by Builder for Call Studio and hosted by VXML
Server are stored here. Each application has its own folder bearing the name
of the application.

applications/ This directory holds the scripts that perform administrator functions affecting

[APPNAME] /
admin

only the application in which the scripts reside.

applications/
[APPNAME] /
data

This directory contains the application’s static datafiles required for VXML
Server to load the application.

applications/
[APPNAME] /
data/ application

This directory contains the settings and call flow of the application as well as
any configurations for application loggers.

applications/
[APPNAME] /
data/
configurations

This directory holds the static voice, action, and decision element
configurations created by Builder for Call Studio for this application.
Depending on the size of the voice application, this directory may end up
with many element configuration files.

133

APPENDIX B: THE DIRECTORY STRUCTURE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

Folder

Description

applications/
[APPNAME] /
data/

misc

This directory holds miscellaneous data files used by Unified CVP decision
elements or other proprietary files used by the developer.

applications/
[APPNAME] /
java

This directory contains all Javarelated classes or JAR files required for this
application only. No other application will have access to the Java classes in
this directory.

applications/
[APPNAME] /
java/ application

This directory contains all the classes used for this application only.
Individual Java classes go in the c1asses directory while complete JAR files
gointhe 1ip directory.

applications/ This directory contains utility classes used by the classes in the application

[APPNAME] / directory. Any utility classes that refer to Unified CVP API classes must be

java/ deployed here or in the application directory. Individual Java classes go in

util the c1asses directory and JAR filesgo in the 1ib directory.

applications/ This directory contains the administrator, activity and error logs affiliated

[APPNAME] / with this application. Logs are rotated daily so this directory may eventually

logs contain many files.

common This folder contains the Java classes and JAR files shared across all voice
applications hosted on VXML Server. Individual Java classes go in the
classes directory and JAR filesgo in the 1ib directory.

conf This directory holds settings files used for VXML Server.

docs Unified CVP documentation is available at www.cisco.com. After
downloading, place the documentation here. This folder contains third party
licenses for components used by Unified CVP.

dtds The DTDs for all XML documents used throughout VXML Server are found
here. Many are referred to in XML documents, though others are provided
for reference.

gateways This folder contains all the installed Gateway Adapters for VXML Server.
Each sub-folder in this directory contains a separate Gateway Adapter.

lib The JAR files within this folder are necessary for administration scripts to
run. They are also used by the developer to compile custom Java code that
uses the Unified CVP API.

license The VXML Server license files are to be placed here.

logs Logs affiliated with VXML Server itself are placed here.

management Files required to support the IMX administration interface are found here.

134

APPENDIX B: THE DIRECTORY STRUCTURE

USER GUIDE FOR CiscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

The INSTALLATION PATH\CallStudio folder contains the following directories:

Folder

Description

eclipse

This directory holds all the required files for Call Studio and
Builder for Call Studio.

eclipse\features

This folder contains descriptions of the installed features - Call
Studio and Builder for Call Studio. Features consist of a set of
plugins providing certain functionality.

eclipse\jre

This folder contains the JRE used by Call Studio.

eclipse\plugins

This directory contains a set of plugins defining the
functionality of Call Studio.

eclipse\workspace

The voice applications built by Builder for Call Studio are
stored here. Each application has its own folder bearing the
name of the application.

eclipse\workspace\.metadata

A Call Studio internal system folder containing configuration
and settings files.

eclipse\workspace\
[PROJECT NAME]\callflow

This directory contains the configuration files for the given
voice application. Those files are used by Builder for Call
Studio to properly render the call flow.

eclipse\workspace\
[PROJECT NAME]\deploy

This folder holds all the resources that will be deployed along
with the given application. It can contain such components as
custom Java classes and libraries as well as custom datafiles.

135

APPENDIX C: GLOSSARY USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

Appendix C: Glossary

These terms are used liberally throughout this user guide and it is important to understand them.
The glossary includes both telephony terms as well as Unified CVP terms.

Telephony Terms

ASR. Short for Automated Speech Recognition, this is the technology used by modern voice
browsers to recognize the caller’ s spoken utterances and convert them to text. Using this
technology, an application can have a completely different interface, creating a much more
natural dialog-based interaction with the caller. ASR works by limiting the utterances a caller
can say to a manageable number, and making the best determination of which utterance was
spoken. Though far from supporting the ability to smply “talk” to the application, well-
designed prompts can lead callersto say the right inputs and make the application smooth,
consistent, and easy to use.

Bargein. Bargein isthe act of interrupting a playing prompt, most of the time to go directly to
entering data. This feature can be used by the application designer to allow repeat callersto
jump ahead and move faster through the application to perform common tasks. In situations
such as error messages, disclaimers, etc. where the application designer would want the caller
not to interrupt, bargein can be turned off.

Call flow. The application call flow is the sequence of actions and events that can occur in a
voice application. In Builder for Call Studio, the call flow can be represented by a flowchart
showing all possible branches. This way the application designer can see all that can happen
during the course of acall.

Confidence Score. An ASR engine works by matching the caller's utterance to the grammar
option most likely to be the one intended by the caller. The confidence scoreis a statistical
value assigned to each utterance, indicating how certain the speech engine is about the
recognition result. Confidence score values are usually represented as a decimal number
between 0.0 (no match) and 1.0 (perfect match).

DTMF. Short for Dual Tone Multi-Frequency, thisis the technical term describing touch-tone
dialing. A caller can interact with a voice application either by speaking an utterance (speech
input), or punching in numbers on atelephone keypad (DTMF input). There are twelve
DTMF keys on a standard touch-tone telephone pad, and sixteen keys on some special phone
pads that include four additional keys called A, B, C and D extended signals. A voice
application can be developed using DTMF only, speech only, or both DTMF and speech
inputs.

Grammar. A grammar is the mechanism by which an application designer describes the
limited number of options for an utterance given to an ASR engine. A grammar can hold
words or phrases, and contain guttural utterances such as “um” or “er”. It may vary in size,
from a couple of wordsto thousands of words and phrases. The larger the grammar, the less
likely the ASR engine will have a dead-on match.

137

APPENDIX C: GLOSSARY USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER

AND CISCO UNIFIED CALL STUDIO

Noinput. Noinput is an event that can occur in avoice application when the system prompts
the caller for some input and the caller does not respond. After a configurable amount of
time, a noinput event occurs, indicating that nothing was heard. This may be because the
caller wasn't listening, was confused, or there was a problem with the connection. In any rate,
awell-designed voice application would say something to clarify the prompt or ask for
attention. After a configurable number of noinput events occurring one after the other, the
application will usually take more drastic actions such as hanging up or transferring the caller
to an operator.

Nomatch. Nomatch is an event that occurs when the system prompts the caller for some input
and the caller utters or enters information that is not what is expected. Like the noinput event,
thiswill usually cause a message to be played. Nomatch events tend to occur if the caller
doesn't understand what is being asked of them, the grammar is large and does not return
results with a high enough confidence value, the phone line or environment is noisy, etc. This
can happen with DTMF input as well if the caller entered a digit that was not an option. As
with noinput events, a count can be assigned limiting the number of times a caller can fail to
match an option, before they are disconnected or transferred to an operator.

TTS. Short for Text-To-Speech, this technology is used by voice browsers to read a written
phrase in an automated, semi-human sounding voice. The advantage of a TTS engine isthe
ability to make rapid changes to a phrase without having to do any human voice recording.
The technology, however, still sounds robotic at the current stage. Many people have trouble
understanding long sentences spoken through TTS, so amost all voice applicationsrely on
pre-recorded audio for their prompts. TTSis still used for datathat is hard to predict ahead of
time or can have a large number of variable formats (such as an address).

Unified CVP Terms

Activity Logger. The activity logger is one of the loggers included with VXML Server that
logs all the activities that a caller performsin acall session. The log file generated is
application-specific, and it includes a time-stamp for each logged activity along with
information such as the duration of the call, call flow components visited, recognition results
and events thrown.

Component. Component is used as a general term to mean a part of a Unified CVP
application that can be constructed by a developer. They include elements as well as non-
element parts of the application, such as a Java class that can be called when calls begin or
end.

Configurable Elements. Configurable elements are designed to be very reusable. They are
constructed in advance and each is given a configuration that allows the application designer
to change how the element functions. The more detailed the configuration, the more flexible
the element. VVoice, action, and decision elements are the three types of configurable
elements.

138

APPENDIX C: GLOSSARY USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

e Configuration. Every element, in order to make it reusable, must have a mechanism by which
the user can specify how they wish the element to act in an application. A form element, for
example, would need away to determine whether it should accept DTMF, speech, or both
input types. These behavioral preferences are encapsulated in a configuration, which isthen
represented as an XML file. The Builder for Call Studio displays an element configuration in
the Element Configuration View and VXML Server loads the XML configuration when it
starts up.

e Element. Elements are all components that can appear in a voice application call flow. These
include both functional elements such as voice elements and action elements and conceptual
elements such as hang-up elements. In Builder for Call Studio, everything appearing in the
Elements View is considered an element.

e Global Hotlink. A global hotlink isalink grammar that can be activated at any place in an
application to perform some action or route the call to some place in the call flow. For
example, the utterance “operator” with the DTMF key press ‘0’ isa common global hotlink
used in voice applications to allow the caller to seek help from a human agent anywhere in
the call flow.

e Local Hotlink. A local hotlink is a link grammar that can be activated only from within a
voice element and that either causes the element to exit with a specific exit state or throws a
VoiceXML event. An example is listening for the utterance “I don’t know” while in avoice
element that expects numeric input. Without the hotlink, the element would encounter an no
match event matching the utterance to a number.

e Hotevent. Like aglobal hotlink, a hotevent can be activated at any time during the call. While
most events are triggered by the caller’ s activity, a hotevent can also be triggered by
processes not directly associated with the caller. For example, an event could be triggered by
the voice browser indicating when to interrupt on-hold audio. Like a hotlink, a hotevent can
be configured to move the caller to another place in the call flow, though a hotevent may
additionally execute custom developer-specified VoiceXML. This custom VoiceXML code
could, for example, perform logging, or set the value of a VoiceXML variable.

e Java. Javaisa high-level programming language that the Unified CVP software is written in
and that can be used by developersto extend the functionality provided by Unified CVP.

e JMX. Standsfor Java Management eXtensions and is a standard Java technology used to
provide visibility into an application and the VM itself. Thisis used by administratorsto
gauge the health of a system. VXML Server exposes much information about itself as well as
the applications running on it for access and even exposes functions to allow administrators
the ability to alter how it runs.

e Maintainer. The maintainer of an application is an e-mail address that is sent messages by the
voice browser when issues occur that require attention such as missing audio files,
incorrectly formatted VoiceX ML, etc.

e MBean. An MBean isasingle unit that a system using IMX definesto provide information
on that unit or functions to execute on that unit. A IMX console will typically render all

139

APPENDIX C: GLOSSARY USER GUIDE FOR CIscO UNIFIED CVP VXML SERVER
AND CISCO UNIFIED CALL STUDIO

MBeans exposed by a system into atree structure to allow the administrator to navigate
though the information available. VXML Server creates MBeans for metrics it exposes,
functions it allows administratorsto execute, and for each application deployed on it to
access information and commands relative to that application.

e Say It Smart. This Unified CVP technology is used to take formatted data such as dates, a
state abbreviation, a currency value, etc. and render it as a series of audio files played one
after the other. Using Say It Smart allows an application to use pre-recorded audio files for
dynamic data, providing a consistent experience to the caller, without resorting to using TTS.
Unified CVP provides an API that allows developersto create their own Say It Smart types.

e Standard Elements. Standard elements differ from configurable elements in that they have a
singular, application-specific purpose and are not expected to be very reusable since they do
not have configurations. Due to the fact that they do not have configurations, standard
elements are easier to construct. Action and decision elements are the two types of standard
elements. An example of a standard element would be a mortgage calculator that would only
be used for a specific application.

e UID. AUID isauser ID used by VXML Server to identify users in the user management
database. A developer can associate a UID with a call so that the application can dynamically
make decisions based on user information and historical performance.

e Voice browser. A voice browser is software that is responsible for bridging the telephony
system and its related hardware with VoiceXML. The voice browser connects to telephony
hardware and is responsible for handling the phone calls. It is the voice browser that interacts
with the ASR engine and the TTS engine, listensto the caller for input and plays audio back
to the caller. It isresponsible for requesting VoiceXML pages from an external system
(VXML Server) and parsing the pages that come back. Voice browsers typically run on a
separate machine from the one on which VXML Server is installed.

e VoiceXML Gateway Adapter. Gateway Adapters are small plugins installed on VXML Server
that provide compatibility with a particular voice browser. Once installed, all Unified CVP
voice elements (and all custom voice elements not utilizing browser-specific functionality)
will work on that voice browser.

e XML-over-HTTP. The XML-over-HTTP API (also known asthe XML API) is developed to
allow the use of non-Java programming languages to extend Unified CVP software. This AP
works by sending XML content over a standard HT TP connection and receiving XML in
response. Using this API, any programming language that can handle HTTP can be used to
extend Unified CVP software.

140

Index

A

Adminigtration7, 57, 58, 60, 61, 62, 68, 71, 74, 76,
77, 80, 98, 116, 120

APIS. .o 30, 31, 85
app.CAlTIOW file ..o 21
Application data.........ccceeeeveiieeeneneiieenennnn 28,29, 77
Application Transfer ... 14
AUDIUM_HOMEccoenee. 43, 45, 46, 119, 122
B

Browser compatibilityccoooevveininniiniinienn, 4,7
C

L0F 1 I { o S 21
Call Flow Theme.......coooeiieeiereeeeee e 20
Call LOG...eeoiieiieiieieeeeeee e 92, 100, 112
Call Start / End actions..........ccccveeeennn. 27,30, 31, 33
Callflow folder......cooveieiiieieieeee 21

Cisco Unified Call Studio.5, 6, 12, 17, 19, 20, 21, 22,
23,24, 26, 29, 121, 123, 124, 125, 133, 135

COMPONENES.cuviiireieiee e 27
Configurable elements..........cccocvverenieniienienn 138
D

Deploy folder......ooveeiieiieieer 21
deployAIINEWAPPS.c.eevviriiiinie e 74,99
deEPIOYAPD «veeieeieeeeee e 74,116, 124
Dynamic configuration..........c.ccovveereenieeieeiieseee 29
E

Element data...........ccoooevveeieennenne 8, 29, 55, 100, 102
Enforce call event order........ccceeeveeevvcvvnnenn.. 103, 117
Expand call flow elementsin Outline View 20
Expand eementsin ElementsViewcccoc...... 20
F

Fixed configurations............ccovveeveenenie e 10
Flag €ements..........ccovviiiiiniineneeeee e 13
fIUShAITOIAAPPS....covveerieeriee e 76, 99
G

OEVEISIONS. ..ottt 62
Global data............occvvvveeiieiiiiceee e, 28, 77
Global 10ggErS....coviieeieeiie e 92
Graceful administration functions.............cccveeeeeee 68
Graphical user interface.........ccovvvviiinneniienneee 5

H

HEID oo 6, 26
Hotevents.......ccoccevveeeiennns 13, 14, 27, 30, 31, 34, 139
[(011 1]] 13, 139
I

Interactive Voice Response................ 1,2, 391101
J

N A 6
Java APl 8, 10, 30, 31, 32, 34, 36, 48, 91, 106
Java exceptioncccveveeevceneneeeneennn 14, 66, 98, 115
Java object.........ccevveeevieeiee e 14, 15, 28, 35

JMX 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70,
73,74,76,77,78, 79, 80, 81, 134, 139

LICENSING....eiiteiieiiriee e 19
Local HOtlinKS..........ooovvviiiiiii 139
LOgOErS..cccovverreerienne 28, 30, 31, 35, 36, 91, 92, 99
Logging......7, 31, 36, 53, 65, 82, 83, 84, 91, 121, 122
M

MaINtAINEcooeeeeeieeeee 139

METICS oo 81
o

On Error Natification.................... 28, 30, 31, 36, 120
P

PIUG-INS ..o 17
PreferenCes. ... 20
PrOJECES ..o e 21
R

(1515725 ST o o 75, 76, 116
FESUMEBADP -t sreeeree et 74, 116
FESUMESEIVEN ... 74, 99
S

Say It Smart plug-ins...21, 27, 30, 31, 34, 35, 62, 140
SECUNTY cuveeeiee et 58, 59
SESSION aA......cccvvveeeeeeeeeiereeee e 8, 29

Standalone Application Builder 123,124

SEUS ..o 60, 61, 62, 71, 76, 99, 116
Subdialog INVOKEcoeiiiiiiiii e 15
Subdialog REUMNovvvvveiieece e 15, 16
Subdialog Start........cceeeverieniiii e 15, 16
SUDAIAIOOSvveeeeeeeieie e 15, 16
SUSPENTAPP ettt 74,116
SUS o= 010 57 2V = RS 74, 99
T

Trial Period......cccooeeeeneie e 17
U

UPatEATTAPPS.eeiveeieeree e 70,71
(B1007= (72N o o J RS URTR 71,116
updateCommonCIasses........ccvvevveeeeerenne 77,99, 116
URL..... 15, 29, 54, 59, 60, 73, 94, 95, 96, 97, 98, 101
User Management............... 6, 7, 40, 42, 85, 128, 130
\Y

VariableS......ccvveeeiee s 10, 28

Voice appliCationsS..........oceeveereeneeneeneenieeneenn 12,91
VO0ICE BIrOWSESvevivieeciee e 140
VOICE HEMENS.....ccvvveeeieee e 9,32
Voice Foundation Classes (VFCS)........ccvveenienns 9,32
VoiceXML event................. 13, 14, 27, 34, 106, 139
VOICEXML FOrUMociviiiieiee e 2
VoiceXML Insert Elements...... 10, 15, 28, 30, 31, 48,
106

VoiceXML properties.......ccoevveeveeneenieeneenienns 9, 10
w

W3BC ..ottt e 2
Web application archive (WAR) 28, 35, 62
WED SENVICES....cuvieiiie e 12
X

XML Decision........ccceueenee. 28, 30, 31, 36, 43, 44, 45

XML-over-HTTP API 8, 10, 31, 36, 49, 69, 101, 106,
140

