

User Guide for
Cisco Unified CVP VXML Server and
Cisco Unified Call Studio

Release 7.0(1)

February 2008

Corpora te Headquar ters
Cisco System s, Inc.
170 West Tasman Drive
San Jo se, CA 95134-1706
USA
htt p://ww w.cisco .com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY
PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE
SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s
public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS”
WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING,
WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM
A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS
MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCVP, the Cisco logo, and the Cisco Square Bridge logo are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn is a service mark
of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork
Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast,
EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness
Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, Networking Academy, Network Registrar, PIX, ProConnect, ScriptShare, SMARTnet,
StackWise, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United
States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (0708R)

User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio
Copyright © 2008, Cisco Systems, Inc.
All rights reserved

TABLE OF CONTENTS USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

Table Of Contents
PREFACE ...I

PURPOSE... I
AUDIENCE... I
ORGANIZATION ... I
OBTAINING DOCUMENTATION, OBTAINING SUPPORT, AND SECURITY GUIDELINES .. I
RELATED DOCUMENTATION ... II
CONVENTIONS .. III

CHAPTER 1: INTRODUCTION .. 1

VOICEXML OVERVIEW .. 1
Limitations of Traditional IVR Technologies.. 1
VoiceXML: Simplifying IVR Development.. 2
Key Business Benefits of VoiceXML... 2
How VoiceXML Works .. 3
Challenges with VoiceXML Development .. 4

THE UNIFIED CVP SOLUTION ... 5
Call Studio.. 5
VXML Server .. 6
Unified CVP Elements... 7

Element and Session Data.. 7
Exit States... 8
Customizability ... 8

Voice Elements.. 9
VoiceXML Insert Elements .. 10
Decision Elements... 11
Action Elements .. 11
Web Services Element ... 12
Flag Elements... 12
Hotlinks .. 13
Hotevents.. 13
Application Reuse ... 14

Application Transfers .. 14
Subdialogs .. 15

UNIFIED CVP CALL STUDIO INTRODUCTION ... 17
Licensing .. 17

Trial Period... 17
Applying a License.. 17

Preferences... 20
Builder for Call Studio .. 21
Project Introduction.. 21
Creating a Call Studio Project... 21

ONLINE HELP ... 26

CHAPTER 2: UNIFIED CVP COMPONENTS IN DETAIL ... 27

COMPONENTS... 27
VARIABLES .. 28

Global Data.. 28
Application Data... 28

TABLE OF CONTENTS USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

Session Data ... 29
Element Data .. 29
Component Accessibility ... 30

APIS.. 30
CONFIGURABLE ELEMENTS... 32
STANDARD ACTION AND DECISION ELEMENTS .. 32
DYNAMIC ELEMENT CONFIGURATIONS ... 33
START / END OF CALL ACTIONS .. 33
HOTEVENTS ... 34
SAY IT SMART PLUGINS.. 34
START AND END OF APPLICATION ACTIONS... 35
LOGGERS ... 35
ON ERROR NOTIFICATION... 36
UNIFIED CVP XML DECISIONS IN DETAIL .. 36

The <call_data> Tag .. 40
The <data> Tag.. 40
The <user_info> Tag .. 40
The <general_date_time> Tag.. 41
The <caller_activity> Tag... 42
The <historical_data> Tag ... 42
XML Decision Example #1 .. 43
XML Decision Example #2 .. 44
XML Decision Example #3 .. 45

VOICEXML INSERT ELEMENTS... 48
Restrictions... 48
Inputs.. 49
Outputs... 51
Root Document ... 54
Example.. 54

CHAPTER 3: ADMINISTRATION.. 57

INTRODUCTION TO VXML SERVER ADMINISTRATION ... 57
JMX Management Interface... 57
Administration Scripts... 58
System Information Page... 59

ADMINISTRATION INFORMATION... 60
Application and System Status ... 60

JMX Interface ... 61
Administration Scripts... 61

VXML Server Information ... 62
JMX Interface ... 62
Administration Scripts... 62
System Information Page... 63
Server Status Checks ... 63

CONFIGURATION UPDATES ... 64
VXML Server Configuration Options... 65

Tuning Logger Options.. 65
Session Invalidation Delay Option ... 66

Application Configuration Options.. 67
ADMINISTRATION FUNCTIONS... 68

Graceful Administration Activity ... 68
Updating Applications... 69

JMX Interface ... 70
Administration Scripts... 71

TABLE OF CONTENTS USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

Suspending Applications ... 71
JMX Interface ... 73
Administration Scripts... 74

Adding Applications.. 74
JMX Interface ... 74
Administration Scripts... 74

Removing Applications.. 75
JMX Interface ... 76
Administration Scripts... 76

Updating Common Classes.. 77
JMX Interface ... 77
Administration Scripts... 77

Getting/Setting Global and Application Data... 77
Global Data Access ... 78
Application Data Access.. 78

Administrator Log Access.. 79
Administration Function Reference.. 80

Application-Level Functions.. 80
VXML Server-Level Functions.. 80

VXML SERVER METRICS ... 81

CHAPTER 4: USER MANAGEMENT... 85

DEPLOYMENT .. 85
DATABASE DESIGN .. 86

Applications.. 86
User Data ... 87

users ... 87
user_phone.. 88
users_by_ani ... 88

Historical Data ... 89
sessions... 89
flags.. 90

CHAPTER 5: VXML SERVER LOGGING ... 91

LOGGERS ... 91
GLOBAL LOGGERS.. 92

The Global Call Logger .. 92
The Global Error Logger .. 94

Global Error Logger Configuration: Log Details... 95
Global Error Logger Configuration: File Purging.. 96
Global Error Logger Configuration Example #1 ... 96
Error Logger Configuration Example #2 .. 98

The Global Administration History Logger.. 98
APPLICATION LOGGERS .. 99

The Application Activity Logger .. 100
Activity Logger Configuration: Format .. 104
Activity Logger Configuration: Scope .. 105
Activity Logger Configuration: File Rotation ... 107
Activity Logger Configuration: Caching... 108
Activity Logger Configuration: File Purging .. 109
Activity Logger Configuration Example #1.. 110
Activity Logger Configuration Example #2.. 111

The Application Error Logger ... 112
Error Logger Configuration: Format... 113
Error Logger Configuration: File Purging... 114
Error Logger Configuration Example #1 .. 115

TABLE OF CONTENTS USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

Error Logger Configuration Example #2 .. 115
The Application Administration History Logger... 116
The Application Debug Logger.. 116

CHAPTER 6: VXML SERVER CONFIGURATION... 119

GLOBAL CONFIGURATION FILE ... 119
CONFIGURATION OPTIONS .. 119

CHAPTER 7: STANDALONE APPLICATION BUILDER... 123

STANDALONE APPLICATION BUILDER INTRODUCTION ... 123
SCRIPT EXECUTION .. 124
SCRIPT OUTPUT.. 124

APPENDIX A: SUBSTITUTION TAG REFERENCE... 127

APPENDIX B: THE DIRECTORY STRUCTURE .. 133

APPENDIX C: GLOSSARY.. 137

TELEPHONY TERMS.. 137
UNIFIED CVP TERMS ... 138

PREFACE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

i

Preface

Purpose

This document describes how to use Cisco Unified Customer Voice Portal (Unified
CVP). Topics covered include the various components that can exist on Cisco Unified
CVP VXML Server (VXML Server), administering VXML Server, and VXML Server
logging.

Audience

This document is intended for voice applications developers and administrators of
VXML Server.

Organization

Chapter 1, "Introduction"
 Introduces the Cisco Unified CVP VXML Server software.
Chapter 2, "Cisco Unified CVP Components in Detail"

Introduces all the components that can be used with Cisco Unified CVP VXML
Server.

Chapter 3, "Administration"
 Describes how to administer VXML Server.
Chapter 4, "User Management"
 Describes how to use the built-in user management system.
Chapter 5, "VXML Server Logging"
 Describes how to configure VXML Server logging.
Chapter 6, "VXML Server Configuration"
 Describes global settings of VXML Server.
Chapter 7, "Standalone Application Builder"

Describes how to use the Standalone Application Builder to deploy voice
applications.

Appendix A, "Substitution Tag Reference"
 A reference for all substitution tags.
Appendix B, "The Directory Structure"

Describes the directory structure of a typical Cisco Unified software installation.
Appendix C, "Glossary"
 Definitions of technical terms used throughout this guide.

Obtaining Documentation, Obtaining Support, and Security
Guidelines

For information on obtaining documentation, obtaining support, providing documentation
feedback, security guidelines, and also recommended aliases and general

PREFACE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

ii

Cisco documents, see the monthly What’s New in Cisco Product Documentation, which
also lists all new and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Related Documentation

Note: Planning your Unified CVP solution is an important part of the process in setting up Unified CVP. Cisco
recommends that you read the Cisco Unified Customer Voice Portal Release 7.x Solution Reference Network Design
(SRND) guide before configuring your Unified CVP solution. With Unified CVP 7.x, the Planning Guide for Cisco
Unified Customer Voice Portal has been incorporated into the SRND guide.

• Cisco Security Agent Installation/Deployment for Cisco Unified Customer Voice Portal provides
installation instructions and information about Cisco Security Agent for the Unified CVP deployment. We
strongly urge you to read this document in its entirety.

• Cisco Unified Customer Voice Portal Release 7.x Solution Reference Network Design (SRND) provides

design considerations and guidelines for deploying contact center voice response solutions based on Cisco
Unified Customer Voice Portal (Unified CVP) 7.x releases.

• Configuration and Administration Guide for Cisco Unified Customer Voice Portal describes how to set up,

run, and administer the Cisco Unified CVP product, including associated configuration.

• Element Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio describes the
settings, element data, exit states, and configuration options for Elements.

• Installation and Upgrade Guide for Cisco Unified Customer Voice Portal describes how to install Unified

CVP software, perform initial configuration, and upgrade.

• Operations Console Online Help for Cisco Unified Customer Voice Portal describes how to use the
Operations Console to configure Unified CVP solution components.

• Port Utilization Guide for Cisco Unified Customer Voice Portal describes the ports used in a Unified CVP

deployment.

• Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio describes how to
build components that run on the Cisco Unified CVP VXML Server.

• Reporting Guide for Cisco Unified Customer Voice Portal describes the Reporting Server, including how to

configure and manage it, and discusses the hosted database.

• Say It Smart Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio describes in
detail the functionality and configuration options for all Say It Smart plugins included with the software.

• Troubleshooting Guide for Cisco Unified Customer Voice Portal describes how to isolate and solve

problems in the Unified CVP solution.

PREFACE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

iii

Conventions

This manual uses the following conventions:

Convention Description

boldface font Boldface font is used to indicate commands, such as user entries, keys, buttons, and folder and
submenu names. For example:

� Choose Edit > Find.
� Click Finish.

italic font Italic font is used to indicate the following:

� To introduce a new term. Example: A skill group is a collection of agents who share
similar skills.

� For emphasis. Example:
Do not use the numerical naming convention.

� A syntax value that the user must replace. Example:
IF (condition, true-value, false-value)

� A book title. Example:
See the Cisco CRS Installation Guide.

window font Window font, such as Courier, is used for the following:

� Text as it appears in code or that the window displays. Example:
<html><title>Cisco Systems,Inc. </title></html>

� File names. Example: tserver.properties.

� Directory paths. Example:
C:\Program Files\Adobe

< > Angle brackets are used to indicate the following:

� For arguments where the context does not allow italic, such as ASCII output.

� A character string that the user enters but that does not appear on the window such as a
password.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

1

Chapter 1: Introduction
Welcome to Cisco Unified Customer Voice Portal (Unified CVP), the most robust platform for
building exciting, dynamic VoiceXML-based voice applications. Unified CVP:

• Allows users to build complex voice applications without requiring extensive knowledge of
Java and VoiceXML.

• Includes an easy, graphical interface for building voice applications and simplifies the tasks
of building custom components that easily plug into the software’s modular architecture.

• Provides the fastest, most error-free process for building professional, dynamic voice
applications.

This user guide introduces the process of building voice applications utilizing the various
components of Unified CVP software. Its primary focus is to explain the concepts required to get
the most out of one Unified CVP component, Cisco Unified CVP VXML Server (VXML
Server), while introducing the others. It will refer to additional documentation to fully describe
other components. The reader just getting started with Unified CVP software should read at least
the first few chapters to get an idea of the environment in which Unified CVP software revolves
and some of the design of the Unified CVP platform.

VoiceXML Overview

Since its introduction in 2000, VoiceXML has quickly become the standard technology for
deploying automated phone systems. To understand VoiceXML’s quick acceptance by
enterprises, carriers and technology vendors, a brief overview of the traditional technologies used
to develop interactive voice response systems is given.

Limitations of Traditional IVR Technologies

Despite investing millions of dollars in Interactive Voice Response (IVR) systems, many
organizations know that the applications responsible for handling automated customer service do
not fulfill their business requirements. Organizations need their IVR to be as flexible and
dynamic as the rest of their enterprise applications, but proprietary, one-size-fits-all solutions
cannot easily support regular modifications or new corporate initiatives. Additionally, most of
these IVR solutions are not speech enabled and upgrading to speech recognition on a traditional
IVR platform is difficult and costly.

Heightened customer expectations for fast, quality service and a consistent experience across
phone and web contact channels are putting pressure on businesses to implement a higher quality
IVR solution. However, due to their proprietary nature, traditional IVR systems do not allow the
choice and flexibility necessary to meet the increasing demands of high expectation customers.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

2

While the limitations of a traditional IVR pose considerable challenges for many organizations,
some smart businesses have found a solution by implementing the flexible and powerful new
standard in IVR technology: VoiceXML.

VoiceXML: Simplifying IVR Development

VoiceXML is a programming language that was created to simplify the development of IVR
systems and other voice applications. Based on the Worldwide Web Consortium’s (W3C’s)
Extensible Markup Language (XML), VoiceXML was established as a standard in 1999 by the
VoiceXML Forum, an industry organization founded by AT&T, IBM, Lucent and Motorola.
Today, many hundreds of companies support VoiceXML and use it to develop applications.

By utilizing the same networking infrastructure, HTTP communications, and markup language
programming model, VoiceXML leverages an enterprise’s existing investment in technology as
well as the skills of many of its application developers and administrators. VoiceXML has
features to control audio output, audio input, presentation logic, call flow, telephony connections,
and event handling for errors. It serves as a standard for the development of powerful speech-
driven interactive applications accessible from any phone.

Key Business Benefits of VoiceXML

A VoiceXML-based IVR provides unparalleled freedom of choice when creating, deploying, and
maintaining automated customer service applications. By capitalizing on the standards-based
nature of VoiceXML, organizations are reaping a number of benefits including:

• Unparalleled portability – VoiceXML eliminates the need to purchase a proprietary, special
purpose platform to provide automated customer service. The standards-based nature of
VoiceXML allows IVR applications to run on any VoiceXML platform, eliminating vendor
lock-in. A VoiceXML based IVR offers businesses choice in application providers and
allows movement of applications between platforms with minimal effort.

• Flexible application development and deployment – VoiceXML enables freedom of choice in
IVR application creation and modification. Since it is similar to HTML, development of IVR
applications with VoiceXML is simple, straightforward and does not require specialized
knowledge of proprietary telephony systems. Also, VoiceXML is widely available to the
development community so enterprises can choose between many competing vendors to find
an application that meets their business needs. Increased application choice also means that
businesses are not tied to the timeframe of a single application provider and can modify their
IVR based on their own organizational priorities.

• Extensive integration capability – IVR applications written in VoiceXML can integrate with
and utilize existing business applications and data, extending the capabilities of core business
systems already in use. In fact, a VoiceXML-based IVR can integrate with any enterprise
application that supports standard communication and data access protocols. By leveraging
the capabilities of existing legacy and web systems to deliver better voice services,

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

3

organizations can treat their IVR like their enterprise applications and fulfill business
demands with an integrated customer facing solution.

By taking advantage of the increased number of choices offered by a VoiceXML-based IVR,
businesses can easily deliver the flexible, dynamic customer service that their organizations
and customers demand. The wide array of options available allows businesses to maximize
existing resources to deliver better service at lower cost.

• Reduced total cost of ownership – The freedom of choice offered by a VoiceXML-based IVR
reduces the total cost of ownership in several key areas:

o Speech capability is standard – The architecture of VoiceXML directly supports
integration with speech recognition, making implementing a VoiceXML-based IVR a
cost effective alternative to retrofitting a traditional IVR for speech. Extensive industry
research indicates that incorporating speech into an IVR solution increases call
completion, lowering the average cost per call.

o Lower hardware and maintenance costs – VoiceXML applications run on commonly
available hardware and software, enabling businesses to save money by using equipment
that they already own instead of purchasing special purpose hardware. Additionally,
businesses can use the same team that handles existing enterprise maintenance to
maintain IVR applications written in VoiceXML.

o Affordable scaling – In a VoiceXML-based IVR model, application logic resides on a
web/application server and is separate from telephony equipment. Businesses can avoid
unneeded capital investment by purchasing capacity for regular day-to-day needs and
outsourcing seasonal demand to a network provider.

o Applications for every budget – Competition between VoiceXML application developers
provides a variety of IVR solutions for budgets of all sizes. Businesses only pay for
needed application features as an open marketplace offers a larger number of competing
applications at varying price points.

How VoiceXML Works

Designed to leverage Web infrastructure, VoiceXML is analogous to HTML, which is a standard
for creating Web sites. Like HTML, the development of voice applications using VoiceXML is
simple, straightforward and therefore does not require specialized knowledge of proprietary
telephony systems. Since the intricacies of developing voice applications are hidden from
developers, they can focus on business logic and call flow design rather than complex platform
and infrastructure details.

With VoiceXML, callers interact with the voice application over the phone using a voice
browser. The voice browser is analogous to a graphical Web browser, such as Microsoft’s
Internet Explorer. Instead of interpreting HTML as a web browser does, the voice browser
interprets VoiceXML and allows callers to access information and services using their voice and
a telephone.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

4

Figure 1-1

As indicated in Figure 1-1, the primary components of the VoiceXML platform architecture are
the telephone, voice browser and application server. The voice browser, a platform that interprets
VoiceXML, manages the dialog between the application and the caller by sending requests to the
application server. Based on data, content and business logic, the application server creates a
VoiceXML document dynamically or uses a static VoiceXML document that it sends back to the
voice browser as a response.

Challenges with VoiceXML Development

Despite the robustness and broad acceptance of VoiceXML as the new standard for voice
applications, there are a number of challenges that developers face when deploying complicated
systems, including:

• Requirement for dynamic VoiceXML – Many applications require the ability to dynamically
insert content or to base business logic on data available only at runtime. In these cases, the
VoiceXML must be dynamically generated. For example, an application that plays a “Good
Morning / Afternoon / Evening” prompt depending on the time of day requires VoiceXML to
be dynamically generated.

• Voice Paradigm versus Web paradigm – There are many systems designed to manage
dynamic web content or to automatically convert web content to other formats (such as for
wireless phones). These systems, however, are not adequate for voice applications due to the
fundamental difference between a voice application and a Web application. A web page is a
two-dimensional, visual interface while a phone call is a one-dimensional, linear process.
Converting web content to voice content often yields voice applications with lackluster user
interfaces.

• Browser compatibility – Due to ambiguities and constant improvements in the VoiceXML
specification, no two commercially available browsers accomplish various functions in

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

5

exactly the same way. Developers must understand the variations between browsers when
coding VoiceXML to ensure compatibility.

• Stateless nature of VoiceXML – Like HTML, VoiceXML is a stateless mark-up language. For
applications that require the maintenance of data across a session, e.g., account or
transactional information, or phone call, pure VoiceXML does not suffice.

• Complicated coding – Despite VoiceXML’s promise to simplify voice application
development, the process of coding an application with dozens or hundreds of possible
interactions with a caller can become quite complex.

• Limited back-end integration – Enterprise applications rarely operate in a vacuum.
VoiceXML does not natively support robust data access and external system integration.

• OAM&P requirements – Operators of large-scale voice applications have significant
requirements for administration, management, logging and (sometimes) provisioning.
VoiceXML does not natively support most of these functions.

• Reusability – The larger a Web or voice application becomes, the more critical reusability
becomes. This is even more pronounced in dynamic applications. VoiceXML simply
provides the interface for a voice application; it does not encapsulate common application
functionality into configurable, reusable building blocks.

The Unified CVP Solution

To address the challenges, Unified CVP provides a complete solution for rapidly conceiving,
creating and deploying dynamic VoiceXML 2.0 compliant applications. In order to understand
how to use Unified CVP to build dynamic voice applications, one must understand the
components of the system and how they work. This section presents a high-level overview of all
the components of Unified CVP software.

Unified CVP consists of three main components, Cisco Unified Call Studio (Call Studio),
VXML Server and Unified CVP Elements. Each of these components is discussed in further
detail in the remainder of this section.

Call Studio

Call Studio is a development platform for the creation of voice applications. Call Studio provides
a framework on which a whole host of Unified CVP and third-party tools will appear with a
robust, consistent interface for voice application designers and developers to use. Call Studio
will provide a true control panel for developing all aspects of a voice application, each function
implemented as a plug-in to the greater Call Studio platform.

The most important plug-in for Call Studio is Builder for Call Studio (or the Builder for short),
the component Cisco has built to provide a drag-and-drop graphical user interface (GUI) for the
rapid creation of advanced voice applications. Builder for Call Studio provides:

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

6

• Intuitive interface – Using a process similar to flowcharting software, the application
developer can use Builder for Call Studio to create an application, define its call flow, and
configure it to the exact specifications required.

• Design and build at the same time – Builder for Call Studio acts as a design tool as well as a
building tool, allowing the developer to rapidly try different application call flows and then
test them out immediately.

• No technical details required – Builder for Call Studio requires little to no technical
knowledge of Java, VoiceXML, or other markup languages. For the first time, the bulk of a
voice application can be designed and built by voice application design specialists, not
technical specialists.

• Rapid application development – By using Builder for Call Studio, developers can
dramatically shorten deployment times. Application development time is reduced by as much
as 90% over the generation and management of flat VoiceXML files.

Call Studio documentation resides primarily within Call Studio itself by accessing the Help
menu. This guide, however includes a brief introduction to Call Studio in the section entitled
“Call Studio Introduction” in this chapter.

VXML Server

VXML Server is a powerful J2EE- and J2SE-compliant run-time engine that dynamically drives
the caller experience. VXML Server provides:

• Robust back-end integration – VXML Server runs in a J2SE and J2EE framework, giving the
developer access to the full litany of middleware and data adapters currently available for
those environments. Additionally, the Java application server provides a robust, extensible
environment for system integration and data access and manipulation.

• Session management – Call and user data are maintained by VXML Server so that
information captured from the caller (or environment data such as the caller’s number or the
dialed number) can be easily accessed during the call for use in business rules.

• Dynamic applications – Content and application logic are determined at runtime based on
rules ranging from simple to the most complex business rules. Almost anything about an
application can be determined at runtime.

• System Management – VXML Server provides a full suite of administration tools, from
managing individual voice applications without affecting users calling into them, to
configurable logging of caller activity for analytical purposes.

• User Management – VXML Server includes a lightweight customer data management system
for applications where more robust data are not already available. The user management
system allows dynamic applications to personalize the call experience depending on the
caller.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

7

The capabilities of VXML Server listed above are discussed in further detail in Chapter 3:
Administration, Chapter 3: User Management and Chapter 5: VXML Server Logging.

Unified CVP Elements

The Unified CVP Elements are a collection of pre-built, fully tested building blocks to speed
application development.

• Browser compatibility – Unified CVP’s library of Voice Elements produce VoiceXML
supporting the industry’s leading voice browsers. They output dynamically generated
VoiceXML 2.0 compliant code that has been thoroughly tested with each browser.

• Reusable functionality – Unified CVP Elements encapsulate commonly found parts of a
voice application, from capturing and validating a credit card to interfacing with a database.
Unified CVP Elements greatly reduce the complexity of voice applications by managing low-
level details.

• Configurable content – Unified CVP Elements can be significantly configured by the
developer to tailor their output specifically to address the needs of the voice application. Pre-
built configurations utilizing proven dialog design techniques are provided to further speed
the development of professional grade voice applications.

In Unified CVP, there are five different building block types, or elements, that are used to
construct any voice application: voice elements, VoiceXML insert elements, decision elements,
action elements, and flag elements. VXML Server combines these elements with three additional
concepts: hotlinks, hotevents, and application transfers, to represent a voice application.

The building blocks that make up an application are referred to as elements. In Unified CVP,
elements are defined as:

Element
A distinct component of a voice application call flow whose actions
affect the experience of the caller.

Many elements in Unified CVP share several characteristics such as the maintenance of element
data and session data, the concept of an exit state, and customizability.

Element and Session Data

Much like variables in programming, elements in a voice application share data with each other.
Some elements capture data and require storage for this data. Other elements act upon the data or
modify it. These variables are the mechanism for elements to communicate with each other. The
data comes in two forms: element data and session data.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

8

• Element data are variables that exist only within the element itself, can be accessed by other
elements, but can only be changed by the element that created them.

• Session data are variables that can be created and changed by any element as well as some
other non-element components.

Exit States

Each element in an application's call flow can be considered a “black box” that accepts an input
and performs an action. There may be multiple results to the actions taken by the element. In
order to retain the modularity of the system, the consequences of these results are external to the
element. Like a flowchart, each action result is linked to another element by the application
designer. The results are called exit states. Each element must have at least one exit state and
frequently has many. The use of multiple exit states creates a “branched” call flow.

Customizability

Most elements require some manner of customization to perform specific tasks in a complex
voice application. Customization is accomplished through three different mechanisms supported
by Unified CVP: a fixed configuration for the element, a Java API to dynamically configure pre-
built elements or to define new ones, and an API accessed via XML-data delivered over http to
do the same.

• The fixed configuration approach provides a static file containing the element configuration
so that each time the element is visited in the call flow it acts the same. Even in dynamic
voice applications, not every component need be dynamic; many parts actually do not need
to change.

• The Java API approach is used for dynamic customization and is a high performance solution
because all actions are run by compiled Java code. The one drawback to this approach is that
it requires developers to have at least some Java knowledge, though the Java required for
interfacing with the API is basic.

• The XML-over-HTTP (or XML API for short) approach affords developers the ability to utilize
any programming language for the customization of elements. The only requirement is the
use of a system that can return XML based on an HTTP request made by VXML Server. The
advantages of this approach include: a larger array of programming language choices, the
ability to physically isolate business logic and data from the voice presentation layer and the
use of XML, which is commonly used and easy to learn. The main disadvantage of this
approach is the potential for HTTP connection problems, such as slow or lost connections.
Additionally, the performance of this approach does not typically perform as well as
compiled Java because XML must be parsed at runtime in both VXML Server and the
external system.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

9

Voice Elements

Almost all voice applications must utilize a number of dialogs with the caller, playing audio
files, interpreting speech utterances, capturing data entered by the user, etc. The more these
dialogs can be contained in discrete components, the more they can be reused in a single
application or across multiple applications. These dialog components are encapsulated in voice
elements.

Voice Element
A reusable, VoiceXML-producing dialog with a fixed or dynamically
produced configuration.

Voice elements are used to assemble the VoiceXML sent to the voice browser. Each voice
element constitutes a discrete section of a call, such as making a recording, capturing a number,
transferring a call, etc. These pre-built components can then be reused throughout the call flow
wherever needed.

Voice elements are built using the Unified CVP Voice Foundation Classes (VFCs), which
produce VoiceXML compatible with multiple voice browsers (see the Programming Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio for more on the VFCs and
constructing custom voice elements).

Voice elements are complete dialogs in that they can encompass just a single action or an entire
interaction with the caller. Depending on its function, a voice element can contain almost as
much dialog as a small application. However, because of the pre-built nature of voice elements,
application designers do not need to worry about their complexity. Each voice element is simply
a “black box” which can be treated as a single object. As a result, by combining many voice
elements, a complex call flow can be reduced significantly.

Each voice element defines the exit states it can return and the designer must map each exit state
to another call flow component to handle all its consequences. To fully configure voice elements,
developers must specify values for four components: settings, VoiceXML properties, audio
groups, and variables.

• Settings are used to store information that affects how the voice element performs. For
example, a setting describes what phone number to transfer to or the length of audio input
recording. A voice element can have many or few settings, depending on its complexity and
its level of customization.

• VoiceXML properties are equivalent to the properties outlined in the VoiceXML specification,
and are used to modify voice element behavior by directly inserting data into the VoiceXML
that each element produces. For example, the length of time the voice element waits before
encountering a noinput event can be changed by setting a VoiceXML property. Available
properties correspond directly to those listed in the VoiceXML specification and voice

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

10

browser specification. It is up to the designer to understand the consequences of modifying
these properties.

• Audio Groups – Nearly all voice elements involve the use of audio assets, whether in the
form of pre-recorded audio files or text-to-speech (TTS) phrases. An audio group
encapsulates the audio that the application plays when reaching a certain point in the voice
element call flow. For example, an audio group might perform the function of asking a
question, giving an answer, playing an error message, etc. An audio group may contain any
number of audio items. Audio items are defined as pre-recorded audio files, TTS phrases, or
information that conforms to a specified format to be read to the user (such as a date or
currency value). Each audio item in an audio group is played in the order they appear in the
audio group.

• Variables, as described in the previous section, allow voice elements to set or use element or
session data. Many voice elements use element data to store information captured from a
caller, though voice element configurations can also define additional variables.

Finally, a voice element's configuration can be either fixed or dynamic.

• Fixed configurations are XML files containing the desired settings, VoiceXML properties,
audio groups, and variables that are then loaded by VXML Server. The same configuration is
applied each time the voice element is called.

• The configuration of some voice elements can only be determined at runtime. In these cases a
dynamic configuration is used. As described previously, the Java API and XML API can be
used to create dynamic configurations.

For a complete list of the voice elements included in Unified CVP, refer to the Element
Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio document.

VoiceXML Insert Elements

There are certain situations in a voice application where a developer may wish to include pre-
written VoiceXML into their Unified CVP application. The developer may desire fine-level
control over a specific voice function at the VoiceXML tag level without having to get involved
with constructing a custom configurable element in Java. Additionally, the developer may wish
to integrate VoiceXML content that has already be created and tested into a Unified CVP
application. These situations are handled by a VoiceXML insert element.

VoiceXML Insert
Element

A custom element built in VoiceXML providing direct control of
lower-level voice dialog at the price of decreased flexibility.

VoiceXML insert elements contain VoiceXML code that the developer makes available as the
content of a VoiceXML <subdialog>. The content can be in the form of static VoiceXML files,
JSP templates, or even dynamically generated by a separate application server. A framework is

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

11

provided to allow seamless integration of VoiceXML insert elements with the rest of the call
flow.

The use of VoiceXML insert elements has its consequences such as the loss of being able to
seamlessly switch between different voice browsers, some greater processing overhead involved
with integration with the rest of the call flow, as well as the added complexity of dealing with
VoiceXML itself rather than creating an application with easy to use configurable elements.

VoiceXML insert elements can have as many exit states as the developer requires, with a
minimum of one.

Decision Elements

Even the simplest voice applications require some level of decision making throughout the call
flow. These “crossroads” are encapsulated in decision elements.

Decision Element
Encapsulates business logic that make decisions with at least two exit
states.

A decision element is like a traffic cop, redirecting the flow of callers according to built in
business rules. Examples of business rules include decisions such as whether to play an ad to a
caller, which of five different payment plans should be offered to the caller, or whether to
transfer a caller to an agent or hang up.

The results of a decision element are represented as exit states. Although many decisions are
boolean in nature, (e.g. “has the caller registered?”, “is the caller new to the application?”),
decision elements can have as many exit states as desired, as long as at least two are specified.

The configuration for a configurable decision contains two components: settings and variables.
Additionally, the Java class that defines the configurable decision sets the exit states it can return
and the designer must map each exit state to another call flow component to handle all its
consequences.

Action Elements

Many voice applications require actions to occur “behind the scenes” at some point in the call. In
these cases, the action does not produce VoiceXML (and thus has no audible effect on the call)
or perform some action that branches the call flow (like a decision). Instead the action makes a
calculation, interfaces with a backend system such as a database or legacy system, stores data to
a file or notifies an outside system of a specific event. All of these processes are built into action
elements.

Action Element
Encapsulates business logic that performs tasks not affecting the call
flow (i.e., has only one exit state).

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

12

An action element can be thought of as a way to insert custom code directly in the call flow of a
voice application. A few examples of action elements could be one which retrieves and stores the
current stock market price. Another example might be a mortgage rate calculator that stores the
rate after using information entered by the caller. A standard Unified CVP installation bundles
some pre-built action elements to simplify commonly needed tasks such as sending e-mails and
accessing databases.

Since action elements do not affect the call flow, they will always have a single exit state.

The configuration for a configurable action contains two components: settings and variables.

Web Services Element

Web services are a common way for any kind of application to communicate with externally
hosted servers to retrieve information or send notification events in a standard manner. Voice
applications that wish to access a web service can use the Web Service element to do so.

Web Services
Element

A special action element used to interface with a web service.

The Web Services element is an action element so has the same features: it does not affect the
call flow and has a single exit state. The Web Services element, however, has a more complex
configuration than a standard action element. Call Studio renders this configuration with its own
special interface.

One unique feature of the Web Service element is its ability to configure itself at design time.
This is done by loading a Web Services Description Language (WSDL) file. A WSDL file is an
XML file that defines the operations supported by the web services server. It is necessary in
order to define the inputs required by the service that must be entered by the designer and the
outputs returned by the service that can then be stored for use later in the application.

For much more detailed information about how to use the Web Services element, refer to the
Call Studio online help.

Flag Elements

One tool an application designer requires is a mechanism where the activities of callers can be
analyzed to determine which part of the application is the most popular, creates confusion, or
otherwise is difficult to find. To do these analyses, the developer would require knowledge on
whether a caller (or how many callers) reached a certain point in the application call flow. This
check may also be done within the call itself, changing its behavior dynamically if a caller
visited a part of the application previously. To do this, the developer would use flag elements.

Flag Element Records when a caller reached a certain point in the call flow.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

13

Flag elements can be seen as “beacons”, which are triggered when a caller visits a part of the call
flow. The application designer can place these flag elements in parts of the call flow that need to
be tracked. When the flag is tripped, the application log is updated so that post-call analysis can
determine which calls reached that flag. The flag trigger is also stored within the call data so an
application can make decisions based on flags triggered by the caller.

Flag elements have a single exit state and do not affect the call flow whatsoever.

Hotlinks

Many voice applications an utterance or key press that when entered by the caller results in the
application following a certain path in the call flow. In Unified CVP, these actions are referred to
as hotlinks.

Hotlink
An utterance and / or key press that immediately brings the call to a
specific part of the call flow or throws an event.

Hotlinks are not elements in that they do not generate VoiceXML or execute any custom code.
Instead, a hotlink acts as a pointer (or link) to direct the call somewhere or throw a VoiceXML
event when the right word or key press is detected.

There are two hotlink types: global hotlinks and local hotlinks. Global hotlinks are activated
when the utterance/keypress is detected anywhere in the application. An application can define
any number of global hotlinks. An example of a global hotlink is the utterance "operator" (and /
or pressing “0”) that transfers callers to a live representative wherever they are in the application.

Local hotlinks are activated only when the utterance or keypress is detected while the caller is
within the voice element in which the local hotlink is defined, i.e. that hotlink is “local” to the
voice element. Local hotlinks allow the application designer to catch certain utterances or
keypresses and handle them in a manner different from how the voice element would handle it.
A voice element can define any number of local hotlinks. An example is listening for the
utterance “I don’t know” while in a voice element that expects numeric input. Without the
hotlink, the element would encounter a no match event because it’s unable to interpret the
utterance as a number.

Hotevents

While hotlinks are caller utterances that trigger an action, there are times when the occurrence of
a VoiceXML event is expected to trigger an action. The event can be user-triggered (such as a
noinput event), asynchronous (which would be thrown by the voice browser), or developer-
defined (such as a hotlink that throws an event). In each case, the developer may wish to play
audio, store data, or move to another part of the call flow when the event is triggered. In Unified
CVP, these are referred to as hotevents.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

14

Hotevent A global event that when caught, executes developer-specified actions.

Like hotlinks, hotevents can act as pointers to direct the call somewhere. They may also specify
VoiceXML to execute when the event is triggered. An application can utilize any number of
hotevents, each activated by a different event.

Note that a hotevent is triggered by a VoiceXML event, not a server-side event such as a Java
exception or an error such as a database being down.

Unlike hotlinks, hotevents are all global, there is no such thing as a local hotevent.

Application Reuse

There are many scenarios where a set of smaller applications works better than a single
monolithic application. The desire to split up applications into smaller parts centers on reuse –
encapsulating a single function in an application and then using it in multiple applications can
save time and effort. Additionally updating a single application is much simpler than updating
multiple applications with the same change. VXML Server provides two different ways to foster
application reuse, each with its own unique features.

Application Transfers

There may be instances where a caller in one application wants to visit or “transfer to” another
standalone application. This is accomplished with an application transfer.

Application
Transfer

A transfer from one voice application to another running on the same
instance of VXML Server, simulating a new phone call.

Application transfers do not require telephony routing; they are a server-side simulation of a new
call to another application running on the same instance of VXML Server. The caller is not
aware that they are visiting a new application, but VXML Server treats it as if it were a separate
call with separate logging, administration, etc. Data captured in the source application can be
sent to the destination application (even Java objects) to avoid asking for the same information
multiple times in a phone call.

A situation that could utilize application transfers would be a voice portal whose main menu
dispatches the caller to various independent applications depending on the caller’s choice.

An application transfer is meant to satisfy the need for one independent, standalone application
wishes to move the call to another independent standalone application that can also take calls
directly. Since an application transfer is used to progress a call from one application to another, it
has no exit states.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

15

Subdialogs

There are instances where an application is less independent and really encapsulates some
function that multiple applications wish to share. This can be achieved by using a subdialog.

Subdialog
A visit to another VXML Server application or other voice application
defined in a VoiceXML subdialog context that acts as a voice
“service”.

Unlike application transfers that are separate but independent applications, subdialogs are “sub-
applications” that an application can visit to handle some reusable functionality and then return
back to the source application. It can also take as input application data (though not Java objects)
and can also return data for use in the source application. Subdialogs also do not have the
restriction that they be deployed on the same instance of VXML Server, they can be hosted
anywhere accessible via a URL and does not even need to be a VXML Server application at all.

The VXML Server subdialog is similar to the VoiceXML Insert element but without the
requirement to understand VoiceXML. VoiceXML Insert elements are also much more
integrated with the rest of the application to be considered an element alternative where a
subdialog truly sends control to the subdialog application. For example, hotlinks and hotevents in
the source application do not work in the subdialog application where they do in a VoiceXML
Insert element.

A situation that could utilize a subdialog would be a third party that develops a sophisticated
voice-based authentication system that other applications can use to validate callers. That
company exposes their service as a VoiceXML subdialog that takes specific inputs and returns
information on the identity of the caller. Any application that wishes to use the service will then
use the subdialog element to visit this application.

In order to utilize a subdialog, several special elements are needed in the source and subdialog
applications. Visiting a subdialog from a source application requires that it use a Subdialog
Invoke element.

Subdialog Invoke An element used by an application to initiate a visit to a subdialog.

The Subdialog Invoke element will be treated by the application as an element but will be the
gateway to the subdialog. This element handles the inputs and outputs of the subdialog
application. While the subdialog application is handling the call, the source application is
dormant waiting for the subdialog to return. The Subdialog Invoke element has a single exit state
that is followed when the subdialog application returns.

If a VXML Server application is to act as the subdialog, it uses two different elements: the
Subdialog Start and the Subdialog Return elements.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

16

Subdialog Start
An element used by a VXML Server subdialog application at the start
of the call flow to import all variables passed by the source
application.

Subdialog Return
An element used by a VXML Server subdialog application when the
subdialog is complete to return data to the source application.

These elements must be used as the “endpoints” of a subdialog application. The Subdialog Start
must be the first element in the application from which the rest of the call flow emerges. The
Subdialog Return must be the final element in the call flow (to be used instead of the Hang Up
element). An application that does not use these elements can only handle calls made directly to
it and cannot be visited by another application as a subdialog.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

17

Unified CVP Call Studio Introduction

Call Studio is a platform for creating, managing, and deploying sophisticated voice applications.
Call Studio is developed using the Eclipse framework, though no knowledge of Eclipse is
necessary to work with Call Studio. Call Studio acts as a container in which features—called
plug-ins—are encapsulated. It includes plug-ins for voice application development, Java
programming, and many other features provided by Eclipse.

This section provides a brief introduction on how to license Call Studio, its preferences, creating
a new project, and how to access online help. Refer to the online help for much more detailed
information on Call Studio.

Licensing

Trial Period

Call Studio can be used for a trial period of 30 days without activation.

Applying a License

When Call Studio is installed and launched for the first time, the software will display an
activation dialog. Additionally, each time Call Studio is started without an active license, it will
display this dialog.

To apply a license to Call Studio:

1. When Call Studio is launched for the first time, it displays an “Activation…” dialog:

2. Open the license text file that should be applied to this installation; if needed, first visit
http://www.cisco.com/go/license to obtain one. The installation key is the first piece of

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

18

information found in this file, after the label “InstallationKey:” (see highlighted section
of image below). Ensure that the installation key is in the format XXXXX-XXXXX-
XXXXX-XXXXX-XXXXX (5 groups of 5 characters). Other formats are for other
products.

3. The remaining information in the license text file is the license key text. The license key
text is composed of all characters after the label “LicenseKey:” (see highlighted section
of image below).

4. Enter the installation key (from step 2) into the matching fields in the “Activation…”
dialog.

5. Click the “Activate >>” button.

6. Choose the “Manual Activation” radio button.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

19

7. Paste the license key text (from step 3) into the “License Key:” text area. The dialog
should now resemble the image below.

8. Click the “Activate” button, and the “Activation Successful” notification should be
displayed. Click “OK” and Call Studio will continue loading. It is now licensed.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

20

Preferences

The Preferences for Call Studio can be set by choosing Window->Preferences from the menu
bar. Most of the settings listed here apply to the Eclipse platform; however, those listed under
Call Studio are specifically intended for Call Studio (see below). If modifications are made to
any of these settings, it is recommended that Call Studio be restarted so that the new settings can
take effect.

� Expand elements in Elements View. This setting controls whether elements in the
Elements view appear fully expanded or collapsed (the default).

� Expand call flow elements in Outline View. This setting controls whether call flow
elements in the Outline view appear fully expanded (the default) or collapsed.

� Call Flow Theme. This setting controls the look and feel (i.e., theme) of elements in the
Callflow Editor.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

21

Builder for Call Studio

The Builder for Call Studio is a graphical user interface for creating and managing voice
applications for deployment on VXML Server. VXML Server is the runtime framework for
Unified CVP voice applications.

A complete dynamic voice application can be constructed within the Builder, including call flow
and audio elements. The philosophy behind the Builder is to provide an intuitive, easy-to-use
tool for building complex voice applications.

The conception and design of voice applications make use of flowcharts to represent the
application call flow. Because flowcharts outline actions, not the processes behind these actions,
they are an effective tool for representing the overall logic of the call flow. The flowcharting
process is useful for mapping all the permutations of a call to ensure that all possible outcomes
are handled appropriately. The schematic nature of flowcharts also make it easier for call flow
designers to see where callers can get lost or stuck as well as how the call flow can be improved.

The Builder works as a flowcharting program tailored specifically for building voice
applications. Most of the familiar features of a flowcharting tool are present in the Builder, with
a palette of shapes that can be dragged and dropped onto a workspace and labeled, lines
connecting those shapes, multiple pages, and more.

Project Introduction

A Call Studio project contains all the resources required to build and deploy voice applications
that will run on VXML Server.

The callflow folder contains the xml files which make up that application’s call flow and
element configurations. The app.callflow file will open the Callflow Editor and graphically
represent the call flow based on the information found in these files. Every time the application
is saved, these files are updated.

The deploy folder contains any extra resources required for deployment; for example, local
custom elements and Say It Smart™ plug-ins.

Creating a Call Studio Project

1. To create a Call Studio project, choose File -> New -> Call Studio Project.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

22

2. Enter a name for the new Call Studio project and select Next. Leave Use default checked
to create the new project in the default workspace directory.

3. Enter the General Settings for the new Call Studio Project and select Next. General
Settings can always be changed later.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

23

4. Enter the Audio Settings for the new Call Studio Project and select Next. Audio Settings
can always be changed later.

5. Enter the Endpoint Settings for the new Call Studio Project and select Next. Endpoint
Settings can always be changed later.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

24

6. Enter the Root Document Settings for the new Call Studio Project and select Finish. Root
Document Settings can always be changed later.

The new Call Studio Project will appear in the Navigator view.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

25

The new application’s call flow will automatically open in the Callflow Editor.

CHAPTER 1: INTRODUCTION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

26

Online help

Detailed descriptions of all Call Studio features, element types, and functionalities can be found
in Call Studio’s online help. This comprehensive online help can be accessed via the Help ->
Help Contents menu option:

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

27

Chapter 2: Unified CVP Components in Detail
Some components of VXML Server require detailed explanations on how to use them properly,
especially when their functionality requires or is extended by programming. While it is certainly
possible to create a voice application entirely dependent on fixed data, most dynamic
applications will require some programming work.

It is important for the non-developer user to be aware of these components and the functions they
serve. The application designer will need to understand in what situations various components
are needed so that a comprehensive specification can be given to a developer responsible for
building these components.

This chapter describes these components in more detail, explaining typical situations where they
would be used. It also describes the Unified CVP concepts utilized in order to develop and use
the components. The Programming Guide for Cisco Unified CVP VXML Server and Cisco
Unified Call Studio describes the components that require programming from the developer’s
standpoint, explaining the process of constructing and deploying them. One can think of the
Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio as a
comprehensive description of what this chapter introduces.

Components
The components discussed in this chapter are:

• Built With Programming. These components require some programming effort.

• Call-Specific. These components are built to be used within individual calls.

� Custom Configurable Elements. A developer may wish to create their own reusable,
configurable elements to supplement the elements Unified CVP provides.

� Standard Action and Decision Elements. For situations where unique, application-
specific functionality is needed, thereby not requiring the flexibility and complexity
of configurable elements.

� Dynamic Element Configurations. For situations where the configuration for a
configurable element can only be determined at runtime.

� Start and End of Call Action. To perform tasks before each call begins and/or after
each call ends.

� Hotevents. To specify the VoiceXML to execute when a certain VoiceXML event
occurs.

� Say It Smart Plugins. To play back additional formatted data or to extend existing Say
It Smart behavior.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

28

• VXML Server-Specific. These components are built to run on VXML Server as a whole
and do not apply to a specific call.

� Start and End of Application Actions. To perform tasks when a Unified CVP voice
application is loaded and/or shuts down.

� Loggers. Plugins designed to listen to events that occur within calls to an application
and log or report them.

� On Error Notification. To perform tasks if an error causes the phone call to end
prematurely.

• Built Without Programming. These components do not require high-level programming
effort to construct.

� XML Decisions. Unified CVP provides an XML format for writing simple decisions
without programming. The exact XML format is detailed in this chapter.

� VoiceXML Insert Elements. This element is used in situations where the developer
wishes to incorporate custom VoiceXML content into a Unified CVP application. The
guidelines for building a VoiceXML insert element are given in this chapter.

Variables

Unified CVP offers variables as a mechanism for components to share data with each other, in
four forms: global data, application data, session data and element data.

Global Data

A global data variable is just that, it is globally accessible and modifiable from all calls to all
applications. Global data is given a single namespace within VXML Server that is shared across
all calls to all applications. If a component changes global data, that change is immediately
available to all calls for all applications. Global data can hold any data, including a Java object.
The lifetime of global data is the lifetime of VXML Server. Global data would be reset if the
application server was to be restarted or the VXML Server web application archive (WAR) was
to be restarted.

Global data is typically used to store static information that needs to be available to all
components, no matter which application they reside in. For example, the holiday schedule of a
company that applies to all applications for that company.

Application Data

An application data variable is accessible and modifiable from all calls to a particular
application. Application data variables from one application cannot be seen by components in
another application. Each application is given its own namespace to store application data. If a
component changes application data, that change is immediately available to all other calls to the
application. Application data can hold any data, including a Java object. The lifetime of

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

29

application data is the lifetime of the application. Application data would be reset if the
application were updated and would be deleted if the application were released.

Application data is typically used to store application-specific information that does not change
on a per call basis and is to be available to all calls. For example, the location of a database to
use for the application.

Session Data

Session data variables are accessible and modifiable from a single call session. Session data
variables in one call cannot be accessed by components handling another call. Each session has
its own session data namespace - session data set by one component will overwrite existing
session data that has the same name. Session data can hold any data, including a Java data
structure. The lifetime of session data is the lifetime of the session or the call. When the call
ends, the session data is deleted.

Any component accessed within a call session, including elements, can create, modify and delete
session data. Session data can even be created automatically by the system in two ways:

• If the voice browser passes additional arguments to VXML Server when the call is first
received, these additional arguments will be added as session data with the arguments’
name/value pairs translated to the session data name and value (both as Strings). For
example, if the voice browser calls the URL:

http://myserver.com/CVP/Server?audium_application=MyApp&SomeData=1234

this will create session data named “SomeData” with a value of “1234” in every call session
of the application “MyApp” that starts via this URL.

• If a Unified CVP voice application performs an application transfer to another application
and the developer has chosen to pass data from the source application to the destination
application, then this data will appear as session data in the destination application (the data
is renamed before it is passed to the destination application). Please refer to the Call Studio
documentation for more information on application transfers.

Element Data

Element data variables are accessible from a single call session and modifiable from a single
element within that call session. As the name suggests, element data can only be created by
elements (excluding start and end of call events, the global error handler, hotevents, and XML
decisions). Dynamic configurations are technically part of an element since they are responsible
for configuring an element, so they can also create element data. Only the element that created an
element data variable can modify or delete it, though it can be read by all other components. Due
to the fact that the variable belongs to the element, the variable namespace is contained within
the element, meaning two elements can define element data with the same name without

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

30

interfering with each other. To uniquely identify an element data variable, both the name of the
element and the name of the variable must be used. Like session data, the lifetime of session data
is the lifetime of the session or the call. When the call ends, the element data is deleted.

Component Accessibility

Table 2-1 lists each component and its ability to get and set global, application, session, and
element data.

Global
Data

Application
Data

Session
Data

Element
Data

Component Get Set Get Set Get Set Get Set

Configurable Elements Yes Yes Yes Yes Yes Yes Yes Yes
Standard Elements Yes Yes Yes Yes Yes Yes Yes Yes
Dynamic Configurations Yes Yes Yes Yes Yes Yes Yes Yes
Start and End of Call Actions Yes Yes Yes Yes Yes Yes Yes Yes
Hotevents No No No No No No No No
Say It Smart Plugins No No No No No No No No
Start and End of Application Actions Yes Yes Yes Yes No No No No
Loggers Yes No Yes No Yes No Yes No
On Error Notification No No No No Yes No No No
XML Decisions No No No No No No No No
VoiceXML Insert Elements No No No No Yes Yes Yes Yes

Table 2-1

Notes:

• Hotevents, being simply VoiceXML code appearing in the root document, do not have access
to any server-side information.

• A Say It Smart Plugin’s sole purpose is to convert a value into a list of audio files and so do
not have a need to access server-side information.

• A Logger's sole responsibility is to report or log data and therefore has access to all variables
types but cannot set them.

• On Error Notification classes are given the session data that existed at the time the error
occurred.

APIs

To facilitate the development of components requiring programming effort, Unified CVP
provides two application programming interfaces (APIs) for developers to use. The first is a Java
API. The second API involves the use of XML sent via HTTP, thereby allowing components to

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

31

be built using programming languages other than Java. Some more complex and tightly
integrated components can be built only through the Java API, though in most other aspects, the
two APIs are functionally identical. The APIs themselves and the process of building
components using either API is fully detailed in the Javadocs published with the software and in
the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio.
The two components that do not require the use of high-level programming, XML decisions and
VoiceXML insert elements, are fully explained in this document.

The APIs are used to interface with VXML Server in order to retrieve data or change
information. The API provided to each component has slightly different functionality reflecting
each component’s unique abilities. The following lists abilities provided by the API that is
common to most components used within a callflow:

• Getting call information such as the ANI, DNIS, call start time, application name, etc.

• Getting or setting global data, application data, element data or session data.

• Getting information about the application’s settings such as the default audio path, voice
browser, etc.

• Setting the maintainer and default audio path. Changing the maintainer allows multiple
people to maintain different parts of a single application. Changing the default audio path
allows an application to change the persona or even language of the audio at any time during
the call.

• Sending a custom event to all application loggers (see Chapter 5: VXML Server Logging for
more on logging with VXML Server).

Table 2-2 shows which API can be used to construct the various components listed.

VXML Server Component
Build
With
Java API

Build Using
XML-over-
HTTP API

VoiceXML
Knowledge
Suggested

Configurable Action and Decision Elements Yes No No
Configurable Voice Elements Yes No Yes
Standard Elements Yes Yes No
Dynamic Element Configurations Yes Yes No
Start or End of Call Actions Yes Yes No
Hotevents Yes No Yes
Say It Smart Plugins Yes No No
Start and End of Application Actions Yes No No
Loggers Yes No No
On Error Notification Yes No No
XML Decisions NA NA NA
VoiceXML Insert Elements NA NA Yes

Table 2-2

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

32

Configurable Elements

Most of the elements in a typical Unified CVP application are pre-built, reusable elements whose
configurations are customized by the application designer. Using a configurable element in a call
flow requires no programming or VoiceXML expertise and since they can encapsulate a lot of
functionality, greatly simplifies and speeds up the application building process. VXML Server
includes dozens of elements that perform common tasks such as collecting a phone number or
sending e-mail. A need may exist, however, for an element with functionality not available in the
default installation. Additionally, while Unified CVP elements have been designed with
configurations that are as flexible as possible, there may be situations where a desired
configuration is not supported or difficult to implement.

To satisfy these concerns, a developer can construct custom configurable elements that, once
built, can be used and reused. The developer can design the element to possess as large or as
small a configuration as desired, depending on how flexible it needs to be. Once deployed,
custom elements appear in Builder for Call Studio in the Element Pane and are configured in the
same way as Unified CVP Elements.

Due to the level of integration with the Unified CVP software required, only the Java API
provides the means for building configurable elements. Using this API, configurable action,
decision, and voice elements can be built. Voice elements, due to the fact that they are
responsible for producing VoiceXML, use an additional Java API, the Voice Foundation Classes
(VFCs). The VFCs are used to abstract the differences between the various voice browsers
supported by Unified CVP. The VFCs follow a design that parallels VoiceXML itself and only a
developer familiar with VoiceXML and the process whereby a voice browser interprets
VoiceXML will be fully suited to utilize the VFCs to build voice elements.

The Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio
describes the process of building configurable elements including detailing the VFC API for
building voice elements.

Standard Action and Decision Elements

Unlike configurable action or decision elements, a standard action or decision element is
designed more as a one-off as they satisfy an application-specific purpose. As a result, standard
action and decision elements do not require configurations.

There are many situations where programming effort is required to perform some task specific to
an application. Since the task is very specialized, pre-existing reusable elements are too general
to perform the effort. Additionally, building a configurable element for this purpose would be
overkill since there is little chance it would be needed anywhere but in this application. The
developer would use a standard action or decision element to perform just this task. If the task is
applicable to multiple situations, the developer most likely would put in the extra effort to
construct a configurable, reusable element.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

33

Unified CVP provides a means of defining standard decision elements without programming by
writing an XML document directly within Builder for Call Studio. This format should be
investigated when desiring simple or moderately complex standard decision elements, falling
back on the programming API should the built-in format prove insufficient. The XML format
that the Builder for Call Studio user interface produces for standard decision elements is
described later in this chapter.

Dynamic Element Configurations

Each configurable voice, action, and decision element used in an application must have a
configuration. Usually, the configuration will be fixed - it acts the same for every caller that
visits it. In these situations, the designer using Builder for Call Studio creates this configuration
in the Configuration Pane. This configuration is saved as an XML file when the application is
deployed.

There are situations, though, that a configuration for an element depends on information known
only at runtime – it is dynamic. An example would be to configure the Unified CVP audio voice
element to play a greeting message depending on the time of the day. Only at runtime does the
application know the exact calling time and therefore what greeting message to play.

To produce dynamic configurations, programming is required. Dynamic element configurations
are responsible for taking a base configuration (a partial configuration created in the Builder for
Call Studio), adding to it or changing it depending on the application business logic, and
returning the desired element configuration to VXML Server.

Start / End of Call Actions

Unified CVP provides mechanisms to execute some code when a phone call is received for a
particular application or when the call ends. The end of a call is defined as either a hang up by
the caller, a hang up by the system, a move from one Unified CVP application to another Unified
CVP application, or other rarer ways for the call to end such as a blind transfer or session
timeout.

The purpose of the start of call action is typically to set up dynamic information that is used
throughout the call, for example, the current price of a stock or information about the caller
identified by their ANI in some situations. The end of call action is typically used to export
information about the call to external systems, perform call flow history traces, or execute other
tasks that require information on what occurred within the call.

The start of call action is given the special ability to change the voice browser of the call. This
change applies to the current call only, and allows for a truly dynamic application. By allowing
the voice browser to change, the application can be deployed on multiple voice browsers at once
and use a simple DNIS check to output VoiceXML compatible with the appropriate browser.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

34

This task can only be done in the start of call action because the call technically has not started
when this action occurs.

The end of call action is given the special ability to produce a final VoiceXML page to send to
the browser. Even though the caller is no longer connected to the browser by the time the end of
call action is run, some voice browsers will allow for the interpretation of a VoiceXML page sent
back in response to a request triggered by a disconnect or hang-up event. Typically this page will
perform final logging tasks on the browser.

Hotevents

A hotevent is some developer-defined action performed whenever a VoiceXML event is
triggered. Hotevents can take two forms. The first simply moves the caller to a new part of the
call flow when the event is triggered. In this case the hotevent can be defined entirely in the
Builder for Call Studio by the application designer and does not require any additional work by a
developer. The second form of a hotevent executes custom VoiceXML content when the event is
triggered (and may optionally also move to another part of the call flow).

The second form requires a Java class that returns the VoiceXML to execute when the event is
triggered. This class is accessed once per call, not when the event is triggered. This is because
hotevents appear in the VoiceXML root document, which is generated when the application is
started or updated. For this reason the API provided to hotevents do not have access to call
information normally given to other components. The purpose of a hotevent is solely to produce
VoiceXML that will execute when the event is triggered.

A hotevent can be created to react based on a standard VoiceXML event such as nomatch or
noinput, but a more common use for a hotevent is to be triggered by a developer-specified or a
voice browser-specific event. For example, one can create a hotevent to play audio when a
custom event occurs.

As with any other component that produces VoiceXML, the hotevent utilizes the VFCs and
therefore can only be constructed with the Java API.

Say It Smart Plugins

In VXML Server, developers can create their own Say It Smart plugins. Similar to custom
elements, Say it Smart plugins are pre-built Java classes that when deployed in the Builder for
Call Studio can be used as a new Say It Smart type. As with custom elements, the level of
integration required with the Unified CVP software restricts the creation of Say It Smart plugins
to the Java API.

Custom Say It Smart plugins can be constructed to read back formatted data not handled by
Unified CVP Say It Smart plugins, such as spelling playback or reading the name of an airport
from its three-digit code. Plugins can also be created to extend the functionality of existing

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

35

plugins, such as adding new output formats to play the information in another language. For
example, a plugin can define a new output format for the Unified CVP Date Say It Smart plugin
that reads back dates in Spanish.

Refer to the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call
Studio for a full description of the process of building custom Say It Smart plugins.

Start and End of Application Actions

Unified CVP provides mechanisms to execute some code when an application is launched or
shut down. A start of application action is run when the VXML Server web application archive
(WAR) starts up (which occurs when the application server first starts up or the application
server reloads the WAR), or the application is updated. An end of application action is run when
the application is updated, released, or the web application is shut down (which occurs if the
application server reloads or shuts down the web application or the application server itself is
shut down).

The purpose of the start of application action is typically to set up global data or application data
that would be accessed by components within the callflow. Since global and application data’s
lifetime is the lifetime of the application and they can contain Java objects, the start of
application action could even set up persistent database connections or other communications to
external systems that would remain connected as long as the application were running. Note that
should an error occur within the start of application class, the application deployment will
continue unchanged. The designer can specify that an error in a particular start of application
class should stop the application deployment. This would be done if the class performs
mandatory tasks that are necessary for the application to run correctly.

The purpose of the end of application action would be to clean up any data, database
connections, etc. that would no longer be needed once the application is shut down. Note that the
end of application action is called even when the application is updated because the update may
have changed the data that is needed by the application.

Every application deployed on VXML Server has the ability to define any number of start and
end of application actions that are executed in the order in which they appear in the application
settings.

Loggers

The act of logging information about callers to the system is performed by loggers. An
application can reference any number of loggers that “listen” for logging events that occur.
These events range from events triggered by a call, such as a caller entering an element or
activating a hotlink to administration events such as an application being updated to errors that
may have been encountered. Loggers can take the information on these events and do whatever

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

36

desired with them. Typically the logger will store that information somewhere such as a log file,
database or reporting system.

VXML Server includes default loggers that store the information obtained from logging events
to parse-able text log files. A need may exist, however, for a logger with functionality not
available in the default installation or a logger that takes the same data and stores it using a
different mechanism.

To satisfy these concerns, a developer can construct custom loggers that listen for logger events
and report them in their own way. The developer can design the logger to use a configuration to
customize how the logger functions, depending on how flexible it needs to be. Due to the level
of integration with the Unified CVP software required, only the Java API provides the means for
building loggers.

Refer to Chapter 5: VXML Server Logging in the section entitled Application Loggers for
descriptions of the loggers included with VXML Server. Refer to the Programming Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio for a description of the process
of building custom loggers.

On Error Notification

When errors occur on the VXML Server, the application-specific error voice element will handle
how to handle the caller. If specified, the on error notification Java class can be configured to be
activated when an error occurs. The class is given information about the application and some
basic call information to allow the developer to specify the action accordingly. The developer
can write this class to perform whatever they wish.

The most common purpose for the on error notification class is to perform some custom
notification, something to indicate at runtime that an error occurred. This could involve paging
an administrator or integrating with a third-party trouble ticket and notification process. Since the
notification usually involves an administrator whose responsibility is the entire VXML Server,
the Java class, once specified, will apply to any error that prematurely ends a call on any Unified
CVP application.

Note that this class is used for notification purposes; it does not allow the call to recover from the
error. Note also that there is no XML API equivalent for the on error notification; if done at all, it
must be written in Java.

Unified CVP XML Decisions in Detail

Many commercial applications with decisions driven by business logic utilize an external rules
engine to codify the definition of rules. These rules engines help describe the definition of a rule
and then manage the process of making decisions based on the criteria at hand. VXML Server
bundles a rule engine in the standard installation and provides an XML data format for defining

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

37

decision elements within the framework of a voice application. The XML format is simple
enough for an application designer to enter within Builder for Call Studio without requiring
separate programming resources.

A detailed description of the structure of the XML format is warranted. The centerpiece of a rule
is one or more expressions. An expression is a statement that evaluates to a true or false. In most
cases, there are two parts (called terms) to an expression with an operator in between. The terms
are defined by VXML Server to represent all of the most common items one would want to base
decisions on in a voice application such as telephony data, element or session data, times and
dates, caller activity, user information, etc. The operators depend on the data being compared.
For example, numbers can be compared for equality or greater than or less than while strings can
be compared for equality or if it “contains” something. One kind of expression breaks this
format: an “exists” expression which itself evaluates to a true or false and does not need anything
to compare it to. For example: “has this caller called before?” or “does the system have a social
security number for the user?” Each of these checks for the existence of something which is itself
a complete expression.

One or more of these expressions are combined to yield one exit state of the decision element.
Multiple expressions can be combined using “ands” or “ors”, though not a combination. For
example: “if the ANI begins with 212 OR if the ANI begins with 646 then return the exit state
‘Manhattan’”. If a combination of “ands” and “ors” is desired, multiple expressions that return
the same exit state would be used. For example, “if the ANI begins with 212 and the user is a
gold or platinum customer, then return the exit state ‘discount’” would not work as a single rule
because the discount would be given to callers with a 212 area code who are gold customers and
all platinum customers (there is no way to set precedence). This would have to be expressed as
two rules with the same exit state: 1) “if the ANI begins with 212 AND the user is a gold
customer, return the exit state ‘discount’” and 2) “if the ANI begins with 212 AND the user is a
platinum customer, return the exit state ‘discount’”.

It is possible to define an exit state that returns when all other exit states fail to apply, called the
default exit state. When not specified, all possible cases must be caught by the defined rules. For
example, if a rule checks if a number is greater than 5, there should be another rule checking if
the number is less than or equal to 5, unless the default exit state is defined. One can even create
a set of rules that start from being restrictive, looking for only very specific matches, to
progressively looser since the first rule to be true will yield an exit state and no more rules are
tested.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

38

Figure 2-1

Figure 2-1 shows the main tags of the XML file format for defining a decision. The elements in
this XML document are:

• rule – This tag names the rule for the decision. There can only be one <rule> tag in the
document. The tag contains any number of exit states that make up the decision. The optional
default_exit_state attribute lists the exit state to return if no other exit states apply
(essentially an “else” exit state).

• exit_state – This tag encapsulates the expressions that when true, return a particular exit
state. The name attribute must refer to the same value chosen when the decision element was

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

39

defined in the Builder for Call Studio. The conjugate attribute can be either and or or. If
the exit state contains only one expression the conjugate attribute is ignored. The content of
the <exit_state> tag is the type of data to be compared, each type containing different
kinds of data. There can be any number of children to the <exit_state> tag, each
representing another expression linked with the conjugate.

• string – This tag represents an expression comparing strings. The operator attribute can be:
contains, not_contains, ends_with, not_ends_with, equal, not_equal, starts_with, and
not_starts_with. There can be only two children to the <string> tag, representing the two
terms of the expression. If there are less than two, an error will occur. If more, the extra ones
will be ignored. The content can be tags representing a constant string entered by the
developer, data about the call, session and element data, user information, date and time
information, the activity of the caller, and historical activity of the user. These tags are fully
defined in the following sections.

• number – This tag represents an expression comparing numbers. The operator attribute can
be: equal, not_equal, greater, greater_equal, less, and less_equal. There can be only two
children to the <number> tag, representing the two terms of the expression. If there are less
than two, an error will occur. If more, the extra ones will be ignored. The content can be tags
representing a constant number entered by the developer, data about the call, session and
element data, user information, date and time information, the activity of the caller, and
historical activity of the user. These tags are fully defined in the following sections.

• boolean – This tag represents an expression which evaluates to a boolean result, requiring
only a single term. If the check_existence attribute is yes, and the value attribute is true, it
is checking if the data defined by the child tag exists. If check_existence is yes, and value
is false, it is checking if the data defined by the child tag does not exist. If check_existence
is no, the value attribute is used to compare the data defined by the child tag with either true
or false. True means the expression is true if the data defined by the child tag evaluates to
true. The child tags are a smaller subset of those allowed in <string> and <number>: data
about the call, session and element data, user information, or the activity of the caller (each
of these is fully defined in the following sections). When testing if the child tag’s value is
true or false, it must be able to evaluate to a boolean value. If it cannot, the decision will act
as if the rule did not activate.

• constant_string / constant_number – These tags store string and number data in the value
attribute. The number can be any integer or floating-point number. Note that the number can
also be treated as a string. For example “if 1234 starts with 12”.

The following sections explain the contents of the individual tags found within the <string>,
<number> and <boolean> tags.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

40

The <call_data> Tag

Figure 2-2

Figure 2-2 shows the term that represents information about the current call. The type attribute
can be ani, dnis, uui, iidigits, source, appname, duration, language, or encoding. The ANI,
DNIS, UUI, and IIDIGITS will be “NA” if it is not sent by the telephony provider. Source is the
name of the application that transferred to this application or null if this application was the first
to be called. Duration is the duration of the call up to this point in seconds.

The <data> Tag

Figure 2-3

Figure 2-3 shows the term that represents session or element data. The <session> tag refers to
session data with its name in the name attribute. The <element> tag refers to element data with
the name of the element in the name attribute and the name of the variable in the variable
attribute.

The <user_info> Tag

Figure 2-4

Figure 2-4 shows the term that represents user information. Note that if the application has not
been configured to use the user management system, and the call was not associated with a
specific UID, using this term will cause an error. Only one piece of user information can be
returned per tag. Refer to Chapter 4: User Management for more details about the user
management system. The possible user information to be compared is:

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

41

• demographic – This tag refers to the user’s demographic information. The type attribute can
be name, zipcode, birthday, gender, ssn, country, language, custom1, custom2, custom3, or
custom4.

• ani_info – This tag refers to the various phone numbers associated with the user account. If
the type attribute is first, the first number in the list of numbers is returned. This would be
returned if there was only one number associated with an account. If the attribute is num_diff
the total number of different phone numbers associated with the account is returned.

• user_date_time – This tag refers to date information related to the user account. The type
attribute indicates which user-related date to access and the field attribute is used to choose
which part of the date to return. Type can be last_modified (indicating the last time the
account was modified), creation (indicating the time the account was created), and last_call
(indicating the last time the user called). Field can be hour_of_day (which returns an integer
from 0 to 23), minute (which returns an integer from 0 to 59), day_of_month (which returns
an integer from 1 to 31), month (which returns an integer from 1 to 12), day_of_week (which
returns an integer from 1 to 7 where 1 is Sunday), or year (which returns the 4 digit year).

• called_from_ani – This tag returns “true” if the caller has previously called from the current
phone number, “false” if not.

• account_info – This tag refers to the user’s account information. The type attribute can be
pin, account_number, or external_uid.

The <general_date_time> Tag

Figure 2-5

Figure 2-5 shows the term that represents general date information. The type attribute indicates
which date to access and the field attribute is used to choose which part of the date to return.
Type can be current (indicating the current date/time) or call_start (indicating the time the call
began). Field can be hour_of_day (which returns an integer from 0 to 23), minute (which
returns an integer from 0 to 59), day_of_month (which returns an integer from 1 to 31), month
(which returns an integer from 1 to 12), day_of_week (which returns an integer from 1 to 7 where
1 is Sunday), or year (which returns the 4 digit year).

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

42

The <caller_activity> Tag

Figure 2-6

Figure 2-6 shows the term that represents the activity of the caller in the current call. The
<nth_element> tag returns the nth element visited by the caller where the attribute n is the
number (starting at 1). The <nth_exit_state> tag returns the exit state of the nth element
visited by the caller where the attribute n is the number (starting at 1). The <times_elemvis> tag
returns the number of times the caller visited the element whose name is given in the element
attribute. The <times_elemvis_exit> tag returns the number of times the caller visited the
element whose name is given in the attribute element which returned an exit state whose name
is given in the exit_state attribute.

The <historical_data> Tag

Figure 2-7

Figure 2-7 shows the term that represents the historical activity of the user associated with the
call on the current application. Note that if the application has not been configured with a user
management database, using this term will cause an error. Refer to Chapter 4: User Management
for more details about the user management system. The type attribute determines what kind of
value is returned. A value of num means that the value returned is the number of calls matching
the criteria defined by the children tags. A value of last_date_time means that the value returned
is the last date/time a call was received matching the criteria defined by the children tags. A
value of first_date_time returns the first date/time a call was received that matched the criteria.
The field attribute is used if the type attribute is first_date_time or last_date_time and indicates

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

43

which part of the date to compare. Field can be hour_of_day (which returns an integer from 0 to
23), minute (which returns an integer from 0 to 59), day_of_month (which returns an integer
from 1 to 31), month (which returns an integer from 1 to 12), day_of_week (which returns an
integer from 1 to 7 where 1 is Sunday), or year (which returns the 4 digit year). The children tags
are used to turn on various criteria to add to the search. The different search criteria are:

• caller – If this tag appears, the search looks for calls made by the current caller only. If it
does not appear, it will search all calls made by all callers. Note that if the call was not
associated with a specific UID, an error will occur if this tag is used.

• ani – If this tag appears, the search looks for calls made by the ANI specified in the value
attribute. If the value attribute is not included, the ANI of the current caller is used.

• start – If this tag appears, the search looks for calls whose start date/time are between two
times specified by successive <constant_date_time> children tags. The attributes of
<constant_date_time> define the specific date to use. The month attribute must be an
integer from 1 to 12. The day_of_month attribute must be an integer from 1 to 31. The year
attribute must be a four digit integer. The hour_of_day attribute must be an integer from 0 to
23. The minute attribute must be an integer from 0 to 59. The second attribute must be an
integer from 0 to 59.

• end – If this tag appears, the search looks for calls whose end date/time are between two
times specified by successive <constant_date_time> children tags. See <start> above for
the description of the <constant_date_time> tag.

• flag – If this tag appears, the search looks for calls where a flag with the name given in the
name attribute was triggered.

XML Decision Example #1

An application named “Example1” would like to play “Welcome back” for callers who have
previously called this application. The users are identified by their ANI (this application uses the
user management database only for its history tracking). A decision element named
“CalledBefore” would be needed which had two rules, one for those who the application
recognizes and one for the rest (this is being done rather than using the default exit state for
demonstration purposes). In English, the rules are:

Rule Expression Exit State
1 The caller has called from this ANI before say_welcome_back
2 The caller has not called from this ANI before say_welcome

The Unified CVP decision element XML file would be named “CalledBefore” and be saved in
AUDIUM_HOME/applications/Example1/data/misc

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

44

The XML content will be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE knowledge_base SYSTEM "../../../../dtds/DecisionKnowledgeBase.dtd">
<knowledge_base>
 <rule name="CalledFromAni">
 <exit_state name="say_welcome_back" conjugate="and">
 <boolean check_existence="no" value="true">
 <user_info>
 <called_from_ani/>
 </user_info>
 </boolean>
 </exit_state>
 <exit_state name="say_welcome" conjugate="and">
 <boolean check_existence="no" value="false">
 <user_info>
 <called_from_ani/>
 </user_info>
 </boolean>
 </exit_state>
 </rule>
</knowledge_base>

XML Decision Example #2

An application named “Example2” randomly chooses two letters of the alphabet and gives a
prize to the caller whose name begins with either letter. The letters are chosen by an action
element named “GetRandomLetter” and stored in element data named “letter1” and “letter2”.

A decision element named “IsCallerAWinner” would be needed which has three exit states:

• For a user whose name begins with either letter.

• For users whose name does not begin with the letters.

• For users whose name is not in the records (this could be an error or could prompt the
application to ask the user to register on the website).

Even if the application assumes that all users will have their names on file, it is prudent to add
this third exit state just to make sure. In this example, the default exit state will be set to when the
users do not match.

In English, the rules are:

Rule Expression Exit State
1 The caller’s name begins with the value stored in the element

“GetRandomLetter” with the variable name “letter1” or begins with the value
stored in the element “GetRandomLetter” with the variable name “letter2”

is a
winner

2 The caller’s name does not begin with the value stored in the element
“GetRandomLetter” with the variable name “letter1” and does not begin with
the value stored in the element “GetRandomLetter” with the variable name
“letter2”

not a
winner

3 The caller’s name does not exist no name

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

45

The Unified CVP decision element XML file would be named “IsCallerAWinner” and be saved
in AUDIUM_HOME/applications/Example2/data/misc.

The XML file content will be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE knowledge_base SYSTEM "../../../../dtds/DecisionKnowledgeBase.dtd">
<knowledge_base>
 <rule name="NameStartsWith" default_exit_state=”not a winner”>
 <exit_state name="no name" conjugate="and">
 <boolean value="false" check_existence="yes">
 <user_info>
 <demographic type="name"/>
 </user_info>
 </boolean>
 </exit_state>
 <exit_state name="is a winner" conjugate="or">
 <string operator="starts_with">
 <user_info>
 <demographic type="name"/>
 </user_info>

<data>
 <element name="GetRandomLetter” variable="letter1"/>
 </data>
 </string>
 <string operator="starts_with">
 <user_info>
 <demographic type="name"/>
 </user_info>
 <data>
 <element name="GetRandomLetter” variable="letter2"/>
 </data>
 </string>
 </exit_state>
 </rule>
</knowledge_base>

Notes:

• The “no name” exit state is listed first. This is because before we try to analyze the user’s
name, we have to first know that it exists. So we check if the name does not exist first and if
it fails it means the name exists and we can go on.

• The second exit state must check if the name begins with the first or second letter but the last
exit state must check if the name does not begin with the first and second letter.

XML Decision Example #3

An application named “Example3” is designed to trigger a flag named “account menu” when a
caller chooses to manage their account. As of June 15, 2004, the menu options were changed for
the account menu. We want to tell people the options have changed, but only if we know they’ve
visited that part of the application before June 15. If not, there is no reason to say anything
because the caller is experiencing this for the first time. A decision element is needed that
distinguishes between those to play the changed audio to from those who should encounter the
menu normally. A tricky part of the rule is that it must deal with the day, month, and the year,

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

46

making sure that callers from previous years and future years are handled correctly as well. Since
the current state of the XML format does not allow date comparisons, a way must be determined
to make this restriction. The solution is to use multiple rules which progressively get more
restrictive in a sort of process-of-elimination manner. Since all conditions are to be handled, the
rule must include those who do not hear the changed message using the same scheme (there is no
need to use the default exit state). In English, the rules are:

Rule Expression Exit State
1 The year the last time the caller triggered the flag “account menu”

is less than 2004
play changed

2 The year the last time the caller triggered the flag “account menu”
is greater than 2004

normal

Note: At this time, if the above two rules were not triggered, the caller triggered the flag in the
year 2004.
3 The month of the year the last time the caller triggered the flag

“account menu” is less than 6
play changed

4 The month of the year the last time the caller triggered the flag
“account menu” is greater than 6

normal

Note: At this time, if the above two rules were not triggered, the caller triggered the flag in June
2002.
5 The day of the month the last time the caller triggered the flag

“account menu” is less than or equal to 15
play changed

6 The day of the month the last time the caller triggered the flag
“account menu” is greater than 15

normal

The Unified CVP decision element XML file would be named “IsCallerAWinner” and be saved
in AUDIUM_HOME/applications/Example3/data/misc.

The content of the XML file will be:

<?xml version="1.0" encoding="ISO-8859-1"?>
<!DOCTYPE knowledge_base SYSTEM "../../../../dtds/DecisionKnowledgeBase.dtd">
<knowledge_base>
 <rule name="NewMessageTest">
 <exit_state name="play changed" conjugate="and">
 <number operator="less">
 <historical_data type="last_date_time" field="year">
 <caller/>
 <flag name="account menu"/>
 </historical_data>
 <constant_number value="2004"/>
 </number>
 </exit_state>

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

47

 <exit_state name="normal" conjugate="and">
 <number operator="greater ">
 <historical_data type="last_date_time" field="year">
 <caller/>
 <flag name="account menu"/>
 </historical_data>
 <constant_number value="2002"/>
 </number>
 </exit_state>
 <exit_state name="play changed" conjugate="and">
 <number operator="less">
 <historical_data type="last_date_time" field="month">
 <caller/>
 <flag name="account menu"/>
 </historical_data>
 <constant_number value="6"/>
 </number>
 </exit_state>
 <exit_state name="normal" conjugate="and">
 <number operator="greater">
 <historical_data type="last_date_time" field="month">
 <caller/>
 <flag name="account menu"/>
 </historical_data>
 <constant_number value="6"/>
 </number>
 </exit_state>
 <exit_state name="play changed" conjugate="and">
 <number operator="less_equal">
 <historical_data type="last_date_time" field="day_of_month">
 <caller/>
 <flag name="account menu"/>
 </historical_data>
 <constant_number value="15"/>
 </number>
 </exit_state>
 <exit_state name="normal" conjugate="and">
 <number operator="greater">
 <historical_data type="last_date_time" field="month">
 <caller/>
 <flag name="account menu"/>
 </historical_data>
 <constant_number value="6"/>
 </number>
 </exit_state>
 </rule>
</knowledge_base>

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

48

VoiceXML Insert Elements

VoiceXML insert elements are different from other elements in that they are built almost entirely
outside VXML Server using VoiceXML directly. One can think of an insert element as a way to
insert custom VoiceXML content into a Unified CVP voice application without sacrificing the
ability to interface with other elements in the call flow. While there are guidelines to follow to
make these elements work, there are few restrictions on the VoiceXML content itself.

There are two common reasons an insert element is used, the first being the ability to leverage
VoiceXML content that has already been created and integrate it into a Unified CVP application
without having to do much recoding. The second reason is in situations where the requirement is
to write a VoiceXML-producing element that is a one-off without having to go through the effort
of writing a configurable voice element in Java and the VFCs. This is very similar to the reasons
for writing standard action and decision elements instead of producing a configurable element.
Writing VoiceXML is simpler than creating a voice element from scratch since that requires
knowledge of both VoiceXML as well as the Unified CVP Java API.

One of the disadvantages of using insert elements is the fact that since the VoiceXML must be
written to comply with a specific voice browser, the browser-agnostic capability of the voice
application is lost. If the application is moved to another voice browser, all Unified CVP
elements would automatically work, but the insert elements would have to be retested and
tweaked to conform to the new browser’s requirements. Another disadvantage is the insert
element’s lack of a configuration. If the desire is a reusable, configurable element, it is preferable
to construct a voice element.

VoiceXML insert elements are accessed via a VoiceXML <subdialog>. The VoiceXML
specification provides this tag as a way of allowing simple reusable functionality. It acts very
much like a “function” in programming where inputs are sent to a function that performs some
actions and returns the results. The subdialog definition itself can be located anywhere accessible
with a URI. In this way, the Unified CVP application sees an insert element as simply another
function to access.

The inputs and outputs are the means by which the insert element interfaces with the rest of the
system. Most of the important data available to Unified CVP elements are sent as input to each
Insert element. Once the insert element is complete, the return information contains any element
or session data to create, log entries, the exit state of the insert element, and other data to act
upon.

Restrictions

The following restrictions apply to a VoiceXML insert element. An insert element conforming to
these restrictions will be assured full integration with the Unified CVP application. These
restrictions will be clarified later.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

49

• The insert element cannot define its own root document, a root document generated by
VXML Server must be used.

• The variables to return to VXML Server, including the exit state, must conform to a strict
naming convention.

• When using the <return> tag, Unified CVP-specified arguments must be returned along with
the custom variables.

Inputs

As with any element in the application, an insert element would need to be able to access
information about the call such as element and session data, call data (such as the ANI), and even
information found in the user management database if the application is configured to use one.
Normally, this information is available in the Java or XML API. Since an insert element is
written in VoiceXML, this information must be made available for the insert element to use from
within the VoiceXML.

Unified CVP achieves this by creating VoiceXML variables in the root document containing all
the desired information. The variable names conform to a naming convention so the Insert
element developer can refer to them appropriately. This is one reason why Unified CVP requires
the use of the VXML Server-generated root document.

In order to cut down on the number of variables appearing in the root document, the application
designer is given the option of choosing which input groups are passed to the insert element.
Additionally, the designer can individually choose which element and session data to pass. By
minimizing the inputs to only the data required by the insert element, the overhead involved in
using an Insert element is minimized.

Each input type is listed below:

• Telephony. This information deals with telephony data. The inputs start with
“audium_telephony_”.

o audium_telephony_ani. The phone number of the caller or “NA” if not sent.

o audium_telephony_dnis. The DNIS or “NA” if not sent.

o audium_telephony_iidigits. The IIDIGITS or “NA” if not sent.

o audium_telephony_uui. The UUI or “NA” if not sent.

o audium_telephony_area_code. The area code of the caller’s phone number. Will not
appear if the ANI is “NA”.

o audium_telephony_exchange. The exchange. Will not appear if the ANI is “NA”.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

50

• Call. This information deals with the call. The inputs start with “audium_call_”.

o audium_call_session_id. The session ID.

o audium_call_source. The name of the application which transferred to this one. Will not
appear if this application is the first application in the call.

o audium_call_start. The start time of the call in the format “DAY MNAME MONTH
HH:MM:SS ZONE YEAR” where DAY is the abbreviated day of the week (e.g. “Wed”),
MNAME is the abbreviated name of the month (e.g. “Jun”), HH is the hour (in military
time), MM is the minute, SS is the seconds, ZONE is the time zone (e.g. “EDT”), and
YEAR is the four-digit year.

o audium_call_application. The name of the current application.

• History. This information deals with the history of elements visited so far in the call. The
inputs start with “audium_history_”.

o audium_history. This entire content of the element history (including exit states) is
contained in this variable. The format is [ELEMENT]:[EXITSTATE]|..|[
ELEMENT]:[EXITSTATE] where ELEMENT is the name of the element and
EXITSTATE is the name of the exit state of this element. The order of the element/exit
state pairs is consistent with the order in which they were visited. This will not appear if
this insert element is the first element in the call.

• Data. This is the element and session data created so far in the call.

o audium_[ELEMENT]_[VARNAME]. This is an element variable where ELEMENT is the
name of the element and VARNAME is the name of the variable. Note that both the
element and variable names will have all spaces replaced with underscores. There may be
no instances of this input if no element variables exist when this insert element is visited.
For example, the variable “audium_MyElement_the_value” is element data named “the
value” from the element “MyElement”.

o audium_session_[VARNAME]. This is a session variable whose name is VARNAME.
Note that the variable name will have all spaces replaced with underscores. The value is
expressed as a string even if the type is not a string (the toString() method of the Java
class is called). There may be no instances of this input if no session variables exist when
this insert element is visited.

• User Data. This element information associated with the caller. It will only appear if the
application has associated the call with a UID and a user management database has been set
up for this application. The data will appear in the input exactly as in the database. The inputs
start with “user_”.

o user_uid. This is the UID of the user.

o user_account_number. The account number of the user.

o user_account_pin. The PIN of the user.

o user_demographics_name. The name of the user.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

51

o user_demographics_birthday. The birthday of the user.

o user_demographics_zip_code. The zip code of the user.

o user_demographics_gender. The gender of the user.

o user_demographics_social_security. The social security number of the user.

o user_demographics_country. The country of the user.

o user_demographics_language. The language of the user.

o user_demographics_custom1. The value of the first custom column.

o user_demographics_custom2. The value of the second custom column.

o user_demographics_custom3. The value of the third custom column.

o user_demographics_custom4. The value of the fourth custom column.

o user_account_external_uid. The external UID of the user.

o user_account_created. The date the account was created in the format. The value is in the
format “DAY MNAME MONTH HH:MM:SS ZONE YEAR”.

o user_account_modified. The date the last time the account was modified. The value is in
the format “DAY MNAME MONTH HH:MM:SS ZONE YEAR”.

• User By ANI. This provides historical information about the phone number of the caller with
regards to this application. It will only appear if a user management database has been set up
for this application. The inputs start with “user_by_ani_”.

o user_by_ani_num_calls. The number of calls made by this phone number.

o user_by_ani_last_call. The last call made by the phone number. Will not appear if there
were no calls made by this phone number in the past.

Outputs

Just like any element, VoiceXML insert elements can create element and session data, set the
UID of the user to associate with the call, send custom logging events, and can return one of a set
of exit states. Like voice elements, insert elements can have internal logging of caller activity
and have global hotlinks and hotevents activated while the caller is visiting the Insert element.
All of these actions involve variable data set within the Insert element and returned to VXML
Server. These are crucial in order to properly integrate with the rest of the elements in the
application. Each of the return arguments is listed below:

• audium_exit_state. The exit state of this VoiceXML insert element. The value of this
variable must be exactly as chosen in the Builder for Call Studio when defining the insert
element.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

52

• element_log_[VARNAME] / element_nolog_[VARNAME] These create new element data
for this VoiceXML insert element whose name is VARNAME and which either sends a
logging event to log the element data value or not, respectively. The data type will be
assumed to be a string. The variable name cannot include spaces.

• session_[VARNAME]. This creates a new session variable whose name is VARNAME. The
data type is assumed to be a string. The variable name cannot include spaces. If the variable
name already exists, the old value will be replaced with this one. If the old data type was not
a string, the new data type will be a string.

• custom_[NAME]. This sends a custom logging event whose contents is the action named
NAME and the value of the variable being the description.

• set_uid. This associates the UID passed to the call.

• audium_hotlink, audium_hotevent, audium_error, audium_action. These four Unified
CVP variables are created in the root document and must be passed along in the return
namelist. The content of each deals with the occurrence of any global hotlinks, hotevents,
errors, or actions (e.g., a hang-up) while in this insert element. Since the subdialog has its
own context and root document, this data has to be explicitly passed for any of these events
to be recognized by VXML Server. The developer should not alter the contents of these
variables.

• audium_vxmlLog. This variable contains the raw content for an interaction logging event.
Adding to the interaction log is not required - the audium_vxmlLog variable can be passed
empty. In order for VXML Server to parse the interaction data correctly, a special format is
required for the content of the audium_vxmlLog variable. This format is defined below:

The format for interaction logging is:

“|||ACTION$$$VALUE^^^ELAPSED”

where:

• ACTION is the name of the action. The following lists the possible action names and the
corresponding contents of VALUE:

o audio_group. This is used to indicate that the caller heard an audio group play. VALUE is
the name of the audio group.

o inputmode. This is used to report how the caller entered their data, whether by voice or
by DTMF key presses. VALUE should be contents of the inputmode VoiceXML shadow
variable.

o utterance. This is used to report the utterance as recorded by the speech recognition
engine. VALUE should be the contents of the utterance VoiceXML shadow variable.

o interpretation. This is used to report the interpretation as recorded by the speech
recognition engine. VALUE should be the contents of the interpretation VoiceXML
shadow variable.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

53

o confidence. This is used to report the confidence as recorded by the speech recognition
engine. VALUE should be the contents of the confidence VoiceXML shadow variable.

o nomatch. This is used to indicate the caller entered the wrong information, incurring a
nomatch event. VALUE should be the count of the nomatch event.

o noinput. This is used to indicate the caller entered nothing, incurring a noinput event.
VALUE should be the count of the noinput event.

• ELAPSED is the number of milliseconds since the VoiceXML page was entered. The root
document provides a JavaScript function named
application.getElapsedTime(START_TIME) which returns the number of milliseconds
elapsed since the time specified in START_TIME.

The root document created by VXML Server for use in all VoiceXML insert elements contains a
VoiceXML variable named audium_element_start_time_millisecs that must be initialized
with the time in order for the elapsed time intervals to be calculated correctly. This variable need
only be initialized once in the first VoiceXML page of the insert element. All subsequent pages in
the VoiceXML insert element must not initialize the variable because VXML Server requires the
elapsed time from the start of the element, not the page. So, in VoiceXML, the line to appear
must look like:

<assign name="audium_element_start_time_millisecs" expr="new Date().getTime()" />

For best results, this should appear as early as possible in the first page, preferably in a <block>
in the first <form> of the page, certainly before any additional logging is done.

In VoiceXML, setting the value of an existing variable requires the <assign> tag. Since the
expression contains a JavaScript function, the expr attribute must be used. Additionally, in order
to avoid overwriting previous log information, the expression must append the new data to the
existing content of the variable. For example, to add to the interaction log the fact that the xyz
audio group was played, the VoiceXML line would look like
<assign name="audium_vxmlLog" expr="audium_vxmlLog + '|||audio_group$$$xyz^^^'
+application.getElapsedTime(audium_element_start_time_millisecs)"/>

In another example, the utterance of a field named xyz is to be appended to the log. The
VoiceXML would look like
<assign name="audium_vxmlLog" expr="audium_vxmlLog +'|||utterance$$$'+ xyz.$utterance
+ '^^^' + application.getElapsedTime(audium_element_start_time_millisecs)"/>

See Chapter 5: VXML Server Logging for more detail about Unified CVP logging.

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

54

Root Document

The subdialog context written by the developer must refer to a Unified CVP-generated root
document. This is essential for proper integration of the VoiceXML insert element with VXML
Server. The root document call must look like:

“/CVP/Server?audium_vxml_root=true&calling_into=APP&
namelist=element_log_value|RTRN1|RTRN2|…”

Where APP is the application name and RTRNX represent the names of all the element data,
session data, and custom log entries (delimited by ‘|’ characters) the insert element returns, using
the same naming convention described in the outputs section above.

The purpose for this requirement is related to how events are handled within the root document.
The Unified CVP-generated root document catches events such as the activation of a global
hotlink or a hangup, which then requires the call flow to leave the insert element. The insert
element, however, may have created element and session data or added custom content to the
log. This information is stored in VoiceXML variables that would be deleted once the subdialog
context is exited. So the root document needs to be told which VoiceXML variables to send
along to VXML Server when one of these events is triggered so that it can store them
accordingly. In order to avoid problems that might occur if a global hotlink or hotevent was
activated right after the insert element began the variables to be returned should be declared as
near the start of the VoiceXML insert element as possible, even if they are not assigned initial
values.

Notes:

• The ability to use a standard ampersand in the root document URL instead of escaping it (as
“&”) is voice browser dependent. Most browsers will accept the escaped version so try
that first.

• If the insert element does not need to send back any data in the namelist parameter, only the
element_log_value variable need be included (the parameter should look like this:
“...namelist=element_log_value”).

Example

In the example below, a block is used to log the playing of the initial_prompt audio group.
After this action, some inputs passed to it from VXML Server are played. Once this is done, it
creates two element variables named var1 and var2 and a session variable named sessvar.
After this, it goes through a field that catches a number and when done saves the utterance to the
activity log and returns the exit state less if the number is less than 5 and greater_equal
otherwise. The <return> tag returns the exit state, log variable, the four variables from the root
document (error, hotlink, hotevent, and action), the two element data variables, the session data
variable and a custom log entry (the number captured). Also note that these last four variables
are also passed to the root document call in the <vxml> tag so that events triggered within the

CHAPTER 2: Unified CVP COMPONENTS IN DETAIL USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

55

insert element will correctly pass the data if it was captured by then. Note that the VoiceXML
listed below may not function on all browsers without modification.

<?xml version="1.0"?>
<vxml version="1.0"
application="/CVP/Server?audium_vxmlroot=true&calling_into=MYAPP&namel
ist=element_log_var1|element_nolog_var2|session_sessvar|custom_custlog">
 <form id="testform">
 <block>This is the initial prompt
 <assign name="audium_element_start_time_millisecs" expr="new
Date().getTime()"/>
 <assign name="audium_vxmlLog"
expr="'|||audio_group$$$initial_prompt^^^'
+application.getElapsedTime(audium_element_start_time_millisecs)"/>
 </block>
 <block>In the VoiceXML element.
 The ani is <value expr="audium_telephony_ani"/>.
 The element history is <value expr="audium_history"/>.
 User by ani num calls is <value expr="user_by_ani_num_calls"/>.
 Element data foo from element first <value expr="audium_first_foo"/>.
 Session variable foo2 <value expr="audium_session_foo2"/>.
 </block>
 <var name="element_log_var1" expr="'log me'"/>
 <var name="element_nolog_var2" expr="'do not log me'"/>
 <var name="session_sessvar" expr="'session_data_value'"/>
 <field name="custom_custlog" type="number">
 <property name="inputmodes" value="voice" />
 <prompt>Say a number.</prompt>
 <filled>
 <assign name="audium_vxmlLog" expr="audium_vxmlLog +
'|||utterance$$$' + custom_custlog.$utterance + '^^^'
+application.getElapsedTime(audium_element_start_time_millisecs)"/>
 <if cond=" custom_custlog < 5">
 <assign name="audium_exit_state" expr="'less'"/>
 <else/>
 <assign name="audium_exit_state" expr="'greater_equal'"/>
 </if>
 <return namelist="audium_exit_state audium_vxmlLog audium_error
audium_hotlink audium_hotevent audium_action element_log_var1
element_nolog_var2 session_sessvar custom_custlog" />
 </filled>
 </field>
 </form>
</vxml>

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

57

Chapter 3: Administration
Administration is an essential feature of any enterprise system. Once started, a system must
remain operational for long periods of time with no downtime so it must expose ways for an
administrator to manage it at runtime. This applies to both changes and updates to the application
as well as providing information concerning its health. The more flexible and informative a
system, the better an administrator will be able to ensure it runs efficiently and detect any issues
with the system quickly.

VXML Server has been designed to afford maximum flexibility for administrators to control
how it runs and to monitor vital statistics of its health. Administrators can add, remove and
change applications deployed, are able to get information on the system and the applications, and
even change the behavior of the system or components, without requiring a restart of VXML
Server.

This chapter details the administration functions and statistics exposed by VXML Server and the
mechanisms by which these functions can be accessed and executed.

Introduction to VXML Server Administration

VXML Server exposes three methods for an administrator to control it and obtain information.
Each method is accessed differently and exposes different levels of functionality or information.
The first method, and the most flexible, is the JMX-compatible management interface. The
second method is through the use of administration scripts. The third is via the system
information web page.

JMX Management Interface

Java Management Extensions (JMX) is a Java technology specifically designed for managing
Java applications. It is part of the standard Java Virtual Machine and defines a standard interface
for clients and servers. An application that wishes to be managed by JMX will register MBeans
to the JMX context. An MBean can be used to expose information about the system that an
administrator can fetch (for example the total simultaneous calls on the system). An MBean can
also be used to expose a function that an administrator can execute (for example to suspend an
application). A client application communicates with the server via the JMX interface to allow
administrators access to the information and function that is exposed.

VXML Server, being a server application, exposes many informational MBeans for information
regarding itself as well as the applications deployed on it. It also exposes administrative MBeans
for controlling important administrator functions. It does this in a fully JMX-complaint manner
so that any JMX-compatible client will be able to interface with VXML Server to gain access to
the information and functions. One such client is JConsole, which is a client bundled with JDKs
provided by Sun Microsystems and others. Some JVMs and application servers provided by
other companies may utilize alternative JMX-compatible clients that should work as well.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

58

It is also possible for a developer to create their own custom MBeans for exposing functions or
information that will then be viewed by a JMX-compatible client alongside the MBeans exposed
by VXML Server. See the Programming Guide for Cisco Unified CVP VXML Server and Cisco
Unified Call Studio for more on creating custom MBeans.

Most JVMs do not start up with JMX enabled by default and require a parameter to be passed to
the JVM to turn it on (for example, Sun Microsystems JVMs require the parameter -
Dcom.sun.management.jmxremote). Any change to the JVM parameters must be implemented
prior to the Java application server is started.

Once VXML Server is started, a JMX client can then be launched and configured to point to the
machine on which VXML Server runs, whether it be on the same machine or a remote one. Once
connected, the client provides a graphical interface for displaying the information and functions.
The client will be able to display information about the JVM itself and typically the Java
application server will publish its own set of MBeans. VXML Server information will be
displayed where the MBeans are listed in its own “domain”. The domain is typically rendered in
a tree structure and will list global information and functions (i.e. information having to do with
VXML Server itself) as well as information on the deployed voice applications. Detailed
explanations of the individual MBeans are provided in the following sections.

To address security, JMX client consoles will request a user name and password if they attempt
to connect to a remote server (no user name or password is required to connect to a local VXML
Server because the client already has access to the local system). These credentials can be
defined at installation time. Security is most important for the administration functions as they do
affect the live system and if misused could cause instability. Note that many JMX clients do not
provide role-based authentication, so once a user has successfully logged in, the user has access
to all information and the ability to run all administrator functions. Therefore it is recommended
to provide this user name and password only to designated administrators.

Of the available administration interfaces, the JMX interface for VXML Server provides the
greatest functionality and flexibility. It does, however, require the JVM to have JMX active and a
JMX-compatible client. It also has a higher risk and overhead due to this flexibility.

Administration Scripts

Most of the administration functions and some of the information about VXML Server are
provided via command-line scripts that can be executed by an administrator manually or an
automated system directly. The administrator scripts do not use the JMX interface described in
the previous section and are functional by default without requiring any configuration on the
administrator’s part. The included scripts act as the client. The scripts are provided in two forms:
batch scripts for Microsoft Windows (ending in .bat) and shell scripts for Unix (ending in .sh).

Scripts are provided to execute global functions (on VXML Server itself) or functions for
individual applications. The scripts used for global administrator functions are found in the

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

59

admin directory of VXML Server. The scripts used for individual application administration are
located in the admin directory of each application.

The provided scripts are primarily used to expose VXML Server functions to administrators such
as loading a new application, updating an existing application, suspending VXML Server, etc.
Some scripts provide information, such as the number of active simultaneous calls on the server.
This chapter describes in detail all available scripts and their functionality.

Security is an important concern when it comes to administration functions that are access from
the command-line. There are several precautions Unified CVP sets up to allow only the
appropriate people access to these scripts. First, by providing scripts or batch files (as opposed to
through a graphical or web interface), the administrator must be logged into the machine in order
to access them. Therefore, accessing these programs is as secure as the remote login process
(such as SSH) and the permissions given to these scripts or the entire admin folder. Secondly,
VXML Server will only accept commands from the local machine, so even scripts stored on one
machine cannot issue commands to an instance of VXML Server running on another machine.
These two precautions ensure that only authorized administrators can access these functions.

Since the global administration scripts are stored in a different location from application scripts,
each directory can be assigned different permissions. That way an administrator can be given
access to the global administration scripts while still allowing the application scripts to be
accessed by voice application developers.

Finally, every administration script can be configured to ask for confirmation before the action is
taken, to prevent the accidental execution of the script. By default the confirmations are on. They
can be turned off by passing the command-line argument “noconfirm” to the script. This can be
useful if the administration scripts are executed by automated systems like cron jobs.

While not as flexible as the JMX interface, administration scripts provide easy access to VXML
Server functions for both administrators and automated systems out of the box. The risk potential
is similar to that of the JXM interface although there is less overhead because JMX is not
enabled.

System Information Page

The system information page provides basic information about VXML Server including the
license information, the deployed gateway adapters and applications, the status of information on
the application server on which VXML Server is running, and some miscellaneous system and
Java information such as the version and memory usage. It does not provide the ability to
execute any functions, it is meant to be a quick way to check relevant information. It is also the
easiest of the three methods to obtain information because all that is needed is a web browser.
The system information page can be seen by pointing a web browser to the URL:

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

60

http://[HOST][:PORT]/CVP/Info

where:

• HOST is the host name of the machine on which VXML Server is installed.

• PORT is the port the application server is configured to listen on. If the application server is
configured to use port 80, there is no need to include the port in the URL.

The system information page can only be reached after proper authentication using the
administrator user name and password defined during installation time. This is the same user
name and password used when configuring VXML Server licenses.

The system information page is the easiest and safest way of obtaining administrative
information, though it is also the least flexible.

Administration Information

Using the tools listed above, an administrator can obtain a significant amount of information
regarding VXML Server and the applications that are deployed on it. This information aids the
administrator in determining the health of the system, detecting signs of issues that should be
caught early, and debugging issues as they occur.

Much of the information made available by VXML Server can be found only via the JMX
interface as that is the strength of JMX. Some of the more important information is available via
scripts and some of the static information is available through the system information page.

Application and System Status

VXML Server provides functions for reporting the status of a specific voice application or all
voice applications running on the system. They are provided as functions to allow the
administrator to query VXML Server to get the latest information immediately.

The application status function reports the following information:

• Whether the application is running, suspended, or has been suspended before being slated for
removal.

• How many active sessions are currently visiting the application. Active sessions are defined
as the number of callers that are interacting with the application at the time the status script is
called.

• How many sessions are waiting to end. When an active caller ends their application visit,
VXML Server delays the closing of the corresponding session to allow the completion of the
session accessed by the final logger and end of call class actions. A session waiting to end
does not take up a license port. The amount of time a session remains open after a call ends is
a VXML Server configuration option (see Chapter 6: VXML Server Configuration for more).

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

61

• How many open sessions are experiencing the most recent past version of the application.
Open sessions are the sum of active callers visiting the application and those sessions that are
in the process of ending. The reason open sessions are listed here is because both active and
ending sessions do need access to session information and an administrator would need to
know when it is safe to disable any systems that the old application configuration depends
on. This information is helpful for an administrator when performing an application update or
suspension in order to determining when the executed function is complete. See the
following sections for more on updating and suspending applications.

• How many callers are on hold waiting to get into the application. A call that is received when
the system has used up all the allowed sessions defined in the license will hear a message
asking them to stay on the line. This call then checks if a license session has become
available and then lets the call into the application.

The VXML Server status function provides an easy to read report with the following
information:

• If VXML Server itself has been suspended, this fact is listed first. See the following sections
for more on suspending VXML Server.

• The total number of concurrent active callers visiting applications on this instance of VXML
Server, how many concurrent sessions the license allows, the number of available ports (the
license sessions minus the active callers), and the number of callers on hold (which would
only appear if the number of current callers exceeds the number of license sessions).

• How many active callers, sessions ending, and callers on hold for each application currently
deployed on the system. This data is the same as would be displayed by the application-
specific status function. Note that no on hold column will appear unless there are callers on
hold.

• Whether each application is running or suspended.

JMX Interface

To get an application’s status using the JMX interface, use a JMX client connected to the server
to navigate to the VoiceApplication/APPNAME/Command MBean, where APPNAME is the name of
the application to update. The operations tab of this MBean will list a function named “status”.
Pressing this button will display a dialog box with the application status. To get the status of all
applications using the JMX interface, navigate to the Global/Command MBean and click on the
function named “status” in the operations tab. Pressing this button will display a dialog box with
the status of each application deployed on VXML Server in a table.

Administration Scripts

The script for obtaining an application status is found in the admin folder of the application to be
updated. Windows users should use the script named status.bat and Unix users should use the
script named status.sh. The script for obtaining the status of all applications is found in the

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

62

admin folder of VXML Server. Windows users should use the script named status.bat and
Unix users should use the script named status.sh. The scripts do not take any parameters.

VXML Server Information

VXML Server reports information about itself that is static so the administrator knows exactly
what is installed. The following information is reported:

• The exact name and version of VXML Server.

• The installation key, expiration date, number of ports, and the supported gateway adapters
listed in the VXML Server license. Note that the gateway adapter list is not a comprehensive
list of the adapters installed on VXML Server but rather a list of the gateway adapters the
license allows the system to use.

• A detail of the version numbers of all components included with VXML Server. This
information can be helpful for tracking changes made to individual components of the
software installed at different times and this detailed information will typically be requested
by Cisco support representatives when a question is raised about the software. The
components whose versions are displayed are:

o The VXML Server web application archive (WAR) and the components residing within
Audium Home. Note that this version is different from the VXML Server product version
as that is a version for the whole system and this one is only for the WAR file.

o The core VXML Server elements, Say It Smart plugins, and loggers (both application and
global) included with the software.

o The Gateway Adapters installed on the system.

JMX Interface

To obtain VXML Server information using the JMX interface, navigate to the Info MBean. The
attributes tab displays all the information listed above. To see all the gateway adapters supported
in the license, one must open the value for the “LicensedGWAdapters” attribute (in JConsole this
is done by double-clicking on the value). The same procedure applies for obtaining the
component versions by opening the value for the “ComponentVersions” attribute.

Administration Scripts

The only VXML Server information available via script is the versions of the components
installed on VXML Server, though the name and version of VXML Server is displayed when it
initializes and the license ports is always displayed using the global status script.

The script is found in the admin folder of VXML Server. Windows users should use the script
named getVersions.bat and Unix users should use the script named getVersions.sh. In order
to report on the version of the VXML Server web application archive (WAR), the script should
be passed as an argument the full path of the WAR location (e.g.
“C:\Cisco\CVP\VXMLServer\Tomcat\webapps\”).

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

63

System Information Page

The same information is displayed in the system information page at the top of the table. It will
also provide a list of the applications deployed on VXML Server as well as information on the
application server, operating system, and Java memory usage.

Server Status Checks

Many load balancers can be configured to periodically access a URL that is used to determine if
a server is running. Such load balancers make a request to the URL and if a response comes
back within an acceptable time period, they consider the server available to handle connections.
To gauge the health of VXML Server, include the parameter probe=true in the request URL,
using one of the following formats:

1. http://[DOMAIN][:PORT]/CVP/Server?probe=true

2. http://[DOMAIN][:PORT]/CVP/Server?application=[APPLICATION]&probe=true

The first URL format (without the application parameter) results in a simple HTML page with
the following text if the VXML Server is accessible and is not suspended:

The Cisco Unified CVP VXML Server is up and running

However, if it is suspended (via the suspendServer administrative script), it will respond with:

The Cisco Unified CVP VXML Server is running, however it has been suspended.

This URL format has several optional parameters that may be used in conjunction with it:

• activeCalls=true

This optional parameter causes the response HTML to include information about how
many call sessions are active on the VXML Server instance. This is formatted as
illustrated in the following example:

running;activeCalls=12;

• onHoldCalls=true

This optional parameter causes the response HTML to include information about how
many call sessions are in an “on hold” status on the VXML Server instance. This is
formatted as illustrated in the following example:

running;onHoldCalls=3;

• activeCalls=true&onHoldCalls=true

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

64

Specifying both of the optional parameters results in both data items being returned, as
illustrated in the following example:

running;activeCalls=77;onHoldCalls=0;

The second URL format (with the application parameter), results in a VoiceXML page which
includes a <submit> to the listed voice application. If that VoiceXML page is returned, then
VXML Server is accessible. This format is intended for use with load balancers that require the
probe URL to match the URL through which actual content is retrieved. This format cannot be
used to obtain additional information (i.e., active and on-hold calls) beyond that the server is
accessible.

Configuration Updates

When an administrator monitors a VXML Server installation, they want to be aware of any
warning signs that the system is overloaded. In these scenarios, it is advantageous if the
administrator is able to tweak a few settings to better handle the given load without worrying
about updating or suspending applications or shutting down the Java application server. These
tweaks may enable a system to better handle spikes in call activity with no adverse effects. To
this end, VXML Server exposes some of its configuration options and allows an administrator to
change them at runtime. It also allows the administrator to change some application settings
values for deployed application.

It is important to note that the administrator must be very careful when altering these
configuration options at runtime as improperly chosen values could make the system unstable
and achieve the opposite effect than desired.

The ability to change VXML Server configuration options and application settings is available
only through the JMX interface. The configuration options are exposed as attributes of an
MBean, one for the VXML Server configuration options and one for each application’s settings.
Those attributes that allow their values to be changed will have editable values. When a new
value is given, it takes affect immediately with no confirmation so it is important to ensure that
the value entered is correct. There is some simple validation that takes place by VXML Server
and if the value entered is inappropriate (such as entering -1 where a positive integer is required),
the change will not take place and the original value will remain unchanged. The administrator
will know that their entry was accepted if the value does not revert back.

It is very important to note that any changes made to these attributes are not persisted. The
changes affect VXML Server in memory and do not affect the XML files that hold these values.
As a result, should the Java application server or the VXML Server web application be restarted
or for application-specific attributes the application is updated, the attributes will revert back to
the values specified in their respective XML files.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

65

VXML Server Configuration Options

To view the VXML Server configuration options using the JMX interface, navigate to the
Global/Configuration MBean. There are five attributes listed. The first, named
“LoggerEventQueueSize”, will show the current size of the queue that holds logger events
waiting to be sent to loggers and is not editable. The next three are related in that they control
aspects of the logger thread pool. The final configuration option deals with a period of time
VXML Server waits after a caller ends their call before the call session is invalidated. All of
these options affect the performance of the system and are defined fully in Chapter 6: VXML
Server Configuration. Use the following table to reference the JMX attribute name with the
global_config.xml tag name.

JMX Attribute Name Tag Name
LoggerMaximumThreadPoolSize <maximum_thread_pool_size> in the <logger> tag.
LoggerMinimumThreadPoolSize <minimum_thread_pool_size> in the <logger> tag.
LoggerThreadKeepAliveTime <keep_alive_time> in the <logger> tag.
SessionInvalidationDelay <session_invalidation_delay>

Table 3-1

Tuning Logger Options

The most important indication of whether VXML Server is encountering issues with loggers is
the “LoggerEventQueueSize” attribute. A brief explanation of how VXML Server handles
loggers is warranted (for more details refer to Chapter 5: VXML Server Logging). In order to
prevent logging from holding up calls, all logging is done in separate threads. The threads are
managed within a thread pool, which has a maximum and minimum value. When VXML Server
starts up, the thread pool allocates the minimum number of threads. As calls begin to be handled,
they generate logger events, which are put into a queue of events. The activation of a logger
event also prompts VXML Server to request a thread from the pool and in that thread have the
appropriate logger handle the top most event in the queue. The length of time this thread handles
the event depends on the logger, but the event is typically handled in a very short period of time,
measured in milliseconds. However as call volume on the system increases, more threads are
used simultaneously to handle the increase in logger events added to the queue. As more threads
are needed, the thread pool grows until it reaches the maximum number of threads allowed. At
that point the queue would grow until threads become available. Threads that complete their
work and cannot find new logger events to handle because the queue is empty will be garbage
collected after a certain amount of time being idle (this is governed by the
LoggerThreadKeepAliveTime option).

Under typical operation, the logger event queue size should not be a large number (one might see
it set to 0 to 10 most of the time). There could be spikes where the queue grows quickly but with
plenty of available threads to handle the events, the queue size should shrink rapidly. The
administrator should take note if the queue size shows a high number, though should be very
wary if this number seems to grow over time (minutes, not seconds). A growing queue size is an
indication that either the load on the system is too high for the thread pool to handle (which is

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

66

more likely the smaller the maximum thread pool size is set) or for some reason loggers are
taking longer to do their logging. In the latter case this could be due to a slow database
connection, overloaded disk IO or other reasons. Regardless of the cause, a growing queue is a
warning sign that if the call volume is not reduced, the Java application server is at risk of
encountering memory issues and, in the worst case, running out of memory.

It is for this reason that choosing an appropriate maximum thread pool size is important. While
the temptation to give the maximum number of threads a very high number this can also cause
problems on the system as severe as memory issues. Using too many threads could cause what is
called “thread starvation” where the system does not have enough threads to handle standard
background processes and could exhibit unpredictable inconsistent behavior and could also cause
the Java application server to crash.

The JMX interface supports the ability to change the maximum and minimum thread pool size at
runtime. The administrator should only do this if they believed the change could avert an issue
listed above. For example, if the system is encountering a temporary spike in activity and the
administrator sees the LoggerEventQueueSize attribute report a growing number, then they can
increase the maximum thread pool size to potentially allow for a more rapid handling of the
queued events. Once the queue shrinks to a manageable number the maximum thread pool size
can then be changed back to its original value.

The maximum number of threads set by default in VXML Server is sufficient to handle a very
heavy load without issues so the administrator is urged to use caution when changing these
values.

Session Invalidation Delay Option

The session invalidation delay option is also an important value that an administrator could be
tuned should they see the need. A brief explanation of what this option does is warranted (for
more details refer to Chapter 6: VXML Server Configuration). When a caller ends the call by
either hanging up, going to another application, or the application hangs up on the caller, VXML
Server must perform some final clean up of the call session. This is primarily for processing
logging events that occurred when the call ended. Additionally, application developers can
configure their applications to execute code at the end of a call to perform their own clean up
operations. In sophisticated applications this could involve closing database connections or
generating call detail records. These end of call operations can take a non-trivial amount of time
and may require access to information about the call session, such as element or session data. As
a result, VXML Server waits for a preset period of time after a call ends before it invalidates the
session, allowing all activities requiring additional time to complete. This period of time is
governed by the SessionInvalidationDelay attribute and is measured in seconds.

It is important to understand the consequences of changing this value. If too low a time is given
then there could be situations where the system under load cannot handle the end of call tasks in
the given time and the global error log may see many errors containing the Java exception
IllegalStateException which occurs when attempting to access data from an invalidated call

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

67

session. One has to understand that system resources are limited and when it is under load what
may have taken 100ms to complete could take longer and depending on what it is that needs to
be done, could take much longer.

The administrator should refrain from the temptation of making this number too large. This is
because while a call session is still valid but not representing a live call, all that information
remains in memory. This may not be much but could be significant depending on the amount of
data stored in element and session data by the application. Even though the session has not been
invalidated, since the call has ended, VXML Server is ready and will accept new calls, which
will allocate additional memory. Under high load, the Java application server could encounter
memory issues if call sessions remain in memory for too long a period.

The JMX interface supports the ability to change the session invalidation delay at runtime. The
administrator would increase this setting if IllegalStateException errors appear in the logs.
They would lower the value if the JVM memory usage stays close to the maximum after each
garbage collection. Keep in mind that there are many potential causes for JVM memory
utilization to rise and is certainly not limited to this cause.

The default value of the session invalidation delay is sufficient to handle a heavy load without
issues so the administrator is urged to be cautious when changing this value.

Application Configuration Options

To view the configuration options of an application using the JMX interface, navigate to the
VoiceApplication/APPNAME/Command MBean, where APPNAME is the name of the application.
There are four attributes listed:

• DefautAudioPath - this shows the audio path defining where the audio files are located
(assuming the application was designed to take advantage of it).

• GatewayAdapter - this shows the gateway adapter that the application is using and is not
editable. It is for informational purposes only.

• SessionTimeout – this shows the length of time, in seconds, of inactivity to consider a call
session timed out.

• SuspendedAudioFile – The path for the audio file to play to callers when calling into an
application that is suspended.

An administrator may choose to change the default audio path of an application at runtime
should there be a need to change the audio callers hear quickly. One use case would be if the
server that hosts the audio files is being restarted and the administrator wishes all audio to be
fetched from a backup server. Note that the effectiveness of this change will be based on how
consistently the application was designed to use the default audio path and also if the application
explicitly sets the default audio path itself, which would override the value passed here.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

68

An administrator may choose to change the session timeout value at runtime as part of the
process of debugging a problem. Under normal circumstances no session should time out
because the voice browser and VXML Server should be in constant communication regarding
when a call starts and ends. An administrator experiencing some sessions timing out may choose
to increase this attribute to see if it resolves the issue and if not, should look into network issues.
The administrator should be careful not to set this value too small a number because there is a
risk that a normal call could time out due to the caller visiting a particularly large VoiceXML
page or taking their time entering a long DTMF input. Too large a number will mean that
sessions that are no longer valid will remain in memory longer and the administrator would not
be able to see which sessions are timed out until the timeout period elapsed.

An administrator may choose to change the suspended audio file at runtime if the application
needed to be suspended due to a specific reason. For example, if a weather event required an
application to be suspended, the administrator could point the suspended audio message to a
recording explaining why the application is suspended rather then just pointing to a generic
message. The administrator is taking advantage of the fact that this change is not persisted since
it is expected that the event that caused the application’s suspension is temporary.

Administration Functions

VXML Server exposes several functions that allow an administrator to make both small and
large changes to the applications and VXML Server at runtime. They are divided into two
categories: those that affect a specific application and those that affect all applications running on
VXML Server. An administrator can use the JMX interface as well as administration scripts to
execute these functions.

Each administrator function, when activated, prompts VXML Server to send a logger event
reporting the function and its result so that any loggers listening to these events can log the
information. The logs will then maintain a history of administration activity that can be analyzed
later.

Administrator functions include the ability to add, update, and remove applications as well as
suspend both an application and VXML Server itself. This section describes all functions
available.

Graceful Administration Activity

Administration functions are used primarily to alter an application, whether it be to update its
contents or suspend its activity. Whenever changes are made to a live system handling callers, a
concern is how these changes affect live callers. A robust, reliable system should strive for
maximum uptime and minimal disruptions of live calls, and VXML Server does this by
implementing a “graceful” process for managing changes.

In the graceful process, existing callers continue to experience the application as it existed before
the change, while new callers experience the change. Only after all existing callers have naturally

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

69

ended their calls will the change apply to all live callers. At this time, VXML Server will
perform any necessary cleanup required to remove the old application configuration. In this
manner, changes can be made to applications at any time, the administrator need not worry about
the impact of the change on live callers as the transition will be handled gracefully.

Due to the interactive nature, when using administration scripts to perform graceful functions,
the script will display a count down of callers that are actively visiting the application as they
end their calls. This is provided as an aid to the administrator in determining how many callers
are still experiencing the application before the change. Command line arguments passed to the
scripts can turn off this countdown if desired.

When using the JMX interface or if the countdown is turned off in the administration script, the
only way to track the number of callers that are still experiencing the old configuration would be
to get the system status.

Updating Applications

Occasionally, an application will need to be updated. Possible changes can be small, such as
renaming an audio file or altering a TTS phrase, or large, such as adding another item to a menu
and creating a new call flow branch. They can involve simple configuration changes or may
involve new or changed Java class files. While most changes are implemented during
development time, there is a requirement to support updating an application at runtime.

The update functionality acts gracefully in that any callers on the system, at the time of update
continue to experience their calls as if the application had not been updated, while new callers
experience the updated voice application. In this manner, there is no downtime when a change is
implemented for an application, the callers are handled as expected.

VXML Server exposes an update function for every application deployed. This will update just
that application. It also has a function that will update all applications at once.

There are a few items to note when updating individual voice applications.

• The gracefulness of the update applies only to those resources controlled by VXML Server.
These include the application settings and call flow, element configurations, Unified CVP
decision elements, and Java classes placed in the java / application directory of the
application. The following changes are not managed by VXML Server and therefore will not
be gracefully updated:

o Java classes placed anywhere else (including the common folder),

o XML content passed to VXML Server via the XML API.

o The content of VoiceXML insert elements.

o Other applications that the updated application transfers to or visits as part of a
subroutine.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

70

o External back-end systems such as web services and databases (including the user
management database).

o Web servers hosting static content used by the application such as audio or grammar
files.

When each of these resources become unavailable or change, all callers would be affected.
For small changes such as a revised audio file, this situation may be acceptable. For large-
scale changes that span multiple systems, this could cause problems such as callers who are
visiting an application when the update is made experiencing an error because a database is
down.

For large changes, the application should be suspended and the changes made once all callers
have left the system (see the following section on suspending applications). Once the
application is fully suspended, the administrator is free to make the changes and when done,
the application should be updated followed by resuming it from its suspended state. This
way, no caller will be in the system when the changes are made. The only disadvantage to
this approach is that it will make the application unavailable for a period of time as opposed
to a transparent change if the update feature alone is used. This may be a necessary tradeoff
considering the consequences.

• When the update occurs, the event created by VXML Server to send to any loggers that are
listening will reflect when the update function was executed, not when it completed.

• If an error occurs during the update process, e.g., due to an incorrectly configured XML file,
a description of the error is displayed and sent to any loggers listening to the appropriate
logger events and the update is cancelled.

JMX Interface

To update an application using the JMX interface, use a JMX client connected to the server to
navigate to the VoiceApplication/<APPNAME>/Command MBean, where APPNAME is the name of
the application to update. The operations tab of this MBean will list a function named
“updateApplication”. Pressing this button will cause the application to be updated and the result
of the update will be displayed in a dialog box.

The administrator should be aware that there is no confirmation when this function is called, the
update happens immediately once executed.

Note that while the function returns immediately, the old application may still be active if there
were calls visiting the application at the time of the update. Only when all existing callers end
will the old application configuration be removed from memory. To determine when that occurs,
use the status function.

To update all applications at once using the JMX interface, navigate to the Global/Command
MBean and click on the function named “updateAllApps” in the operations tab. The results will
be displayed in a dialog box, listing each application updated. As with the application-specific

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

71

update, use the status function to determine if there are callers experiencing old versions of the
applications.

Administration Scripts

The scripts for updating an application are found in the admin folder of the application to be
updated. Windows users should use the script named updateApp.bat and Unix users should use
the script named updateApp.sh.

The script will first ask for confirmation of the desired action to prevent accidental execution. To
turn off the confirmation, pass the parameter “noconfirm”. By default, the script does not return
to the command prompt until all pre-update callers are finished. Interrupting the countdown will
not stop the update process, only the visual countdown. To turn off the countdown, pass the
parameter “nocountdown”. If the countdown is interrupted or the script is passed the
nocountdown parameter then the only way to determine how many callers are experiencing the
old application is to execute the status script for the system, which displays this information.

The script to update all applications is found in the admin folder of VXML Server. Windows
users should use the script named updateAllApps.bat and Unix users should use the script
named updateAllApps.sh. The script behavior is the same as if the update script for each
application deployed on VXML Server were executed in series.

The updateAllApps script also displays a confirmation prompt which can be turned off by
passing the “noconfirm” parameter. Unlike the updateApp script, the updateAllApps script does
not display a countdown of callers, it lists all the applications that are updated. The administrator
would need to execute the status function to determine how many callers are visiting the old
versions of the applications.

Suspending Applications

There are many situations when an application needs to be temporarily suspended. There could
be scheduled maintenance to the network, the voice application could have an expiration date
(say it runs a contest that must end at a specific time), or the application is to be turned off while
enterprise-wide improvements are made. There may also be situations where all applications are
to be put in suspension if modifications are being made that affect all applications. In each of
these situations, a caller would need to be played a designer-specified message indicating that the
application has been temporarily suspended, followed by a hang-up. This is preferable to simply
not answering or taking down the system, which would cause a cryptic outage message to be
played.

First, the application designer defines the suspended message in the Application Settings pane in
Builder for Call Studio. When the suspend order is given, VXML Server produces a VoiceXML
page containing this suspended audio message to all new calls followed by a hang-up. Since
VXML Server gracefully allows all calls currently on the system to finish normally when the
command was issued, existing callers are unaware of any changes. VXML Server will keep track
of the active callers visiting the application and make that information available for the

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

72

administrator to access. Only when this number reaches 0 will it be safe for the administrator to
perform the system maintenance that required the suspension.

VXML Server exposes suspend and resume functions for every application deployed that acts on
just that particular application. It also exposes a function that will suspend VXML Server itself,
which has the effect of suspending all applications. A separate resume function resumes VXML
Server that restores the previous state of each application. So if an application was already
suspended when VXML Server was suspended, resuming VXML Server leaves the application
in a suspended state.

There are a few items to note when suspending a voice application:

• Only when all existing callers have exited the system will the application be officially
suspended. Depending on the average length of calls to the voice application, this may take
some time. Note though that the application status will appear as suspended since new callers
cannot enter the application and will hear the suspended audio message.

• If changes were made to an application while it was suspended, the application should first
be updated before being resumed (see the previous section on the update administration
function).

• The suspension applies only to those resources under the control of VXML Server. External
resources such as databases, other web servers hosting audio or grammar files, or servers
hosting components via XML documents over HTTP are accessed at runtime by VXML
Server. If any of these resources become unavailable while there are still pre-suspension
callers on the system, those calls will encounter errors that will interrupt their sessions. Any
maintenance made to backend systems should be initiated after the application status shows
that all pre-suspended callers are finished with their calls.

• When the suspension occurs, the event created by VXML Server to send to any loggers that
are listening will reflect when the suspend function was executed, not when it completed.

• If an error occurs during suspension, a description of the error is displayed and sent to any
loggers listening to the appropriate logger events and the update is cancelled.

• Suspending a voice application still requires VXML Server (and hence the Java application
server) to be running in order to produce the VoiceXML page containing the suspended
message. If the application server itself requires a restart, there are four possible ways to
continue to play the suspended message to callers. Remember to execute the suspend
function before any of these actions are taken as this is the prerequisite. The solutions are
listed in order of effectiveness and desirability.

o Load balance multiple instances of VXML Server. In a load-balanced environment, one
machine can be shut down, restarted, or reconfigured while the rest continue serving new
calls. Once removed from the load balance cluster, a machine will not receive new call
requests. Eventually, all existing callers will complete their sessions, leaving no calls on

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

73

the machine removed from the cluster. That machine can then be safely taken down
without affecting new or existing callers.

o Use a web server as a proxy. In a smaller environment, a web server can be used as a
proxy for an application server so that when that application server becomes unreachable,
the web server itself can return a static VoiceXML page containing the suspended
message to the voice browser. The web server need not be on the same machine as the
application server. Once the web server is configured, VXML Server can be suspended to
flush out all existing callers, then the application server can be taken down and the proxy
server will take over producing the suspended message VoiceXML page. The
disadvantage of this approach is that the web server setup is done outside of Unified CVP
and if the suspended message changes it would need to be changed in both the Builder for
Call Studio and the web server configuration.

o Redirect the voice browser. The voice browser can be configured to point to another URL
for calls coming on the specific number. This can point to another machine running
VXML Server or even just a web server with a single static VoiceXML document
playing the suspended message. A separate file would be needed for each application.
This is a manual process and requires another machine with at least a web server (it can
be on the same machine which would allow the Java application server to be restarted but
would not allow the machine itself to be restarted).

JMX Interface

To suspend an application using the JMX interface, use a JMX client connected to the server to
navigate to the VoiceApplication/APPNAME/Command MBean, where APPNAME is the name of
the application to be suspended. The operations tab of this MBean will list a function named
“suspendApplication”. Pressing this button will cause the application to be suspended and the
result will be displayed in a dialog box. To resume the application, select the function named
“resumeApplication”. The result will be displayed in a dialog box.

The administrator should be aware that there is no confirmation when these functions are called,
the suspension and resumption occurs immediately once executed.

Note that while the suspend function returns immediately, the application may still be active if
there were calls visiting the application at the time of the suspension. Only when all existing
callers end their calls will the application be fully suspended and the administrator is safe to take
down any resources that the application depends on. To determine when all calls have ended, use
the status function.

To suspend VXML Server itself using the JMX interface, navigate to the Global/Command
MBean and click on the function named “suspendVXMLServer” in the operations tab. The
results will be displayed in a dialog box. As with the application-specific suspension, use the
application-specific status function to determine if there are callers still visiting the applications.
Click on the function named “resumeVXMLServer” to resume VXML Server and restore the
previous states of the applications.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

74

Administration Scripts

The scripts for suspending and resuming applications are found in the admin folder of the
application to be suspended. Windows users should use the script named suspendApp.bat and
Unix users should use the script named suspendApp.sh. To resume the application, use the
script named resumeApp.bat or resumeApp.sh.

It is possible to suspend all applications at once by accessing a script found in the admin folder
of VXML Server. Windows users should use the script named suspendServer.bat and Unix
users should use the script named suspendServer.sh. To restore all applications to their
original status, use the script named resumeServer.bat or resumeServer.sh. Note that these
scripts do not resume all applications; they simply restore the administrator-specified status of
each application. So if an application was already suspended when the server was suspended,
resuming the server leaves the application in a suspended state.

Adding Applications

When VXML Server starts up, it will load all applications that have been deployed to its
applications folder. A new application that is created in Builder for Call Studio and deployed
to a machine on which VXML Server is already running cannot begin accepting calls until
VXML Server loads the new application. To load the application, execute the deploy application
function. If the application is already deployed, executing this function will do nothing. If
multiple new applications are to be deployed together, one can execute the deploy all
applications function and all new applications will be deployed, and leave existing applications
untouched.

JMX Interface

To deploy all new applications using the JMX interface, use a JMX client connected to the server
to navigate to the Global/Command MBean and click on the function named
“deployAllNewApps” in the operations tab. Pressing this button will display a dialog box with
the status of each application’s deployment.

Alternatively, to deploy a single new application, first use the function named “listAllNewApps”
in the operations tab to get a list of new application names. Then use the “deployNewApp”
function to deploy the desired application by name.

Administration Scripts

The script for deploying a specific application is found in the admin folder of the application to
be deployed. Windows users should use the script named deployApp.bat and Unix users should
use the script named deployApp.sh. The script for deploying all new applications at once is
found in the admin folder of VXML Server. Windows users should use the script named
deployAllNewApps.bat and Unix users should use the script named deployAllNewApps.sh.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

75

Removing Applications

VXML Server exposes two administrative functions to handle the removal of application(s) from
memory at runtime. Determining which function to use will depend on the operating system and
whether the application being removed is actively handling calls.

The first method involves executing the release application function of the application to be
removed. This prompts VXML Server to first suspend the application then remove it from
memory when all the active callers at the time the function was executed, have naturally ended
their sessions. It suspends the application first to prevent new callers from entering the
application. Once all active callers are done visiting the application the folder of the application
can be deleted (or moved) from the VXML Server applications folder. This function affects
only a single application so if multiple applications are to be removed using this method, the
administrator would have to execute this function for each application.

Note that on the Microsoft Windows operating system, a user attempting to delete an application
folder after the releaseApp function is called may be prevented from doing so by the operating
system if the application references Java application archive (JAR) files placed within the
java/application/lib or java/util/lib directories. This is due to the system keeping an
open file handle for JAR files that will not be released until a garbage collection event occurs. As
a result, the administrator will have to wait until the garbage collector activates before being able
to delete the directory. The time to wait will be determined by how often garbage collection is
run. A rule of thumb is that a high load system or one with a small amount of memory will
encounter garbage collection often, a low volume system or one with a large amount of memory
will take longer.

The second method supports the ability to delete multiple applications at once. This time one
must first delete (or move) the folders holding the desired applications to be deleted. After
which, the flush all old applications function is executed and VXML Server will suspend then
remove from memory all the applications that it no longer finds in the applications folder. As
with the other method, the application is not removed from memory until all callers have ended
their visits.

There are certain issues with the second method:

• If an application relies on files found within its folder at runtime, there may be problems with
existing callers reaching a point where these files are needed and they will not be found.

• This process may not work on Microsoft Windows since Windows will not allow the deletion
of a folder when resources within it are open. For example, the application loggers may have
open log files located within the application’s logs folder. This may work if no loggers are
used or the only loggers used are those that do not manage files stored in the logs folder.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

76

JMX Interface

To delete an application using the JMX interface, use a JMX client connected to the server to
navigate to the VoiceApplication/<APPNAME>/Command MBean, where APPNAME is the name of
the application to update. The operations tab of this MBean will list a function named
“releaseApplication”. Pressing this button will cause the application to be suspended and then
removed from memory when all active callers visiting the application at the time the function
was executed have completed.

The administrator should be aware that there is no confirmation when this function is called, the
application is suspended and removed from memory immediately once executed.

Note that while the function returns immediately, the application will remain active if there were
calls visiting the application at the time of the release. Only when all existing callers end the call
will the application be removed from memory. To determine if there are active callers, use the
status function.

To delete all applications whose folders have been removed from the applications folder of
VXML Server using the JMX interface, navigate to the Global/Command MBean and click on
the function named “releaseAllOldApps” in the operations tab. The results will be displayed in a
dialog box, listing each application deleted. As with the application-specific update, use the
status function to determine when the callers finish their visits to the applications.

Administration Scripts

The scripts for deleting an application are found in the admin folder of the application to be
updated. Windows users should use the script named releaseApp.bat and Unix users should
use the script named releaseApp.sh.

The script will first ask for confirmation of the desired action to prevent accidental execution. To
turn off the confirmation, pass the parameter “noconfirm”. By default, the script does not return
to the command prompt until all callers are finished with their calls. Interrupting the countdown
will not stop the release process. To turn off the countdown, pass the parameter “nocountdown”.
If the countdown is interrupted or the script is passed the nocountdown parameter then the only
way to determine how many callers are actively in the application is to execute the status script
for the system.

The script to release all applications whose folders have been removed from the applications
folder of VXML Server is found in the admin folder of VXML Server. Windows users should
use the script named flushAllOldApps.bat and Unix users should use the script named
flushAllOldApps.sh. All applications whose folders have been removed will be suspended and
when their active calls have ended will be removed from memory.

The flushAllOldApps script also displays a confirmation menu which can be disabled by
passing it the “noconfirm” parameter. Unlike the releaseApp script, the flushAllOldApps
script does not display a countdown of active callers, it will list all the applications that were

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

77

deleted. The administrator would need to execute the status function to determine how many
callers are actively in the applications.

Updating Common Classes

When performing an application update, all the data and Java classes related to an application
will be reloaded. Java classes placed in the common folder of VXML Server are not included in
the application update. VXML Server provides a separate administrative function to update the
common folder.

There are a few items to note about this function:

• The update affects all applications that use classes in the common folder, so executing this
function could affect applications that have not changed. Therefore, take precaution when
executing this function.

• The update affects all classes in the common folder, whether they were changed or not. This
is usually not a issue unless those classes contain information in them that reloading would
reset (such as static variables).

• Due to the fact that this function reloads classes that affect all applications, and those classes
may themselves prompt the loading of configuration files from each application that uses
those classes, the function may take some time to complete depending on the number of
classes in the common folder and the number and complexity of the deployed applications.

• Changes are immediate, they are not done gracefully. Since this potentially affects all
applications, the administrator must be aware of this.

JMX Interface

To update common classes using the JMX interface, use a JMX client connected to the server to
navigate to the Global/Command MBean and click on the function named
“updateCommonClasses” in the operations tab. The results will be displayed in a dialog box.

Administration Scripts

The script for updating common classes is found in the admin folder of VXML Server. Windows
users should use the script named updateCommonClasses.bat and Unix users should use the
script named updateCommonClasses.sh. The script will ask for confirmation of the desired
action to prevent accidental execution. To disable the confirmation, pass the parameter
“noconfirm”.

Getting/Setting Global and Application Data

Global data holds information that applications decide to share across other applications
deployed on VXML Server. Application data holds information that applications decide to share
across all calls to the application. The VXML Server JMX interface provides the ability for an

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

78

administrator to view the contents of these variables, change their values, and even create new
variables.

This functionality provides an administrator direct access to live data that is being created on the
system and can provide them some control of how applications operate. This is only possible
when the application designers design that functionality into the applications. For example, an
application designer for a utility company can build their application to look for the existence of
a global data variable reporting a power outage. The administrator then creates the global data
variable when a power outage occurs and automatically the applications will start reporting the
power outage to callers. The administrator can then delete the global data variable to signify the
power has been restored. While this same functionality could be achieved with a database, this is
a simpler approach to handle predictable situations without the need to use a database.

Global Data Access

To access global data using the JMX interface, navigate to the Global/Data MBean. The
Attributes tab lists all the global data variable names in an attribute named
“AllGlobalDataNames” (the value may need to be expanded in order to see all the global data
names). The Operations tab lists four functions that can be executed by the administrator for
global data:

• setGlobalData – This function allows the administrator to create a new global data variable.
The function takes two inputs, the first being the name of the variable and the second being
the value. Click on the button to set the global data and the result will appear in a dialog box.
Note that if there exists global data with the same name it will be overridden.

• removeGlobalData – This function allows the administrator to delete a global data variable.
The function takes one input: the name of the global data variable to delete. Click on the
button to remove the global data and the result will appear in the dialog box.

• removeAllGlobalData – This function allows the administrator to delete all global data,
whether it was created by the administrator or applications. Click on the button to remove all
global data and the result will appear in the dialog box. Be careful when using this function
as it could affect the performance of applications that rely on global data.

• getGlobalData – This function allows the administrator to retrieve the value of a global data
variable. The function takes one input: the name of the global data variable to retrieve. Click
on the button to display a dialog box showing the value of the global data.

Application Data Access

To access application data using the JMX interface, navigate to the
VoiceApplication/APPNAME/Data MBean, where APPNAME is the name of the application
whose application data is to be accessed. The Attributes tab lists all the application data variable
names in an attribute named “AllApplicationDataNames” (the value may need to be expanded in
order to see all the application data names). The Operations tab lists four functions that can be
executed by the administrator for application data:

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

79

• setApplicationData – This function allows the administrator to create a new application data
variable. The function takes two inputs, the first being the name of the variable and the
second being the value. Click on the button to set the application data and the result will
appear in a dialog box. Note that if there is already application data with the same name it
will be overridden.

• removeApplicationData – This function allows the administrator to delete a application data
variable. The function takes one input: the name of the application data variable to delete.
Click on the button to remove the application data and the result will appear in the dialog
box.

• removeAllApplicationData – This function allows the administrator to delete all application
data, whether it was created by the administrator or applications. Click on the button to
remove all application data and the result will appear in the dialog box. Be careful with this
function as it could affect the performance of the application.

• getApplicationData – This function allows the administrator to retrieve the value of a
application data variable. The function takes one input: the name of the application data
variable to retrieve. Click on the button to display a dialog box with the value of the
application data.

Administrator Log Access

VXML Server ships with various default loggers, including administration history loggers that
store a history of the administration activity taken such as when VXML Server started up, when
an application was updated, the results of he suspension of VXML Server, etc. These logs, which
are rotated daily, are useful to an administrator as an audit history of administrator activity. As a
convenience, the JMX interface exposes methods for the administrator to access the contents of
these logs instead of viewing the files in a text editor.

Please note that the application designer and administrator has the ability to define any loggers
desired for the applications as well as for VXML Server, including removal of the default
administration history loggers. If this is done, then these functions will return error messages that
explain that the log files could not be found.

To view an application’s administration history log using the JMX interface, use a JMX client
connected to the server to navigate to the VoiceApplication/<APPNAME>/Command MBean,
where APPNAME is the name of the application to view. The operations tab of this MBean will list
functions named “retreiveAdminHistoryToday” and “retreiveAdminHistoryAll”. Clicking on the
first will open up a scrollable window listing the contents of the administration history log file
from the day the function is called. Clicking on the second will open up a scrollable window
listing the contents of all administration history logs concatenated.

To view VXML Server’ administration history log using the JMX interface, navigate to the
Global/Command MBean. The operations tab of this MBean list functions with the same name

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

80

and functionality as the application functions do except that the files accessed are for the global
administration history.

Administration Function Reference

The following lists all the administration functions provided by VXML Server and whether they
are available from the JMX interface and/or via script.

Application-Level Functions

Function JMX Script Description
Suspend Application Yes Yes Suspends the application in which the function belongs.
Resume Application Yes Yes Resumes the application in which the function belongs.
Deploy Application No Yes Prompts VXML Server to load the application in which

the function belongs (does nothing if the application is
already deployed).

Update Application Yes Yes Prompts VXML Server to reload into memory the
configuration of the application in which the function
belongs.

Release Application Yes Yes Prompts VXML Server to remove from memory the
application in which the function belongs so that its
folder can be deleted.

Table 3-2

VXML Server-Level Functions

Function JMX Script Description
Suspend Server Yes Yes Suspends all applications deployed on VXML Server.
Resume Server Yes Yes Restores the status of each application to the original state

at the time VXML Server was suspended.
Deploy All New
Applications

Yes Yes All applications deployed to VXML Server since the last
time the application server started up or the deploy all new
applications function was called are now loaded into
memory and can handle calls.

List All New
Applications

Yes Yes Lists the names of all new voice applications so that their
names may be known to be deployed using Deploy New
Application.

Deploy New
Application

Yes No Loads and deploys the specified voice application.

Flush All Old
Applications

Yes Yes When called, all applications in VXML Server whose
folders were deleted are removed from memory.

Update All
Applications

Yes Yes Prompts each application deployed on VXML Server to
load its configuration from scratch from the application
files.

Update Common Yes Yes Reloads all classes deployed in the common directory of

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

81

Classes VXML Server.

Table 3-3

VXML Server Metrics

The more information an administrator has, the better he will be in determining the health of the
system. VXML Server provides a significant amount of information on various metrics to allow
the administrator to understand what is going on within the system. Armed with this information,
the administrator will be able to react quickly to situations which could degrade the stability of
the system.

The information falls into three categories: aggregate information, information on peaks, and
average information. Aggregate information, such as the total number of calls handled, is helpful
in determining how much work VXML Server has done so far. Peak information, such as the
maximum concurrent calls occurring in the last 10 minutes, is very helpful in understanding how
load is distributed on the system and can help the administrator understand how the volume is
changing. Average information, such as the average HTTP request completion time, helps the
administrator compare current metrics against historical averages.

The metrics maintained by VXML Server is available only through the JMX administration
interface. To view the metrics, navigate to the Global/Metrics MBean. The Operations tab lists
15 separate functions that the administrator can call to obtain very specific information
concerning how the system is running as well as how it has performed in the past. Many of the
functions take a time duration as an input. It will display information of the specified period up
to a maximum of 60 minutes.

The following list describes each function and the information it returns:

• totalCallsSinceStart – Returns the total cumulative number of calls handled by VXML Server
since it launched. This number will continually rise and only resets only when VXML Server
or the Java application server is restarted.

• maxConcurrentCallsInLast – Returns the most number of simultaneous callers that occurred
in the last X minutes where X is entered by the administrator (maximum of 60 minutes) and
when the maximum was reached. This is helpful in determining how close the call volume
reached the license limit on simultaneous callers. Knowing when the maximum value is
reached can be very helpful in determining if call volume is rising. For example if the peak
call volume for the last 10 minutes was achieved very close to present time, that would
indicate that call volume is rising.

• avgConcurrentCallsInLast – Returns the average number of simultaneous callers encountered
in the last X minutes where X is entered by the administrator. This data is helpful in
determining if a peak was an isolated occurrence or a sign of a trend. For example if the
maximum number of concurrent calls in the last hour was 100 but the average is 10, then
there is less to be alarmed about since the 100 peak did not last long and can be attributed to

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

82

a temporary spike. If the average were 90, then this would indicate that the call volume is
very steady.

• maxReqRespTimeInLast – Returns the maximum time, in milliseconds, it took VXML Server
to produce an HTTP response in the last X minutes where X is entered by the administrator
and when the maximum was reached. A voice browser makes an HTTP request to VXML
Server, which then must respond with a VoiceXML page. Clearly a large response time
would be cause for concern as a slow performing system will cause callers to think that the
application has encountered errors and in extreme cases could cause the voice browser to
time out a request and end a call with an error.

• avgReqRespTimeInList – Returns the average time, in milliseconds, it took to produce an
HTTP response in the last X minutes where X is entered by the administrator. This value
gives the administrator a good idea of how long it takes VXML Server to handle responses
given the call volume. This could help the administrator decide if the system is overloaded
and beginning to affect the perception of callers regarding the responsiveness of the
application. It also establishes a baseline to compare with the maximum response time. A
maximum response time significantly higher than the average could be an indication that
there is a problem with an external resource accessed by a custom element such as a database
or web service and the few calls that visited that element suffered from bad performance. It
could also help determine if the maximum response time was an isolated event or an
indication of a trend. For example if the maximum response time were 500ms which
occurred near the present, the average was 400ms, the fact that the peak was 500ms is not
alarming, because the average is so high. In this situation the administrator may choose to
throttle down the calls being handled by the system to bring the response times back down to
more acceptable levels.

• timeoutCallsInLast – Returns the total number of calls that ended with a timeout in the last X
minutes where X is entered by the administrator. More specifically, this counts calls where
the “result” action of the “end” category is timeout. See Chapter 5: VXML Server Logging in
the section entitled The Application Activity Logger for more on the different results and
how ended values. Under normal circumstances a call should never time out. Many different
types of conditions can yield session timeouts on VXML Server and so knowing if there are
timeouts in the last period of time would tell the administrator how widespread these issues
are.

• failedCallsInLast – Returns the total number of calls that ended with an error in the last X
minutes where X is entered by the administrator. More specifically, this counts calls where
the “result” action of the “end” category is error. See Chapter 5: VXML Server Logging in
the section entitled The Application Activity Logger for more on the different results and
how ended values. This helps the administrator determine how widespread a bug or other
issue that caused a call to end in an error is. For example, if the last 60 minutes yielded only
one failed call, while the issue should be investigated, it may not be a symptom of a larger
more prevalent issue.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

83

• timeoutCallsSinceStart – Returns the total number of calls that ended with a timeout since
VXML Server launched. More specifically, this counts calls where the “result” action of the
“end” category is timeout. See Chapter 5: VXML Server Logging in the section entitled The
Application Activity Logger for more on the different results and how ended values. This
information is good to compare with the number of timed out calls in the past X minutes as if
the numbers are close it could mean that the issue that is causing the timeouts is a recent
occurrence. It also gives an indication of the stability of the system and will allow the
administrator to calculate the percentage of calls that had encountered timeouts.

• failedCallsSinceStart – Returns the total number of calls that ended with an error since
VXML Server launched. More specifically, this counts calls where the “result” action of the
“end” category is error. See Chapter 5: VXML Server Logging in the section entitled The
Application Activity Logger for more on the different results and how ended values. This
information is good to compare with the number of failed calls in the past X minutes as if the
numbers are close it could mean that the issue that is causing the errors is a recent
occurrence. It also gives an indication of the stability of the system is and will allow the
administrator to calculate the percentage of calls that had errors.

• maxLoggerEventQueueSizeInLast – Returns the largest the logger event queue got in the last
X minutes where X is entered by the administrator and when the maximum was reached. For
an explanation of the logger queue, see the section titled Tuning Logger Options earlier in
this chapter. This value will help the administrator understand, in an abstract way, how much
VXML Server is logging. While it is not unusual for this number to be large, the
administrator can track a trend and if this number continually increases it could be an
indication that the system cannot handle the logger event load and could eventually result in
memory problems. The time when the maximum was reached can help indicate if VXML
Server is able to handle the incoming stream of logger events.

• maxLoggerThreadCountInLast – Returns the most simultaneous threads VXML Server was
using to handle loggers in the last X minutes where X is entered by the administrator and
when the maximum was reached. For an explanation of the logger thread pool, see the
section titled Tuning Logger Options earlier in this chapter. This would be another indication
of whether VXML Server is able to keep up with the stream of logger events as if the number
is close to the maximum thread pool size it is an indication that VXML Server has almost
reached its limit in handling events. When the maximum was reached will help determine if
this is happening recently. Keep in mind that when all the threads in the pool are actively
handling logger events, the logger event queue will rise rapidly. So if this value is at the
maximum thread pool size, then the maxLoggerEventQueueSizeInLast function would
display rapidly increasing queue sizes.

• callTransferRate – Returns the percentage of calls that ended in a blind telephony transfer.
More specifically, this counts calls where the “how” action of the “end” category is
call_transfer. This could help the administrator determine what percentage of callers decided
to speak to an agent rather than complete the call in the automated voice application.

CHAPTER 3: ADMINISTRATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

84

• callAbandonRate – Returns the percentage of calls that ended with the caller hanging up.
More specifically, this counts calls where the “how” action of the “end” category is hangup.
See Chapter 5: VXML Server Logging in the section titled The Application Activity Logger
for more on the different results and how ended values. Keep in mind, though, that despite
the name, a caller hanging up is not necessarily a bad thing since the caller could hang up
right before the application hung up on the caller and the end category would still be hangup.
This value would therefore be a good indication of how callers interact with the applications
on the system.

• callCompleteRate – Returns the percentage of calls that ended normally. More specifically,
this counts calls where the “result” action of the “end” category is normal. See Chapter 5:
VXML Server Logging in the section titled The Application Activity Logger for more on the
different results and how ended values. This does not count calls into a suspended
application, calls ending in an error or timeout, or calls ending due to an element manually
invalidating the session. It is expected that this percentage be close to 100%.

• averageCallDuration – Returns the average duration of all calls handled by VXML Server, in
seconds. This helps the administrator determine if a particular call being analyzed represents
a typical call since a particularly long call could indicate a caller having trouble with the
application and a short call could indicate caller frustration with the application.

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

85

Chapter 4: User Management
VXML Server includes a user management system for basic personalization and user activity
tracking. The primary reason for a user management system is to facilitate the customization of
voice applications depending on user preferences, demographics, and prior user activity. It is not
meant to be a replacement for fully featured commercial user management systems and can be
used in conjunction with those systems. Additionally, Unified CVP voice applications do not
require he presence of a user management system, it is provided as an aid to application
designers.

While the bulk of the user management system is designed to track individual users, its most
basic form can still prove useful for those applications that do not need (or want) to track
individual users but would still like to be able to provide very simple personalization such as
playing “Welcome back” when a call is received from a phone number that has called before.
When turned on, the user management system automatically keeps track of information based on
the phone numbers of callers. This is available automatically; the developer need not do any
additional work.

The user management system is fully integrated into VXML Server. An API is included to
provide two different interfaces to the user management system. The first interface is used to
manage the user database, allowing separate, external processes to populate, maintain, and query
the system. The second interface is provided for dynamic components of a voice application to
allow runtime updates and queries to the system. This second interface allows a voice application
to perform tasks such as playing a customized message to registered users, making decisions
based on user demographics or history, and even adding new users after the caller completes a
successful registration process. The API has both Java and XML versions. These APIs are fully
detailed in the Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified
Call Studio.

Deployment

The user management system is simply a database accessed by VXML Server. Each hosted voice
application may refer to a separate user management database or may share databases if users are
to be shared across applications. The user management system can be activated by providing a
JNDI name for the relational database the user data is to be stored. This is done in the settings
pane for the application in the Builder for Call Studio. Currently, the databases supported are
MySQL and SQLServer. Note that the application server must be set up to manage connections
to this database beforehand.

Once the database itself is set up, VXML Server automatically handles the process of creating
the database tables.

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

86

Database Design

Figure 4-1 displays an ER diagram of the database tables comprising the user management
system. The following sections describe each table individually and its purpose.

Figure 4-1

Applications

This table is used to provide a primary key for the voice applications utilizing this user
management database. Most voice applications will utilize their own user management system in
which case this table will have only one entry in it. For those applications that share a common
user management system, this table’s key is used to keep track of the activities of users visiting
each application, should that separation be necessary.

Column Type Description
app_id integer (primary key) Automatically generated application ID.
application_name varchar(50) The name of the application with the specified

application ID.

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

87

User Data

The tables under this category are used to store information about the users in the system.

users

This table is the main user table. Each row contains the information for a single user. Both
demographic and account information are stored here. The table specification is as follows:

Column Type Description
uid integer

(primary
key)

This is a user ID automatically generated by the system to
identify a particular user. Once a call is associated with a
UID, the system knows the caller’s identity. The user
management system relies on this UID throughout.

external_uid varchar(50) If an external user management system is used in
conjunction with this one there must be a way to link a
user on the Unified CVP system with one in the external
system. This column stores the ID for this user on the
external system to provide that link. Can be null if the
Unified CVP user management system is used
exclusively.

account_created datetime This stores the time the user was added to the system. It
will always have a value.

account_modified datetime This stores the time of the last update to this user in the
system. It will always have a value.

account_number varchar(50) Some voice applications identify users by account
numbers. If so, the account number should be stored here,
otherwise it can be null.

pin varchar(20) If the voice application uses a PIN to verify the user, the
PIN is stored here. Null if no PIN is used or required.

name varchar(50) The user’s name. Can be null.
birthday varchar(50) The user’s birthday. Can be null.
zip_code varchar(10) The user’s zip code. Can be null.
gender varchar(10) The user’s gender: “male”, “female”, or null if not stored.
social_security varchar(10) The social security number of the user. Can be null.
country varchar(50) The user’s full country name. Can be null.
language varchar(50) The language the user speaks or prefers. This can be used

to provide audio content in different languages. Can be
null.

custom1-custom4 varchar(200) These columns are provided to allow the developer to
place custom user-related data in the system. It can be
used for such data as e-mail addresses, financial account
balances, proprietary IDs, etc. Can be null.

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

88

user_phone

This table is an adjunct to the main user table. It is used to store the phone numbers associated
with the user. The reason this data is placed in a separate table is to allow an application to
associate more than one phone number with a user. For example, a voice application allowing a
user to associate with their account both their home and work numbers can automatically
recognize who the caller is when calls are received from either number, rather than requiring
them to log in. If multiple phone numbers are not required or necessary, this table can contain
one entry per account or remain empty. Since there may be multiple rows in the system with the
same UID, there is no primary key to this table. The table specification is as follows:

Column Type Description
phone varchar(10) A phone number to associate with this account.
uid integer

(foreign key)
The UID identifying the user.

users_by_ani

This table is used to track calls made from specific phone numbers (ANIs). This table is
automatically updated by VXML Server and need only be queried by the developer when
information about a caller is desired. The table contains information about the number of calls
and the last call made from a phone number. This information can be used to welcome a caller
back to the application or warn that menu options have changed since their last call even if the
application itself is not set up to track individual users through logins. The table specification is
as follows:

Column Type Description
ani varchar(10) The phone number of the caller.
app_id integer The application the caller called into. This exists in case

multiple applications share a common user management
system.

call_count integer The number of calls received by this phone number to
this application.

last_call datetime The last time a call was received by this phone number to
this application.

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

89

Historical Data

Tracking user information is only part of a user management system. Many applications benefit
from knowing information about the past history of a user’s interaction with the phone system.
This component of the user management system is automatically updated by VXML Server and
need only be queried by the developer when information about user(s) is desired.

sessions

This table contains records of every call made to the system. It stores telephony information
about the call as well as when the call was made. The table specification is as follows:

Column Type Description
call_id integer This is an automatically incremented ID for the call. It is

used exclusively within the user management system.
source varchar(50) This column contains the name of the application which

transferred to this one or is null if the application was
called directly.

app_id integer The application ID of the application called. If the user
management system is not shared across multiple
applications, this ID would be the same for all calls.

ani varchar(10) The ANI of the originating caller. Is NA if the ANI was
not sent by the telephony provider.

dnis varchar(10) The DNIS of the originating caller. Is NA if the DNIS
was not sent by the telephony provider.

uui varchar(100) The UUI of the originating caller. Is NA if the UUI was
not sent by the telephony provider.

iidigits varchar(100) The IIDIGITS of the originating caller. Is NA if the
IIDIGITS was not sent by the telephony provider.

area_code varchar(10) The area code of the originating caller. Is null if the ANI
is NA.

exchange varchar(10) The exchange of the originating caller. Is null if the ANI
is NA.

uid integer The UID of the caller if the call was associated with a
user. If not, it will appear as null.

start_time datetime The date and time the visit to the application began. If no
other application can transfer to this one, this will be the
time the call was made.

end_time datetime The date and time the visit to the application ended. If
this application cannot transfer to any other application,
this will be the time the call ended in a hang-up or
disconnect.

CHAPTER 4: USER MANAGEMENT USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

90

flags

This table contains records of the flags triggered by every call made to the system. Since flags
are used to indicate important parts of the voice application, knowing what areas of the voice
application people visited in the past can be very useful. The table specification is as follows:

Column Type Description
call_id integer This refers to the call ID of the call.
flag_name varchar(100) This is the name of the flag that was triggered.
flag_time datetime This is the date and time the flag was triggered.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

91

Chapter 5: VXML Server Logging
Logging plays an important part in voice application development, maintenance, and
improvement. During development, logs help identify and describe errors and problems with the
system. Voice applications relying heavily on speech recognition require frequent tuning in order
to maximize recognition effectiveness. Voice application design may also be changed often,
taking into account the behaviors of callers over time. The more information an application
designer has about how callers interact with the voice application, the more that can be done to
modify the application to help callers perform their tasks faster and easier.

For example, a developer could determine the most popular part of the voice application and
make that easier to reach for callers. If a large proportion of callers ask for help in a certain part
of the application the prompt might need to be rewritten to be clearer. After analyzing the
utterances of various callers, the effectiveness of grammars can be determined so that additional
words or phrases can be added or removed. None of this is possible without detailed logs of
caller behavior. While each component of a complete IVR system such as the voice browser and
speech recognition system provide their own logs, VXML Server provides logs that tie all this
information together with the application logic itself. This chapter explains everything having to
do with logging on VXML Server.

Due to the importance of logging VXML Server has been designed to offer the maximum
flexibility with regards to what can be logged, how it is logged, and where it is logged. The logs
generated by VXML Server by default can be customized to fit the needs of a deployment. In
addition, a Java API exists that allows developers to create their own ways of handling logging
for better integration with the deployed environment or tailored specifically for special needs.

Loggers

VXML Server handles all logging activity through the use of loggers. Loggers are plugins to
VXML Server that listen for certain logging events and handle them in a custom manner, from
storing the information in log files, sending the information to a database, or even to interface
with a reporting system. Any number of loggers can be used, even multiple instances of the same
logger. A logger may or may not require a configuration that will allow the designer to
customize how the logger performs.

VXML Server comes with several loggers that provide all necessary information in text log files.
Some provide configurations to allow for a level of customization in how the loggers perform.
VXML Server exposes a Java API to allow developers the flexibility of creating their own
loggers to allow for even more customization. See the Programming Guide for Cisco Unified
CVP VXML Server and Cisco Unified Call Studio for detailed information on how to build
custom loggers.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

92

VXML Server communicates with loggers by triggering logging events that the loggers listen for
and then deal with. VXML Server activates loggers in a fully multi-threaded environment to
maximize performance.

Loggers are divided into two categories: global loggers and application loggers. Global loggers
are activated by logging events that apply to VXML Server as a whole and that is not directly
related to any particular application (for example a record of all calls made to the VXML Server
instance). Application loggers are activated by logging events that apply to a particular
application running on VXML Server (for example a call visiting an element). Each logger type
is constructed using separate Java APIs and deals with a separate list of possible logging events .
Each logger type is also given a separate area to store logs, though a logger may choose to ignore
this area in the case that it does not log to files.

Global Loggers

The global_config.xml file found in the conf directory of Audium Home is used to define the
global loggers VXML Server is to use. The administrator can define any number of global
loggers to be simultaneously active, even multiple instances of the same logger class. This file
also lists the names of the configuration files for these loggers, if they are configurable. The
configuration files must be placed in the same conf directory as the global_config.xml file.
The global_config.xml file and any configuration files must be edited by hand, there is no
interface for editing them. Refer to Chapter 6: VXML Server Configuration for more details
about this file and how to define global loggers within it.

Global loggers will be loaded by VXML Server when it starts up and remain in memory until it
is shut down. Any change made to the global_config.xml file will not be loaded until VXML
Server is restarted.

VXML Server provides the logs folder of Audium Home for log file storage should the Global
Loggers require it. To keep each logger instance’s logs separate, a subfolder with the name of
the logger instance is created and all logs generated by the logger instance are stored there.

By default, VXML Server utilizes three loggers to create text log files containing VXML Server-
specific information: a log that keeps track of calls made to the system, a log for tracking
VXML Server administration activity, and an log that shows errors that occur on the VXML
Server level (as opposed to the application level). The global error logger requires a
configuration that allows for detailed control over how the logger operates.

The following sections describe these three pre-built global loggers, their configurations (if any),
and the information stored in their logs.

The Global Call Logger

The global call logger records a single line for every application visit handled by VXML Server
into a text call log. Most calls will begin and end in a single application so in that case a line in

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

93

the call log is equivalent to a physical phone call. For situations where one application performs
an application transfer to another application, a separate line will be added to the call log for each
application visit despite the fact that they all occur in the same physical call. Since each
application visit is logged separately in each application’s own log file, the call log provides a
way to stitch together a call session that spans multiple applications.

The call log file names are in the format “call_logYYYY-MM-DD.txt” where YYYY, MM, and
DD are the year, month, and day when the call log was first created. By default, the log folder for
is named “GlobalCallLogger” (though the name is set in the global_config.xml file and can
be changed by the administrator). Call log files are rotated daily. The file is organized in a
comma-delimited format with 6 columns:

• CallID. This is a non-repeating value generated by VXML Server to uniquely identify calls. It
is designed to be unique even across machines, as the log files of multiple machines running
the same applications may be combined for analyses. The format of the session ID is
IP.SECS.INCR where IP is the IP address of the VXML Server instance on which the call
originated, SECS is a large integer number representing the time the application visit was
made and INCR is an automatically incremented number managed by VXML Server. Each
part is delimited by dots and contains no spaces. For example:
192.168.1.100.1024931901079.1.

NOTE: If a voice application uses a Subdialog Invoke element to transfer across multiple
VXML Server instances, the IP address included in the CallID is the IP address of the
instance the call started on. Because of this, it is possible that a CallID in log files on one
machine may contain an IP address for another machine. This allows a physical call to be
traced across multiple servers (from a logging standpoint), even if Subdialog Invoke is used
to transfer to between various voice applications.

• SessionID. The session ID is used to track a visit to a specific application. Therefore, with
application transfers, one call ID may be associated with multiple session IDs. For this
reason, session IDs are simply the call ID with the application name appended to the end. For
example: 192.168.1.100.1024931901079.1.MyApp.

• callers. This integer represents the total number of callers interacting with the system at the
time the call was received (including the current call).

• order. A number indicating the order of each application visited in a call. The order begins at
1. This column exists to report the order in which a caller visited each application should the
data be imported to a database.

• Application. The name of the application visited.

• Time. A timestamp of the application visit in the format “MM/DD/YYYY
HH:MM:SS.MMM” where the hour is in 24-hour time and MMM represents a 3-digit
millisecond value. This represents when the call was received or the application transfer
occurred.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

94

The Global Error Logger

The Global Error Logger records errors that occur outside the realm of a particular application.
Application-level errors are logged by application-level loggers, which are described later in this
chapter. Another type of error that the Global Error Logger receives is an application-level error
that encountered trouble with its logging. In order to prevent the loss of the data, VXML Server
activates a global logger event with the original application error as a backup.

The error log file names are in the form “error_logYYYY-MM-DD.txt” where YYYY, MM, and
DD are the year, month, and day when the error log was first created. By default, the log folder is
named “GlobalErrorLogger” (though the name is set in the global_config.xml file and can be
changed by the administrator). Global error log files are rotated daily. Note that if no error
occurred on a particular day, no error log will be created. The file is organized in a comma-
delimited format with 2 columns:

• Time. The time the error occurred.

• Description. The error description. One possible value can be max_ports, indicating the caller
was put on hold because all the Unified CVP license ports were taken. While the call was
eventually handled correctly, this is placed here as a notice that the license may not have
enough Unified CVP ports to match caller volume. Another value is bad_url:[URL],
indicating that a request was made to VXML Server for a URL that could not be recognized.
This most likely will occur if the voice browser refers to an application that does not exist.
The last description is error, indicating that some other error occurred.

Note that the global error log is not designed to be parsed, even though the columns are separated
with commas. This is because when the error log reports a Java-related error, it may include what
is called a “Java stack trace”, which contains multiple lines of output.

The Global Error Logger utilizes a configuration to control how it logs certain types of errors and
how often the log files should be purged. The configuration is specified as an XML file created
by the designer and placed in the conf directory of Audium Home.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

95

Figure 5-1

Figure 5-1 displays the format for the XML Global Error Logger configuration file. The main tag
for the configuration, configuration, has two attributes, name and version. Name is expected
to contain the logger instance name. The version is expected to include the version of the
configuration, which is currently “1.0”. The subsequent sections describe the functionality of the
various tags in the configuration.

Global Error Logger Configuration: Log Details

The <log_details> tag controls which errors to log and what information to include about those
errors. The possible child tags are:

• <stacktraces>. This optional tag is used to indicate that any Java errors that occur should also
have their stack traces printed in the log. The absence of this tag indicates not to include stack
traces.

• <on_hold_calls>. This optional tag is used to indicate that a call that was put on hold should
be logged. The application_name attribute can have the values true and false, true being
to include the name of the application the caller attempted to reach when being put on hold
and false to not include the application name.

• <http_parameters>. This optional tag is used to indicate that an error caused by an
unrecognized URL (such as a request for an application that does not exist) should include the
HTTP parameters passed to the URL. This can be helpful to know since it could help
determine why the request was made. The length attribute provides a limit, in a number of
characters, to be included in the log. This prevents the log from being filled up with too much
parameter data. Note that the parameter data appears on one line, no matter how long.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

96

• <http_headers>. This optional tag is used to indicate that an error caused by an unrecognized
URL (such as a request for an application that does not exist) should include the HTTP
headers passed to the URL. This can be helpful to know since it could help determine why the
request was made. The length attribute provides a limit, in a number of characters, to be
included in the log. This prevents the log from being filled up with too much header data.
Note that the header data appears on one line, no matter how long.

Global Error Logger Configuration: File Purging

The Global Error Logger can be configured to automatically delete files that conform to certain
criteria. Properly configured, this will allow an administrator to avoid having the system’s hard
drive fill up with logs, which would prevent new calls from being logged.

A few notes about file purging must be given:

• Since loggers are activated only when events occur in a call, the file purging activity will
only take place when an error event occurs. As a result, a system that encounters no errors
will not automatically delete files until a new error occurs.

• When the Global Error Logger starts up for the first time, it will apply the purging strategy
on any files that exist in the logger directory. Therefore, if an application server is shut down
with files in the logger directory and then restarted a long time later, these files could be
deleted when the application server starts up and the logger initializes.

• The Global Error Logger applies its purging strategy to any files found in its logger directory,
including non-error log files. So should other files be added to the logger folder after the
application server has started could be deleted when the Error Logger encounters a new error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the
configuration, no file purging will take place. The tag can contain one of the following child
tags:

• file_age. The Global Error Logger will delete error log files older than X days, where X is an
integer greater than 0 specified in the older_than attribute.

• file_count. The Global Error Logger will delete error log files if the logger folder contains
greater than X files, where X is an integer greater than 0 specified in the greater_than
attribute. When the files are deleted, the oldest ones are deleted first until the folder reaches
the desired file count.

Global Error Logger Configuration Example #1
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLogger1">
 <log_details>
 <stacktraces/>
 <http_parameters length="100"/>
 <http_headers length="300"/>

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

97

 </log_details>
 <purge>
 <file_age older_than="14"/>
 </purge>
</configuration>

This configuration has the following features:

• Java stack traces will appear in the error logs. Note that since stack traces span multiple lines,
including stack traces may complicate the process of importing the error logs into
spreadsheets or databases. This is rarely done for error logs anyway.

• If there is a bad URL error message, it will include 100 characters of the URL input
parameters and 300 characters of the HTTP headers, all on one line in the log file.

• Nothing is logged for a call that is put on hold.

• When a new file is added to logger instance’s dedicated directory by the Global Error
Logger, if the directory contains files that are older than 14 days (2 weeks), the files will be
deleted.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

98

Error Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../dtds/GlobalErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyGlobalErrorLogger2">
 <log_details>
 <on_hold_calls application_name="true"/>
 </log_details>
 <purge>
 <file_count greater_than="100"/>
 </purge>
</configuration>

This configuration has the following features:

• Java stack traces will not appear in the error logs. When a Java exception occurs, only the
error message itself will appear in the error log without the stack trace.

• When a call is put on hold, that fact will be logged along with the application name that the
caller was attempting to visit.

• If there is a bad URL error message, only the URL itself will be logged without any HTTP
parameters or headers.

• No file purging will take place. The administrator is responsible for maintaining the logs on
the system.

The Global Administration History Logger

The Global Administration History Logger records administration events that occur on VXML
Server itself. Application-level administration history is logged by application-level loggers,
which are described later in this chapter. These events are triggered by an administrator
executing administration script (see Chapter 3: Administration for more on administering VXML
Server).

The administration log file names begin with “admin_historyYYYY-MM-DD.txt” where
YYYY, MM, and DD are the year, month, and day when the administration log was first created.
By default, the log folder for is named “GlobalAdminLogger” (though the name is set in the
global_config.xml file and can be changed by the administrator). Administration history log
files are rotated daily. Note that if no administration activity occurred on a particular day, no
administration history log will be created.

The file contains three columns: the time, what script was run, and its result, separated by
commas. The result is usually “success” and if not, contains the description of the error
encountered. The possible values of the result are:

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

99

• server_start - Listed when the VXML Server web application archive initializes. This would
occur if the Java application server on which VXML Server is installed starts up or the
administrator of the application server explicitly started up the VXML Server web
application archive.

• server_stop - Listed when the VXML Server web application archive is stopped. This would
occur if the Java application server on which VXML Server is installed shuts down or the
administrator of the application server explicitly stops the VXML Server web application
archive.

• deploy_all_new_apps - Listed when the deployAllNewApps script is run.

• flush_all_old_apps - Listed when the flushAllOldApps script is run.

• suspend_server - Listed when the suspendServer script is run.

• resume_server - Listed when the resumeServer script is run.

• update_common_classes - Listed when the updateCommonClasses script is run.

Note that running the status script does not trigger an administration event and thus does not
update the history log.

Application Loggers

Application loggers are defined in the settings for that application. The application designer can
choose any number of application loggers they wish to listen to events for a particular
application, giving each instance a name. A logger may or may not require a configuration that
will allow the designer to customize how the logger performs. The configuration files must be
placed in the data/application directory of the deployed application.

Unique to application loggers is the ability for one to specify that all logging events for a call be
passed to the logger it in the order in which they occurred in the call. Some application loggers
may even require this to be turned on as their functionality depends on the events arriving in
order. The application designer can choose to ensure this is the case even for application loggers
that do not explicitly require it to have logs appear orderly. There is some performance
degradation as a result of this so an application logger that does not require this should not
enable it.

VXML Server provides the logs folder of a particular application for log file storage should the
loggers require it. To keep each application logger instance’s logs separate, a subfolder with the
name of the instance is created and all logs created by the logger instance are stored there.

By default, VXML Server includes four loggers that provide various application-specific
information: an activity logger that records caller behavior, an application administration history
logger that records administration activities, an error logger that lists errors that occur within
calls to the application, and a debug logger that provides additional information useful when

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

100

creating and debugging a new application. The activity logger and error logger require
configurations that allow for detailed control over how the loggers operate.

The following sections describe these four pre-built application loggers, their configurations (if
any), and the information stored in their logs.

The Application Activity Logger

The Activity Logger is the main application logger included with VXML Server. It records into
text log files all the activity taken by callers when they visit an application. It stores information
about the call itself such as its ANI, what elements the caller encountered and in what order, and
even detailed actions such as the values entered by the caller or the confidences of their
utterances. The names of the log files created by the Activity Logger begin with “activity_log”
and are delimited for easy importing into spreadsheets and databases. These logs have a fixed
number of columns:

• SessionID. The session ID of the application visit as described in the VXML Server Call Log
section.

• Time. A timestamp of the event in a readable format.

• [Element name]. The name of the current element the activity belongs to. Only functional
elements (voice elements, action elements, decision elements, and insert elements) can
appear here. This column would be empty if the activity does not apply to an element.

• Category. The category of the action. A list of categories is given below:

o start. Information on new visits to the application.

o end. Information on how the application visit ended.

o element. Information on the element visited and how the element was exited. The element
column is empty for the start and end categories.

o interaction. Detailed information about what a caller did within a voice element.

o data. Element data to be logged.

o custom. Custom developer-specified data to log.

• Action. A keyword indicating the action taken. A list of actions is given in Table 5-1.

• Description. Some qualifier or description of the action.

The following table lists all possible category and actions that can appear in the activity log and
descriptions on what they represent.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

101

Category Action Description
start newcall

or
source

newcall is used when the application visit is a new call. The
description is empty. source is used when another application
transferred to this application. The name of the application
transferred from is listed in the description.

start ani The description is the ANI of the caller. NA if the ANI is not sent.
start areacode The area code of the ANI. NA if the ANI is not sent.
start exchange The exchange of the ANI. NA if the ANI is not sent.
start dnis The description is the DNIS of the call. NA if the DNIS is not sent.
start iidigits The description is the IIDIGITS of the call. NA if the IIDIGITS is

not sent.
start uui The description is the UUI of the call. NA if the UUI is not sent.
start uid The application visit is associated with a user. The UID is listed in

the description.
start parameter An HTTP parameter attached to the initial URL that starts a

Unified CVP application. The description lists the parameter name
followed by an “=” followed by the value. A separate line will
appear for each parameter passed.

start error An error occurred in the on call start action (either a Java class or
XML-over-HTTP). The description is the error message.

end how How the call ended. The description is either hangup to indicate
the caller hung up, disconnect to indicate the system hung up on
the caller, application_transfer:APPNAME to indicate a transfer to
another Unified CVP application occurred (where APPNAME
stands for the name of the destination application), call_transfer to
indicate a telephony blind transfer occurred, or
app_session_complete to indicate that the call session ended via
another means such as a timeout or the call being sent to an IVR
system outside of Unified CVP.

end result The description explains why the call ended. normal indicates the
call ended normally, suspended indicates the application is
suspended, error indicates an error occurred, timeout indicates that
the VXML Server session timed out, and invalidated indicates the
application itself invalidated the session.

end duration The duration of the call, in seconds.
end error An error occurred in the on call end action (either a Java class or

XML-over-HTTP). The description is the error message.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

102

Category Action Description
element enter The element was entered. The description is empty. This is always

the first action for an element.
element hotlink A hotlink was activated while in the element. This can be either a

global or local hotlink. The description lists the hotlink name.
element hotevent A hotevent was activated while in the element. The description

lists the hotevent name.
element error An error occurred while in the element. The description lists the

error message.
element flag A flag was triggered. The description lists the flag name.
element exit The element was exited. The description lists the exit state of the

element or is empty if a hotlink, hotevent or error occurred within
the element.

interaction audio_group An audio group was played to the caller. The description is the
audio group name.

interaction inputmode How the caller entered data. The description can be dtmf or speech.
interaction utterance The caller said something that was matched by the speech

recognition engine. The description lists the match it made of the
utterance. This action will always appear with the interpretation
and confidence actions.

interaction interpretation In a grammar, each utterance is mapped to a certain interpretation
value. The description holds the interpretation value for the caller’s
utterance. This action will always appear with the utterance and
confidence actions.

interaction confidence The confidence of the caller's matched utterance. This is a decimal
value from 0.0 to 1.0. DTMF entries will always have a confidence
of 1.0. This action will always appear with the utterance and
interpretation actions.

interaction nomatch The caller said something that did not match anything in the
grammar.

interaction noinput The caller did not say anything after a certain time period.
data [NAME] When an element creates element data, one can specify if to log the

element data. Element data slated to be logged will appear here
with the element data name as the action and the value as the
description.

custom [NAME] Anywhere the developer adds custom name/value information to
the log will have the name appear as the action and the value
stored within as the description.

Table 5-1

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

103

Notes on the Activity Logger:

• Due to its complexity, the Activity Logger requires that the enforce call event order option to
be set for the logger instance using it and will throw an error if it is not set.

• When one Unified CVP application performs an application transfer to another application,
the reported timestamps of the end category of the source application and the start category
of the destination application could be imprecise when the source application ends with the
playing of audio content. This is due to the fact that voice browsers typically request
VoiceXML pages in advance if the current page contains only audio and a submit to the next
page. In other words, the browser could be playing audio to the caller while making a request
for the next VoiceXML page. If that page were the last of an application, the subsequent
request would begin the process of entering the new application including having the
Activity Logger handle start and end of call logging for the two applications. It would then
report the end time for the source application as being before the time the caller actually
“experienced” the destination application by hearing its audio.

The Activity Logger utilizes a configuration to control the finer details of the information it
stores in its log files. The configuration controls five different aspects of the Activity Logger: the
format of the files, how much data to store in them, how often to rotate the files, how caching
should work, and how often should log files be purged. This configuration is specified as an
XML file created by the designer in Builder for Call Studio.

Figure 5-2

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

104

Figure 5-2 displays the format for the XML Activity Logger configuration file. The main tag for
the configuration, configuration, has two attributes, name and version. Name is expected to
contain the logger instance name though can be given any name desired. The version is expected
to include the version of the configuration, which is currently “1.0”. The subsequent sections
describe the functionality of the various tags in the configuration.

Activity Logger Configuration: Format

The <format> tag allows for the modification of how the activity log files are formatted. All
Activity Logger configurations are required to define a format. The possible attributes are:

• delimiter. This required attribute defines the delimiter to use to separate columns on a line.
Delimiters can be any string value, though typically will be a comma or tab. To use a special
white space character such as a new line or tab, use the escaped version. The possible values
are “\n” (denoting a new line), “\t” (denoting a tab), “\r” (denoting a return), and “\f”
(denoting a line feed).

• remove_delimiter_from_content. When this required attribute is set to true, the Activity
Logger will attempt to eliminate the delimiter from any content appearing in the logs to
ensure that the log file can be imported flawlessly. For example, if the delimiter is a comma
and the configuration is set to remove the delimiter, when it is to log the content “This, is the
description”, it will appear in the log as “This is the description” so as not to affect the
accuracy of the importing process. This extra step, though, does incur a slight performance
hit. This step will not be performed if this attribute is set to false.

• end_of_line. This optional attribute controls the delimiter used to separate lines. The
recommended option is to not include the attribute. In this case, the Activity Logger will
separate lines appropriate to the operating system on which VXML Server is running. Set the
attribute to explicitly set the new line delimiter. Delimiters can be any string value, though
typically will be a white space character. To use a special white space character such as a
new line or tab, use the escaped version. The possible values are “\n” (denoting a new line),
“\t” (denoting a tab), “\r” (denoting a return), and “\f” (denoting a line feed).

• date_format and date_granularity. These required attributes set how the second column of the
activity log references a date when the event occurred. The format and granularity are
specified. There are three possible values for the date_format attribute:

o standard. This is a standard readable date format in the form “MM/DD/YYYY
HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are the
milliseconds. The seconds and milliseconds are displayed with brackets to indicate that
their appearance are based on the date_granularity attribute. For a date_granularity
attribute set to minutes, just the hours and minutes of the time will be displayed. For a
granularity set to seconds, just the hours, minutes and seconds will be displayed. For a
granularity set to milliseconds, all components will be displayed.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

105

o minimal. This is a minimal time value that omits the date and is in the form
“HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are
the milliseconds. The seconds and milliseconds are displayed with brackets to indicate
that their appearance are based on the date_granularity attribute. For a
date_granularity attribute set to minutes, just the hours and minutes will be
displayed. For a granularity set to seconds, just the hours, minutes and seconds will be
displayed. For a granularity set to milliseconds, all components will be displayed.

o number. This displays a large integer number representing the full date and time as an
elapsed time since January 1, 1970, 00:00:00 GMT. For a date_granularity attribute
set to minutes, the number will be 8 digits in length (representing the number of minutes
elapsed since that date). For a granularity set to seconds, the number will be 10 digits in
length (representing the number of seconds elapsed since that date). For a granularity set
to milliseconds, the number will be 13 digits in length (representing the number of
milliseconds elapsed since that date).

Activity Logger Configuration: Scope

The Activity Logger configuration provides the administrator the ability to control what is
logged based on their own needs. This is done by defining logging levels and the events that each
level contains. During the debugging stage, for example, the logging level can be set to record all
events and once in production, the logging level can be set to record more important events.

The <scope> tag defines the logging level to use in the logging_level attribute. The child tag
<definitions> encapsulates all possible logging levels. All Activity Logger configurations are
required to define a scope with at least one logging level.

To define a logging level, a separate <level> tag is added within the <definitions> tag and
given a name in the name attribute. This tag will include a separate <event> tag for each event
the logging level includes. The id attribute defines the name of the event. Table 5-2 lists all
possible event IDs and describes when that event occurs.

Note that at minimum, the start and end events are required for any logging level as these events
are used by the Activity Logger to maintain information about its log files and which calls are
using them.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

106

Event ID Event Description
start This event occurs when a new visit is made to the application (could be a

new call or visit via an application transfer). This event is required in all
logging levels.

end This event occurs when an application visit ends. This event is required in all
logging levels.

elementEnter This event occurs when an element is entered. This applies to both standard
and configurable elements as well as VoiceXML Insert elements.

elementExit This event occurs when an element exits (either normally or due to
something occurring within it that took the call flow elsewhere).

elementFlag This event occurs when a flag element is visited by a caller.
defaultInteraction This event occurs when a voice element returns interaction logging content

as a result of caller activity within a VoiceXML page.
elementData This event occurs when element data is created that has been configured to

be stored in the log.
custom This event occurs when custom content is to be added to the log, either by

visiting an element whose configuration specified content to add or by
executing custom code using either the Java or XML APIs that specifies to
add to the log.

hotlink This event occurs when a global or local hotlink that points to an exit state
(as opposed to throwing a VoiceXML event) is activated by the caller.

hotevent This event occurs when a hotevent that has an exit state is activated in the
call.

warning This event occurs when a warning is encountered.
systemError This event occurs when VXML Server encounters an internal error (i.e. an

error that does not originate from a custom component). This event will
include a stack trace.

javaApiError This event occurs when a custom component created with the Unified CVP
Java API encounters an error. This event will include a stack trace.

xmlApiError This event occurs when a custom component created with the Unified CVP
XML API encounters an error. This event will not include a stack trace.

vxmlError This event occurs when an error event is received from the voice browser.
This event will not include a stack trace.

Table 5-2

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

107

Activity Logger Configuration: File Rotation

In any system that stores information in log files, high volume can make these files get very
large. The desire is to have a strategy for creating new log files in order to avoid files that are too
large. Additionally, file rotation strategies can help separate the log files into more logical parts.
The Activity Logger defines several rotation strategies to choose from. Note that in order to
ensure that the information for a single call is not split across multiple log files, the Activity
Logger ensures that all call information appears in the log that was active when the call was
received. As a result, it is possible for calls to be updating both pre and post rotation log files
simultaneously. Each rotation strategy determines how the log files are named (though all
activity log filenames begin with “activity_log”).

The <rotation> tag defines the rotation strategy to use by containing one of the following tags:

• <by_day>. This strategy will create a new log file every X days where X is an integer value
greater than 0 specified in the every attribute. Typically this value is 1, meaning that every
day at midnight, a new log file is created. For low volume systems, the value can be given a
larger value. For example, when set to 7, a new log file is created once a week. The log files
are named “activity_logYYYY-MM-DD.txt” where YYYY is the year, MM is the month,
and DD is the day that the file is created.

• <by_hour>. This strategy will create a new log file every X hours where X is an integer value
greater than 0 specified in the every attribute. There is no upper bound on this value, so it
can be greater than 24. The log files are named “activity_logYYYY-MM-DD-HH.txt” where
YYYY is the year, MM is the month, DD is the day, and HH is the hour that the file is
created. Note that the hour is measured in 24-hour time (0 - 23).

• <by_call>. This strategy will create a separate log file for each call made to the application.
The log files are named “activity_logYYYY-MM-DD-HH-SESSIONID.txt” where YYYY is
the year, MM is the month, DD is the day, and HH is the hour that the file is created (in 24-
hour time) and SESSIONID is the VXML Server session ID (e.g. “activity_log2000-01-01-
17-192.168.1.100.1024931901079.1.MyApp.txt”). The session ID is included in the filename
to ensure uniqueness of the files. Note that care must be taken before using this log file
rotation strategy on systems with high load as this will create a very large number of files.

• <by_size>. This strategy will create a separate log file once the previous log file has reached
X megabytes in size where X is an integer value greater than 0 specified in the mb_limit
attribute. Note that due to the fact that multiple calls will be updating the same file and that
the Activity Logger will ensure that all data for a single call appear in the same log file, the
final log file may be slightly larger than the limit. The log files are named
“activity_logYYYY-MM-DD-HH-MM-SS.txt” where YYYY is the year, the first MM is the
month, DD is the day, HH is the hour (in 24-hour time), the second MM is the minute, and
SS is the second that the file is created. The time information is included in the file name in
order to ensure uniqueness.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

108

Activity Logger Configuration: Caching

The Activity Logger has the ability to use a memory cache to store information to log until either
the cache fills or the call ends. Using a cache has several advantages. The first is that it increases
performance by waiting until the end of the call to perform the file IO. Without a cache, the log
file would be updated each time an event occurred. Another advantage is that with caching on,
the log file will be more readable by grouping the activities belonging to a single phone call
together. Without the cache, the events for all calls being handled by every application running
on VXML Server would be intermingled. While one can still sort the calls after the log is
imported to a spreadsheet or database, it is much more difficult to track a single call when simply
reading the log file without the cache. The one disadvantage of using a cache is that the log file is
not updated in real-time, only after a call has completed. Should there be a desire to have the logs
updated immediately after the events occur, then caching should be left out of the configuration.

The <cache> tag has only one child tag: <per_call>, indicating that the cache’s lifetime is a
single call to an application. <per_call> defines two attributes: kb_limit, an integer value
greater than 0 that defines the size of the cache in kilobytes, and allocate that defines the cache
allocation strategy. The attribute can be set to two different values:

• once. The Activity Logger will allocate the full memory needed for the cache once and then
fill it up with logging information. When filled, the cache is flushed to the log file and the
same section of memory is cleared and then refilled.

• as_needed. The Activity Logger will allocate memory as events arrive in the call until the
total amount of memory has been allocated. When it is to be flushed, the memory is released
and then the allocation begins again.

The advantage of allocating the memory at once is that since a contiguous section of memory is
being used, the updating, maintenance, and flushing of that memory will be slightly faster.
Additionally, with only one area of memory per call less memory allocations take place, which
can affect how often Java garbage collection runs. A disadvantage is that the cache size should
be chosen carefully. Too small a cache will incur performance hits as the cache fills up and is
logged multiple times within a call. Too large a cache would mean that a large amount of
memory is allocated and then never used, potentially starving the rest of the system. A good
cache size would be approximately the size of a log for a typical call to the application. Since the
cache is flushed at the end of a call, there is little reason to make the cache much larger.

The advantage to allocating the memory as needed is that this minimizes the memory used since
only the memory needed to store the information is used. The cache size is not as important, and
making it larger will not affect the overall memory usage as drastically as if the cache was
allocated all at once since the memory would not be allocated unless needed.

It is recommended to configure the cache to be allocated once for performance and as needed if
memory on the system is tight.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

109

Activity Logger Configuration: File Purging

The Activity Logger can be configured to automatically delete files that conform to certain
criteria. Properly configured, this will allow an administrator to avoid having the system’s hard
drive fill up with logs, thereby preventing new calls from being logged. A few notes about file
purging that must be understood:

• A logger has control only over the files appearing under the logger instance’s dedicated log
folder and cannot control those files managed by other logger instances. This even applies to
multiple instances of the same logger since each logger instance is given its own unique
folder within the logs folder of the application. Activity Logger file purging therefore
applies only to those files appearing under the logger instance’s folder.

• Since loggers are activated only when events occur in a call, the file purging activity will
only take place when a call ends. As a result, a system that receives no calls at all will not
automatically delete files until a new call is received and completes.

• When the Activity Logger starts up for the first time, it will apply the purging strategy on any
files that exist in the logger directory. Therefore, if an application server is shut down with
files in the logger directory and then restarted a long time later, these files could be deleted
when the application server starts up and the logger initializes. This applies to any file
appearing in the logger directory, not just activity logs.

• The Activity Logger keeps information about the activity log files in memory and acts on
that to determine whether to delete them rather than by monitoring the remaining hard drive
space on the system. This is done to avoid having to do file IO to determine if a file is to be
purged and so minimizes overhead (though there still is overhead in simply deleting files).
One consequence of this is that the logger keeps track only of those files it is managing. The
logger is unaware of any files added to the directory after the application server initializes. So
the purging strategy will affect those files only.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the
configuration, no file purging will take place. The tag can contain one of the following child
tags:

• file_age. The Activity Logger will delete activity log files older than X days, where X is an
integer greater than 0 specified in the older_than attribute.

• file_count. The Activity Logger will delete activity log files if the logger folder contains
greater than X files, where X is an integer greater than 0 specified in the greater_than
attribute. When the files are deleted, the oldest ones are deleted first until the folder reaches
the desired file count.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

110

Activity Logger Configuration Example #1
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLogger1">
 <format delimiter="\t" remove_delimiter_from_content="true"
end_of_line="\n" date_format="standard" date_granularity="milliseconds"/>
 <scope logging_level="Complete">
 <definitions>
 <level name="Minimal">
 <event id="start"/>
 <event id="end"/>
 </level>
 <level name="Complete">
 <event id="start"/>
 <event id="end"/>
 <event id="elementEnter"/>
 <event id="elementExit"/>
 <event id="elementFlag"/>
 <event id="defaultInteraction"/>
 <event id="elementData"/>
 <event id="custom"/>
 <event id="hotlink"/>
 <event id="hotevent"/>
 <event id="warning"/>
 </level>
 </definitions>
 </scope>
 <rotation>
 <by_day every="2"/>
 </rotation>
 <cache>
 <per_call kb_limit="10" allocate="once"/>
 </cache>
 <purge>
 <file_age older_than="3"/>
 </purge>
</configuration>

This configuration has the following features:

• The activity logs will be delimited with a tab (“\t”) and will have any tabs that appear in the
content removed.

• The activity logs will use a Unix-style new line character (“\n”) to delimit lines. As a result,
these log files would not appear orderly on Windows Notepad because it does not recognize
these new line characters.

• Dates in the activity logs will appear in the standard format with millisecond granularity. For
example: “05/09/2006 15:45:02.654”

• Two logging levels are defined: Minimal, which logs only when a caller entered and exited
an application, and Complete, which logs all events. The Complete logging level is the one
that will be used.

• The activity log files will be rotated every two days, meaning each log file will contain 2
days worth of calls before a new file is created.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

111

• The cache is set to 10K or 5000 characters and is allocated once at the start of a call.

• Files that are older than 3 days that appear in the logger instance’s dedicated directory will be
purged.

Activity Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM "../../../../dtds/ActivityLoggerConfig.dtd">
<configuration version="1.0" name="MyLogger2">
 <format delimiter="," remove_delimiter_from_content="false"
date_format="minimal" date_granularity="minutes"/>
 <scope logging_level="MyLoggingLevel">
 <definitions>
 <level name="MyLoggingLevel">
 <event id="start"/>
 <event id="end"/>
 <event id="elementEnter"/>
 <event id="elementFlag"/>
 <event id="elementExit"/>
 </level>
 </definitions>
 </scope>
 <rotation>
 <by_size mb_limit="100"/>
 </rotation>
</configuration>

This configuration has the following features:

• The activity logs will be delimited with a comma and will not remove any commas that
appear in the content potentially complicating any importing of these logs into spreadsheets
or databases.

• The activity logs will end each line with the character appropriate for the operating system on
which it is generated. So if this system is running under Windows, the activity logs will look
fine under Notepad and if this system is running under Unix, the activity logs will use the
Unix end of line characters that would not be recognized if opened by Windows Notepad.

• Dates in the activity logs will appear in the minimal format with minute granularity. For
example: “15:45”.

• Only one logging level is defined that logs when calls enter and exit an application, enter and
exit an element, and when a flag element is visited.

• A new activity log is created when the previous one has reached approximately 100MB in
size, regardless on whether the calls spanned weeks or hours.

• No logging cache is used, meaning that when a logging event occurs in a call, it is placed into
the activity log immediately. This allows for real-time logging but incurs a performance
overhead in managing much more IO operations.

• No file purging will take place. The administrator is responsible for maintaining the logs on
the system.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

112

The Application Error Logger

During the voice application development process, errors can be introduced by configuring
elements incorrectly, spelling mistakes in audio filenames, or by Java coding bugs. In each of
these cases errors occur while running the application. While the Activity Logger does report
errors, it is preferable to isolate errors in a separate file so that they are easily found and dealt
with. Additionally, when reporting Java errors, a stack trace is desired. The application Error
Logger provides a place for these errors to appear. The error log file names are in the form
“error_logYYYY-MM-DD.txt” where YYYY, MM, and DD are the year, month, and day when
the error log was first created and is rotated daily.

Note that the application Error Logger will report information on errors that are affiliated with
the application in which it is configured. It can even report errors encountered by other loggers in
the same application only if the Error Logger is listed before other loggers in the application. If
another logger is loaded before the Error Logger, any errors it encounters will be logged instead
to the VXML Server Call Error Log. It is for this reason that by default Builder for Call Studio
puts the Error Logger at the top of the list of loggers to use for a new application.

The columns of the error log are:

• SessionID. The session ID of the application visit described in the VXML Server Call Log
section.

• Time. The time the error occurred.

• Description. The error description including a Java stack trace if applicable.

The Error Logger utilizes a configuration to control two different aspects of the error logs: the
format of the files and how often should log files be purged. This configuration is specified as an
XML file created by the designer in Builder for Call Studio.

Figure 5-3

Figure 5-3 displays the format for the XML Error Logger configuration file. The main tag for the
configuration, configuration, has two attributes, name and version. Name is expected to
contain the logger instance name. The version is expected to include the version of the
configuration, which is currently “1.0”. The subsequent sections describe the functionality of the
various tags in the configuration.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

113

Error Logger Configuration: Format

The <format> tag allows for the modification of how the error log files are formatted. All Error
Logger configurations are required to define a format. The possible attributes are:

• delimiter. This required attribute defines the delimiter to use to separate columns on a line.
Delimiters can be any string value, though typically will be a comma or tab. To use a special
white space character such as a new line or tab, use the escaped version. The possible values
are “\n” (denoting a new line), “\t” (denoting a tab), “\r” (denoting a return), and “\f”
(denoting a line feed).

• remove_delimiter_from_content. When this required attribute is set to true, the Error Logger
will attempt to eliminate the delimiter from any content appearing in the logs to ensure that
the log file can be imported flawlessly. For example, if the delimiter is a comma and the
configuration is set to remove the delimiter, when it is to log the content “This, is the
description”, it will appear in the log as “This is the description” so as not to affect the
accuracy of the importing process. This extra step, though, does incur a slight performance
hit. This step will not be performed if this attribute is set to false. Note that should the error
log contain Java stack traces, the error logs could be difficult to import as stack traces fill
multiple lines (though their content will be cleaned of the delimiter if desired).

• date_format and date_granularity. These required attributes set how the second column of the
error log references a date when the event occurred. The format and granularity are specified.
There are three possible values for the date_format attribute:

o standard. This is a standard readable date format in the form “MM/DD/YYYY
HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are the
milliseconds. The seconds and milliseconds are displayed with brackets to indicate that
their appearance are based on the date_granularity attribute. For a date_granularity
attribute set to minutes, just the hours and minutes of the time will be displayed. For a
granularity set to seconds, just the hours, minutes and seconds will be displayed. For a
granularity set to milliseconds, all components will be displayed.

o minimal. This is a minimal time value that omits the date and is in the form
“HH:MM[:SS][.MMM]” where the hour is in 24-hour time and the last three digits are
the milliseconds. The seconds and milliseconds are displayed with brackets to indicate
that their appearance are based on the date_granularity attribute. For a
date_granularity attribute set to minutes, just the hours and minutes will be
displayed. For a granularity set to seconds, just the hours, minutes and seconds will be
displayed. For a granularity set to milliseconds, all components will be displayed.

o number. This displays a large integer number representing the full date and time as an
elapsed time since January 1, 1970, 00:00:00 GMT. For a date_granularity attribute
set to minutes, the number will be 8 digits in length (representing the number of minutes
elapsed since that date). For a granularity set to seconds, the number will be 10 digits in
length (representing the number of seconds elapsed since that date). For a granularity set

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

114

to milliseconds, the number will be 13 digits in length (representing the number of
milliseconds elapsed since that date).

• print_stack_traces. This required attribute is set to either true or false and determines
whether the error log will contain Java stack traces. Stack traces are very useful to a
developer in tracking down the cause of a Java error so it is recommended to keep this option
on.

Error Logger Configuration: File Purging

The Error Logger can be configured to automatically delete files that conform to certain criteria.
Properly configured, this will allow an administrator to avoid having the system’s hard drive fill
up with logs, which would prevent new calls from being logged.

A few notes about file purging must be given:

• Since loggers are activated only when events occur in a call, the file purging activity will
only take place when an error event occurs. As a result, a system that encounters no errors
will not automatically delete files until a new error occurs.

• When the Error Logger starts up for the first time, it will apply the purging strategy on any
files that exist in the logger directory. Therefore, if an application server is shut down with
files in the logger directory and then restarted a long time later, these files could be deleted
when the application server starts up and the logger initializes.

• Unlike the Activity Logger, the Error Logger applies its purging strategy to any files found in
its logger directory, including non-error log files. So should other files be added to the logger
folder after the application server has started could be deleted when the Error Logger
encounters a new error.

The optional <purge> tag defines the purging strategy. If this tag does not appear in the
configuration, no file purging will take place. The tag can contain one of the following child
tags:

• file_age. The Error Logger will delete error log files older than X days, where X is an integer
greater than 0 specified in the older_than attribute.

• file_count. The Error Logger will delete error log files if the logger folder contains greater
than X files, where X is an integer greater than 0 specified in the greater_than attribute.
When the files are deleted, the oldest ones are deleted first until the folder reaches the desired
file count.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

115

Error Logger Configuration Example #1
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM
"../../../../dtds/ApplicationErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyErrorLogger1">
 <format delimiter="," remove_delimiter_from_content="true"
date_format="standard" date_granularity="seconds" print_stack_traces="true"/>
 <purge>
 <file_count greater_than="10"/>
 </purge>
</configuration>

This configuration has the following features:

• The error logs will be delimited with a comma and will have any commas that appear in the
content removed.

• Dates in the error logs will appear in the standard format with seconds granularity. For
example: “05/09/2006 15:45:02”

• Java stack traces will appear in the error logs. Note that since stack traces span multiple lines,
including stack traces may complicate the process of importing the error logs into
spreadsheets or databases. This is rarely done for error logs anyway.

• When a new file is added to logger instance’s dedicated directory by the Error Logger, if the
directory contains more than 10 files the oldest file will be deleted.

Error Logger Configuration Example #2
<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE configuration SYSTEM
"../../../../dtds/ApplicationErrorLoggerConfig.dtd">
<configuration version="1.0" name="MyErrorLogger2">
 <format delimiter="***" remove_delimiter_from_content="false"
date_format="minimal" date_granularity="seconds" print_stack_traces="false"/>
</configuration>

This configuration has the following features:

• The error logs will be delimited with the string “***” and will not attempt to remove that
string from the content. Note that the delimiter does not need to be limited to a single
character and can be a multi-character string. Usually, though, it is a single character to make
importing into spreadsheets and databases straightforward.

• Dates in the error logs will appear in the minimal format with seconds granularity. For
example: “15:45:02”

• Java stack traces will not appear in the error logs. When a Java exception occurs, only the
error message itself will appear in the error log without the stack trace.

• No file purging will take place. The administrator is responsible for maintaining the logs on
the system.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

116

The Application Administration History Logger

Whenever an application-specific administration script is run, a log file is updated with
information on the script that was run. The administration log file names are in the form
“admin_historyYYYY-MM-DD.txt” where YYYY, MM, and DD are the year, month, and day
when the administration history log was first created and is rotated daily. The file contains three
columns: the time the script was run, what script was run, and its result. The result is usually
“success” and if not contains the description of the error encountered. The possible values are:

• server_start - Each application’s history log contains records of each time the application
server starts.

• deploy_app - Listed when the deployApp script is run.

• suspend_app - Listed when the suspendApp script is run.

• resume_app - Listed when the resumeApp script is run.

• update_app - Listed when the updateApp script is run.

• release_app - Listed when the releaseApp script is run.

• update_common_classes – Listed when the global updateCommonClasses script is run. The
reason this global admin event is logged by the Application Administration History Logger is
because elements that appear in the common directory are reloaded by this command,
prompting those elements to reload their application-specific configurations.

Running the status script does not update the history log.

The Administration History Logger does not utilize a configuration.

The Application Debug Logger

At times when debugging an application it would be advantageous to see information concerning
the HTTP requests made by the voice browser and the corresponding HTTP responses of VXML
Server. The Debug Logger creates a single file per call that contains all HTTP requests and
responses that occurred within that call session. The log files are named “debug_logYYYY-MM-
DD-HH-SESSIONID.txt” where YYYY is the year, MM is the month, DD is the day, and HH is
the hour (in 24-hour time) that the file is created and SESSIONID is the VXML Server session
ID (e.g. “debug_log2000-01-01-17-192.168.1.100.1024931901079.1.MyApp.txt”). The session
ID is included in the filename to ensure uniqueness of the files. The debug log contains:

• A timestamp of when each HTTP request was received from the voice browser as well as
when the response was sent back by VXML Server.

• All headers of the HTTP request.

• All arguments passed with the HTTP request, whether they be set via GET or POST.

• The entire VoiceXML page returned in the HTTP response.

CHAPTER 5: VXML Server LOGGING USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

117

• It is recommended to use the Debug Logger only when performing debugging and not in a
production environment as it incurs overhead on the system in creating and managing file IO
and replicating the HTTP response, which must be generated once for the voice browser and
once for each Debug Logger instance. Note the Debug Logger does not require the enforce
call event order to be turned on, however without it there could be situations where under
load the HTTP requests and responses are out of order or mixed together in the file.

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

119

Chapter 6: VXML Server Configuration
VXML Server can be configured to tailor its behavior. This chapter explains all configuration
options and how to change them.

Out of the box, VXML Server uses default values for these configuration options and will
function without modification. Only an experienced administrator should consider changing
these options as improperly chosen values can cause significant performance degradations and
could even prevent VXML Server from functioning correctly.

Global Configuration File

The mechanism to edit the VXML Server configuration is through an XML file named
global_config.xml found in the AUDIUM_HOME/conf directory. This file must be edited by
hand, there is no graphical interface.

This file is loaded by VXML Server when it is initialized and cached in memory. Loading the
file is one of the first tasks performed by VXML Server when it starts up since the configuration
options affect how it runs. Any changes to this file will require VXML Server to be restarted in
order for the changes to take affect.

Note that when performing an upgrade of VXML Server, the administrator will have to re-
implement the configuration changes.

Configuration Options

Figure 6-1

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

120

Figure 6-1 displays the DTD diagram of the global_config.xml file. The elements in the XML
document are:

• administration_port – This tag defines the port on which administration activity takes place
and can be any positive integer. By default, the port is set to 10100. See Chapter 3:
Administration for more on administration activities.

• error_class – This tag defines the fully qualified Java class name of a class to execute when
an error occurs for notification purposes. By default no class is defined. See the
Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio for
more on how to write the On Error Notification class.

• default_browser – This tag defines the real name of the gateway adapter that should be used
by default when VXML Server needs to produce a VoiceXML page in a scenario where the
current application is unknown and therefore the gateway adapter for that application is
unknown. One such scenario is an error where the VXML Server session is unrecognized.
The reason this exists is because some gateways require the VoiceXML to be formatted in a
specific way (such as requiring an XML namespace to appear in the document) that if the
VoiceXML page were produced in a different format would cause an error on the gateway.
An application lists its gateway in its settings and normally this is available to VXML Server
to produce the correct VoiceXML. However in rare cases, an error occurs and VXML Server
does not have access to the session and hence the application that the call belonged to and
would need to know which gateway to have the resulting VoiceXML page conform to. By
default, if left blank in global_config.xml, VXML Server will search through the directory
of installed gateway adapters and use the first one it finds.

• default_subdialog – This tag defines whether to treat a call that is not associated with an
application as if it were a VoiceXML subdialog and whose possible values are true and
false. Some gateways (such as Cisco gateways) call all VXML Server applications as
VoiceXML subdialogs. VXML Server must be aware of this because it determines how the
VoiceXML it produces looks and if not produced correctly would cause an error on the
gateway. Typically, a call is made to an application which defines in its settings whether to
treat the application as a subdialog. However in rare cases, an error occurs and VXML Server
does not have access to the session and hence the application that the call belonged to and
would need to know whether to treat the call as a subdialog. By default, if left blank in
global_config.xml, VXML Server will consider a call to the application to not be a
subdialog.

• session_invalidation_delay – This tag defines the amount of time in seconds that VXML
Server will wait for after a call session ends before actually invalidating that session (this can
be any integer greater than or equal to 0). This configuration option is needed because there
may be various activities taken by loggers and end of call classes that require the session to
remain alive to access data within it (such as element or session data) and if the session were
invalidated would cause errors to occur when attempting to access the data. If this value were
too small (such as 0 seconds), many errors could occur for routine actions like logging at the
end of a call. If this value were too high, too many sessions would remain in memory for too

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

121

long, potentially causing memory issues. It is therefore highly recommended to keep the
default value of 30 seconds or to test the system should this value be changed.

• convert_old_apps – This tag defines whether to convert applications deployed from a version
of Call Studio that VXML Server detects is old (possible values are true and false). By
setting this configuration option to true, a deployed application can be copied to the
applications directory of VXML Server without requiring the application to be re-
deployed from the latest version of Call Studio. Note that for new application settings, the
converter will choose default values. Also note that this converter is limited to converting the
XML files that define an application with regards to Call Studio and VXML Server and will
not convert any other files or Java classes for the application. By default this configuration
option is on.

• logger – This tag acts as the parent tag for three additional tags having to do with loggers.
The first two tags, <minimum_thread_pool_size> and <maximum_thread_pool_size>
define the minimum and maximum size of the thread pool that is used for handling logger
threads. The minimum thread pool size value can be any positive integer and the maximum
thread pool size value can be any positive number as long as it is greater than the minimum
thread pool size value. Note that if the maximum number of logger threads are used, VXML
Server will queue the logger events to be used when a thread becomes available so the data
will not be lost. Since these values affect thread usage, it is highly recommended that any
deviation from the default values (1 minimum / 500 maximum) be fully tested for any
complications. For example, if the maximum is set to a low value and the system encounters
high load, VXML Server could encounter a situation where the queued logger events
accumulate faster than the logger threads can handle them, leading to a scenario where the
application server runs out of memory. On the other hand, if the maximum value were set
too high and the system encounters high load the system on which VXML Server runs could
run out of threads to allocate, which could cause many other problems with the application
server as well as the operating system itself. Of all the VXML Server configuration options,
these two have the highest potential for causing major problems if misused.
The third child tag, <keep_alive_time> defines the amount of time in seconds that a thread
should be idle for before it is removed from the thread pool. This allows for the thread pool
size to shrink over time as logger volume decreases. This value allows for optimum thread
pool size based on the call volume. The default value is 30 seconds. It is recommended not to
change greatly from the default as too high a number will keep unnecessary resources around
and too low a number will reduce efficiency and defeat the purpose of using a thread pool
completely. Refer to Chapter 5: VXML Server Logging for more on logging.

• debugger – This tag defines the RMI registry port for the Call Studio debugger. This
configuration option is used only by VXML Server implementations used by Call Studio for
debugging purposes and should not be used in a production environment. The default is 8099
and the value can be any positive integer.

• global_loggers – This tag defines the global loggers to use within VXML Server.
Administrators can add additional global loggers as well as change or remove the loggers

CHAPTER 5: VXML Server CONFIGURATION USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

122

listed by default: the global call, admin, and error loggers. Each logger instance is defined by
a separate child tag <logger_instance>. The required name attribute gives the logger
instance a name and must be unique. The required class attribute gives the fully qualified
Java class name that defines the global logger. The optional configuration attribute gives
the name of a configuration file for the global logger if needed. This configuration file is
expected to reside in the same AUDIUM_HOME/conf directory. Refer to Chapter 5: VXML
Server Logging for more on logging and the Programming Guide for Cisco Unified CVP
VXML Server and Cisco Unified Call Studio for more on creating custom loggers.

CHAPTER 5: STANDALONE APPLICATION BUILDER USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

123

Chapter 7: Standalone Application Builder
Normally a designer builds an application in Call Studio and then deploys to VXML Server. Call
Studio has the ability to deploy an application locally as well as to a remote system via FTP.
Deploying an application becomes more difficult in an environment where many designers are
working on a single application or when the enterprise follows a strict deployment policy to the
runtime servers. In the first scenario, multiple designers are adding content to a source repository
system and no single designer may have the full application necessary to perform the deployment
and even if possible, would require coordination among all designers involved. In the second
scenario, the production environments do not allow direct access via FTP and require an
automated system to place new content on to those environments, providing the flexibility to
control exactly how and when the content is deployed. The desire is to extract the ability to
create a VXML Server application from the Call Studio project without requiring a person to
launch Call Studio and deploy.

Unified CVP provides a tool to support this requirement named the Standalone Application
Builder. It is packaged with Call Studio and allows for the deployment of an application through
a command-line interface. By exposing this as a command-line tool, an administrator can
integrate this tool into any process that has the ability to execute scripts. For example, the
administrator can configure a crontab to launch this utility every day with the latest content
checked into a source repository. Another example is to modify existing build and deploy Ant
scripts to deploy the application once all other components such as elements, grammars, etc. are
assembled.

This chapter explains what the Standalone Application Builder does and how to use it.

Standalone Application Builder Introduction

The Standalone Application Builder is a utility that deploys a Call Studio application project to a
format that is required by VXML Server. It is launched via a batch script (for Windows) named
buildApp.bat or shell script (for Linux) named buildApp.sh.

The Standalone Application Builder is bundled with Call Studio as a ZIP file (for Windows) or
.tar.gz (for Linux). The archive can be decompressed on to any location and is completely
independent of Unified CVP software. Additionally, there is no license required to use the utility.
Only the following 32-bit operating systems are supported: Microsoft Windows XP, Microsoft
Windows Vista, and Red Hat Enterprise Linux WS 4 for x86.

When launched, the Standalone Application Builder will first validate the Call Studio project to
ensure it is a valid application, and if successful, deploys the VXML Server version of the
application to the destination folder. If there are validation errors, those errors are displayed in
the output similar to validation errors that are displayed in Call Studio. The tool only deploys a

CHAPTER 5: STANDALONE APPLICATION BUILDER USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

124

single application at a time. To deploy multiple applications, the script can be called repeatedly
pointing to different projects.

Script Execution

The command-line usage of the Standalone Application Builder is as follows:

buildApp <project path> <deploy path> [-quiet <log file>] [-debug]

where:

• <project path> represents the directory in which the Call Studio project to convert resides.
This path should point to the location where Call Studio is configured to store application
projects. By default this is the workspace folder within the eclipse folder.

• <deploy path> represents the directory to deploy the application to. If the Standalone
Application Builder is installed on the same machine as VXML Server, one can pass the
VXMLServer/applications directory of Audium Home so that the application is deployed
directly to the VXML Server instance. All that would be needed to make the application live
would be to call the deployApp VXML Server administration script.

• -quiet <log file> is an optional parameter that is designed to pipe the output the script usually
produces into a text file whose name is passed as <log file>. This is useful for scenarios
where the Standalone Application Builder is executed from an automated system that does
not display data printed to the console. By piping the data to a file, any results can be
analyzed later.

• -debug is an optional parameter that produces additional output to use for debugging
purposes should the deployment fail. This option should not be used unless directed to by
customer support.

Script Output

The following is how the output of the Standalone Application Builder will look for a successful
deployment:

Cisco Unified Call Studio 6.0 (Standalone Application Build Mode)
© 1999-2007 Cisco Systems, Inc.
All rights reserved. Cisco, the Cisco logo, Cisco Systems, and the Cisco Systems
logo are trademarks or registered trademarks of Cisco Systems, Inc. and/or its
affiliates in the United States and certain other countries.

Start: Tue Jan 1 11:47:56 EDT 2000
*** Loading project.
*** Validating project ‘MyApp’.
*** Building project ‘MyApp’.
*** Unloading project ‘MyApp’.
*** Done.
End: Tue Jan 1 11:47:58 EDT 2000

CHAPTER 5: STANDALONE APPLICATION BUILDER USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

125

The following is the output for a deployment that encounters validation errors:

Cisco Unified Call Studio 6.0 (Standalone Application Build Mode)
© 1999-2007 Cisco Systems, Inc.
All rights reserved. Cisco, the Cisco logo, Cisco Systems, and the Cisco Systems
logo are trademarks or registered trademarks of Cisco Systems, Inc. and/or its
affiliates in the United States and certain other countries.

Start: Tue Jan 1 11:47:56 EDT 2000
*** Loading project.
*** Validating project ‘MyApp’.
Error: Project is not valid. Aborting. See details below:
[Start Of Call] Exit States Error: Please connect all the exit states for this
element.

APPENDIX A: SUBSTITUTION TAG REFERENCE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

127

Appendix A: Substitution Tag Reference
The following table lists the contents of tags used for setting value substitution. To represent
each of the data values, the tag is rendered with braces containing the tag content listed below,
case sensitive. The fragments rendered in underlined green represent values replaced by the
application designer. Optional information is encapsulated in brackets ([]).

Tag Content Description

CallData.ANI The ANI of the current call or “NA” if not
sent.

CallData.DNIS The DNIS of the current call or “NA” if not
sent.

CallData.UUI The UUI of the current call or “NA” if not
sent.

CallData.IIDIGITS The IIDIGITS of the current call or “NA” if
not sent.

CallData.SOURCE The name of the application that transferred to
this one.

CallData.APP_NAME The name of the current application.

CallData.DURATION The duration, in seconds, of the call up to this
point.

CallData.LANGUAGE The VoiceXML encoding for the application,
up to this point in the call.

CallData.ENCODING The language for the application, up to this
point in the call.

Data.Session.VAR The value of Session Data where VAR
represents the name of the session variable.
The object stored there will be represented as
a string.

Data.Element.ELEMENT.VAR The value of Element Data where ELEMENT
represents the name of the element and VAR
represents the name of the element variable.

CallerActivity.NthElement.N The name of a certain element visited in the
call where N represents the number for the nth
element.

APPENDIX A: SUBSTITUTION TAG REFERENCE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

128

Tag Content Description

CallerActivity.NthExitState.N The name of a certain element’s exit state
visited in the call where N represents the
number for the nth element.

CallerActivity.TimesElementVisited.

ELEMENT

The number of times an element was visited
in the call where ELEMENT represents the
name of the element.

CallerActivity.TimesElementVisitedExitState.
ELEMENT.EXIT_STATE

The number of times an element was visited
in the call with a particular exit state where
ELEMENT is the name of the element and
EXIT_STATE is the exit state.

GeneralDateTime.HourOfDay.CURRENT The current hour.

GeneralDateTime.HourOfDay.CALL_START The hour the call started.

GeneralDateTime.Minute.CURRENT The current minute.

GeneralDateTime.Minute.CALL_START The minute the call started.

GeneralDateTime.DayOfMonth.CURRENT The current day of the month.

GeneralDateTime.DayOfMonth.CALL_START The day of the month the call started.

GeneralDateTime.Month.CURRENT The current month.

GeneralDateTime.Month.CALL_START The month the call started.

GeneralDateTime.DayOfWeek.CURRENT The current day of the week.

GeneralDateTime.DayOfWeek.CALL_START The day of the week the call started.

GeneralDateTime.Year.CURRENT The current year.

GeneralDateTime.Year.CALL_START The year the call started.

The following tags will cause an error if the User Management System is inactive. Additionally,
these tags relate to the current user and will cause an error unless the call is linked to a UID.

Tag Content Description

UserInfo.Demographic.NAME The name of the current user.

UserInfo.Demographic.ZIP_CODE The zip code of the current user.

UserInfo.Demographic.BIRTHDAY The birthday of the current user.

UserInfo.Demographic.GENDER The gender of the current user.

UserInfo.Demographic.SSN The social security number of the current user.

APPENDIX A: SUBSTITUTION TAG REFERENCE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

129

Tag Content Description

UserInfo.Demographic.COUNTRY The country of the current user.

UserInfo.Demographic.LANGUAGE The language of the current user.

UserInfo.Demographic.CUSTOM1 The contents of the first custom column of the
current user.

UserInfo.Demographic.CUSTOM2 The contents of the second custom column of
the current user.

UserInfo.Demographic.CUSTOM3 The contents of the third custom column of the
current user.

UserInfo.Demographic.CUSTOM4 The contents of the fourth custom column of
the current user.

UserInfo.AniInfo.FIRST The first phone number associated with the
current user’s account.

UserInfo.AniInfo.NUM_DIFF The total number of different phone numbers
associated with the current user’s account.

UserInfo.UserDateTime.HourOfDay.

LAST_MODIFIED

The hour of the last time the current user’s
account was modified.

UserInfo.UserDateTime.HourOfDay.
CREATION

The hour of the last time the current user’s
account was created.

UserInfo.UserDateTime.HourOfDay.

LAST_CALL

The hour of the last time the current user
called.

UserInfo.UserDateTime.Minute.
LAST_MODIFIED

The minute of the last time the current user’s
account was modified.

UserInfo.UserDateTime.Minute.CREATION The minute of the last time the current user’s
account was created.

UserInfo.UserDateTime.Minute.
LAST_CALL

The minute of the last time the current user
called.

UserInfo.UserDateTime.DayOfMonth.

LAST_MODIFIED

The day of the month of the last time the
current user’s account was modified.

UserInfo.UserDateTime.DayOfMonth.
CREATION

The day of the month of the last time the
current user’s account was created.

UserInfo.UserDateTime.DayOfMonth.

LAST_CALL

The day of the month of the last time the
current user called.

APPENDIX A: SUBSTITUTION TAG REFERENCE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

130

Tag Content Description

UserInfo.UserDateTime.Month.
LAST_MODIFIED

The month of the last time the current user’s
account was modified.

UserInfo.UserDateTime.Month.CREATION The month of the last time the current user’s
account was created.

UserInfo.UserDateTime.Month.LAST_CALL The month of the last time the current user
called.

UserInfo.UserDateTime.DayOfWeek.

LAST_MODIFIED

The day of the week of the last time the current
user’s account was modified.

UserInfo.UserDateTime.DayOfWeek.
CREATION

The day of the week of the last time the current
user’s account was created.

UserInfo.UserDateTime.DayOfWeek.

LAST_CALL

The day of the week of the last time the current
user called.

UserInfo.UserDateTime.Year.

LAST_MODIFIED

The year of the last time the current user’s
account was modified.

UserInfo.UserDateTime.Year.CREATION The year of the last time the current user’s
account was created.

UserInfo.UserDateTime.Year.LAST_CALL The year of the last time the current user
called.

UserInfo.CalledFromAni “true” if the current user has made calls from
the current phone or “false” if not.

UserInfo.AccountInfo.PIN The PIN number of the current user’s account.

UserInfo.AccountInfo.ACCOUNT_NUMBER The account number of the current user’s
account.

UserInfo.AccountInfo.EXTERNAL_UID The external UID of the current user’s account.

These tags relate to historical data. While still requiring the User Management System to be
active, these do not require a user to be associated with the call.

Tag Content Description

GeneralAniInfo.AniDateTime.HourOfDay.
LAST_CALL[.ANI]

The hour of the last time a call was received
from the current phone number. Use ANI to
get the last time a call was received from
another number where ANI is the number.

GeneralAniInfo.AniDateTime.Minute. The minute of the last time a call was received

APPENDIX A: SUBSTITUTION TAG REFERENCE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

131

Tag Content Description

LAST_CALL[.ANI] from the current phone number or ANI if
specified.

GeneralAniInfo.AniDateTime.DayOfMonth.

LAST_CALL[.ANI]

The day of the month of the last time a call was
received from the current phone number or
ANI if specified.

GeneralAniInfo.AniDateTime.Month.
LAST_CALL[.ANI]

The month of the last time a call was received
from the current phone number or ANI if
specified.

GeneralAniInfo.AniDateTime.DayOfWeek.

LAST_CALL[.ANI]

The day of the week of the last time a call was
received from the current phone number or
ANI if specified.

GeneralAniInfo.AniDateTime.Year.
LAST_CALL[.ANI]

The year of the last time a call was received
from the current phone number or ANI if
specified.

GeneralAniInfo.AniNumCalls[.ANI] The number of calls received from the current
phone number or ANI if specified.

Notes:

• Each Date / Time tag evaluates to 0-23 when referring to the hour, 0-59 when referring to the
minute, 1-12 when referring to the month, 1-31 when referring to the day of the month, 1-7
when referring to the day of the week (where 1 is Sunday), and the year is represented as a
four-digit number.

• If any data represented by the tag ends up as null, substitution will render it as an empty
string. For example, if a setting contained “source{CallData.SOURCE}” and there was no
application that transferred to the current application, the setting would be evaluated as
“source”. In this case, a warning appears in the Error Log for the application noting that a
substitution value was null and was replaced with an empty string.

APPENDIX B: THE DIRECTORY STRUCTURE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

133

Appendix B: The Directory Structure
The directory in which the installation is made (referred to as the INSTALLATION_PATH
directory) contains all the files necessary for the various components of Unified CVP software.
The following table describes what each folder in the INSTALLATION_PATH is used for. Each
folder is described in detail in subsequent sections.

Folder Description
VXMLServer This directory contains the files required for VXML Server to run, including

all voice applications.
CallStudio This directory contains Call Studio and Builder for Call Studio
UninstallerData The application inside this folder is used to uninstall Unified CVP software.

The INSTALLATION_PATH\VXMLServer folder (also referred to as the Audium Home directory)
contains the following folders:

Folder Description
admin This directory holds the scripts that perform administrator functions affecting

all applications on VXML Server.
admin/appScripts This directory holds copies of the application-level administration scripts.

Should an application’s administration scripts require refreshing, the
contents of this folder can be copied to the
applications\[APPNAME]\admin directory.

agent SNMP agent related files.
applications The voice applications built by Builder for Call Studio and hosted by VXML

Server are stored here. Each application has its own folder bearing the name
of the application.

applications /
[APPNAME] /
admin

This directory holds the scripts that perform administrator functions affecting
only the application in which the scripts reside.

applications /
[APPNAME] /
data

This directory contains the application’s static data files required for VXML
Server to load the application.

applications /
[APPNAME] /
data / application

This directory contains the settings and call flow of the application as well as
any configurations for application loggers.

applications /
[APPNAME] /
data /
configurations

This directory holds the static voice, action, and decision element
configurations created by Builder for Call Studio for this application.
Depending on the size of the voice application, this directory may end up
with many element configuration files.

APPENDIX B: THE DIRECTORY STRUCTURE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

134

Folder Description
applications /
[APPNAME] /
data /
misc

This directory holds miscellaneous data files used by Unified CVP decision
elements or other proprietary files used by the developer.

applications /
[APPNAME] /
java

This directory contains all Java related classes or JAR files required for this
application only. No other application will have access to the Java classes in
this directory.

applications /
[APPNAME] /
java / application

This directory contains all the classes used for this application only.
Individual Java classes go in the classes directory while complete JAR files
go in the lib directory.

applications /
[APPNAME] /
java /
util

This directory contains utility classes used by the classes in the application
directory. Any utility classes that refer to Unified CVP API classes must be
deployed here or in the application directory. Individual Java classes go in
the classes directory and JAR files go in the lib directory.

applications /
[APPNAME] /
logs

This directory contains the administrator, activity and error logs affiliated
with this application. Logs are rotated daily so this directory may eventually
contain many files.

common This folder contains the Java classes and JAR files shared across all voice
applications hosted on VXML Server. Individual Java classes go in the
classes directory and JAR files go in the lib directory.

conf This directory holds settings files used for VXML Server.
docs Unified CVP documentation is available at www.cisco.com. After

downloading, place the documentation here. This folder contains third party
licenses for components used by Unified CVP.

dtds The DTDs for all XML documents used throughout VXML Server are found
here. Many are referred to in XML documents, though others are provided
for reference.

gateways This folder contains all the installed Gateway Adapters for VXML Server.
Each sub-folder in this directory contains a separate Gateway Adapter.

lib The JAR files within this folder are necessary for administration scripts to
run. They are also used by the developer to compile custom Java code that
uses the Unified CVP API.

license The VXML Server license files are to be placed here.
logs Logs affiliated with VXML Server itself are placed here.
management Files required to support the JMX administration interface are found here.

APPENDIX B: THE DIRECTORY STRUCTURE USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

135

The INSTALLATION PATH\CallStudio folder contains the following directories:

Folder Description
eclipse This directory holds all the required files for Call Studio and

Builder for Call Studio.
eclipse\features This folder contains descriptions of the installed features - Call

Studio and Builder for Call Studio. Features consist of a set of
plugins providing certain functionality.

eclipse\jre This folder contains the JRE used by Call Studio.
eclipse\plugins This directory contains a set of plugins defining the

functionality of Call Studio.
eclipse\workspace The voice applications built by Builder for Call Studio are

stored here. Each application has its own folder bearing the
name of the application.

eclipse\workspace\.metadata A Call Studio internal system folder containing configuration
and settings files.

eclipse\workspace\
[PROJECT NAME]\callflow

This directory contains the configuration files for the given
voice application. Those files are used by Builder for Call
Studio to properly render the call flow.

eclipse\workspace\
[PROJECT NAME]\deploy

This folder holds all the resources that will be deployed along
with the given application. It can contain such components as
custom Java classes and libraries as well as custom data files.

APPENDIX C: GLOSSARY USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

137

Appendix C: Glossary
These terms are used liberally throughout this user guide and it is important to understand them.
The glossary includes both telephony terms as well as Unified CVP terms.

Telephony Terms

• ASR. Short for Automated Speech Recognition, this is the technology used by modern voice
browsers to recognize the caller’s spoken utterances and convert them to text. Using this
technology, an application can have a completely different interface, creating a much more
natural dialog-based interaction with the caller. ASR works by limiting the utterances a caller
can say to a manageable number, and making the best determination of which utterance was
spoken. Though far from supporting the ability to simply “talk” to the application, well-
designed prompts can lead callers to say the right inputs and make the application smooth,
consistent, and easy to use.

• Bargein. Bargein is the act of interrupting a playing prompt, most of the time to go directly to
entering data. This feature can be used by the application designer to allow repeat callers to
jump ahead and move faster through the application to perform common tasks. In situations
such as error messages, disclaimers, etc. where the application designer would want the caller
not to interrupt, bargein can be turned off.

• Call flow. The application call flow is the sequence of actions and events that can occur in a
voice application. In Builder for Call Studio, the call flow can be represented by a flowchart
showing all possible branches. This way the application designer can see all that can happen
during the course of a call.

• Confidence Score. An ASR engine works by matching the caller's utterance to the grammar
option most likely to be the one intended by the caller. The confidence score is a statistical
value assigned to each utterance, indicating how certain the speech engine is about the
recognition result. Confidence score values are usually represented as a decimal number
between 0.0 (no match) and 1.0 (perfect match).

• DTMF. Short for Dual Tone Multi-Frequency, this is the technical term describing touch-tone
dialing. A caller can interact with a voice application either by speaking an utterance (speech
input), or punching in numbers on a telephone keypad (DTMF input). There are twelve
DTMF keys on a standard touch-tone telephone pad, and sixteen keys on some special phone
pads that include four additional keys called A, B, C and D extended signals. A voice
application can be developed using DTMF only, speech only, or both DTMF and speech
inputs.

• Grammar. A grammar is the mechanism by which an application designer describes the
limited number of options for an utterance given to an ASR engine. A grammar can hold
words or phrases, and contain guttural utterances such as “um” or “er”. It may vary in size,
from a couple of words to thousands of words and phrases. The larger the grammar, the less
likely the ASR engine will have a dead-on match.

APPENDIX C: GLOSSARY USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

138

• Noinput. Noinput is an event that can occur in a voice application when the system prompts
the caller for some input and the caller does not respond. After a configurable amount of
time, a noinput event occurs, indicating that nothing was heard. This may be because the
caller wasn't listening, was confused, or there was a problem with the connection. In any rate,
a well-designed voice application would say something to clarify the prompt or ask for
attention. After a configurable number of noinput events occurring one after the other, the
application will usually take more drastic actions such as hanging up or transferring the caller
to an operator.

• Nomatch. Nomatch is an event that occurs when the system prompts the caller for some input
and the caller utters or enters information that is not what is expected. Like the noinput event,
this will usually cause a message to be played. Nomatch events tend to occur if the caller
doesn't understand what is being asked of them, the grammar is large and does not return
results with a high enough confidence value, the phone line or environment is noisy, etc. This
can happen with DTMF input as well if the caller entered a digit that was not an option. As
with noinput events, a count can be assigned limiting the number of times a caller can fail to
match an option, before they are disconnected or transferred to an operator.

• TTS. Short for Text-To-Speech, this technology is used by voice browsers to read a written
phrase in an automated, semi-human sounding voice. The advantage of a TTS engine is the
ability to make rapid changes to a phrase without having to do any human voice recording.
The technology, however, still sounds robotic at the current stage. Many people have trouble
understanding long sentences spoken through TTS, so almost all voice applications rely on
pre-recorded audio for their prompts. TTS is still used for data that is hard to predict ahead of
time or can have a large number of variable formats (such as an address).

Unified CVP Terms

• Activity Logger. The activity logger is one of the loggers included with VXML Server that
logs all the activities that a caller performs in a call session. The log file generated is
application-specific, and it includes a time-stamp for each logged activity along with
information such as the duration of the call, call flow components visited, recognition results
and events thrown.

• Component. Component is used as a general term to mean a part of a Unified CVP
application that can be constructed by a developer. They include elements as well as non-
element parts of the application, such as a Java class that can be called when calls begin or
end.

• Configurable Elements. Configurable elements are designed to be very reusable. They are
constructed in advance and each is given a configuration that allows the application designer
to change how the element functions. The more detailed the configuration, the more flexible
the element. Voice, action, and decision elements are the three types of configurable
elements.

APPENDIX C: GLOSSARY USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

139

• Configuration. Every element, in order to make it reusable, must have a mechanism by which
the user can specify how they wish the element to act in an application. A form element, for
example, would need a way to determine whether it should accept DTMF, speech, or both
input types. These behavioral preferences are encapsulated in a configuration, which is then
represented as an XML file. The Builder for Call Studio displays an element configuration in
the Element Configuration View and VXML Server loads the XML configuration when it
starts up.

• Element. Elements are all components that can appear in a voice application call flow. These
include both functional elements such as voice elements and action elements and conceptual
elements such as hang-up elements. In Builder for Call Studio, everything appearing in the
Elements View is considered an element.

• Global Hotlink. A global hotlink is a link grammar that can be activated at any place in an
application to perform some action or route the call to some place in the call flow. For
example, the utterance “operator” with the DTMF key press ‘0’ is a common global hotlink
used in voice applications to allow the caller to seek help from a human agent anywhere in
the call flow.

• Local Hotlink. A local hotlink is a link grammar that can be activated only from within a
voice element and that either causes the element to exit with a specific exit state or throws a
VoiceXML event. An example is listening for the utterance “I don’t know” while in a voice
element that expects numeric input. Without the hotlink, the element would encounter an no
match event matching the utterance to a number.

• Hotevent. Like a global hotlink, a hotevent can be activated at any time during the call. While
most events are triggered by the caller’s activity, a hotevent can also be triggered by
processes not directly associated with the caller. For example, an event could be triggered by
the voice browser indicating when to interrupt on-hold audio. Like a hotlink, a hotevent can
be configured to move the caller to another place in the call flow, though a hotevent may
additionally execute custom developer-specified VoiceXML. This custom VoiceXML code
could, for example, perform logging, or set the value of a VoiceXML variable.

• Java. Java is a high-level programming language that the Unified CVP software is written in
and that can be used by developers to extend the functionality provided by Unified CVP.

• JMX. Stands for Java Management eXtensions and is a standard Java technology used to
provide visibility into an application and the JVM itself. This is used by administrators to
gauge the health of a system. VXML Server exposes much information about itself as well as
the applications running on it for access and even exposes functions to allow administrators
the ability to alter how it runs.

• Maintainer. The maintainer of an application is an e-mail address that is sent messages by the
voice browser when issues occur that require attention such as missing audio files,
incorrectly formatted VoiceXML, etc.

• MBean. An MBean is a single unit that a system using JMX defines to provide information
on that unit or functions to execute on that unit. A JMX console will typically render all

APPENDIX C: GLOSSARY USER GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO

140

MBeans exposed by a system into a tree structure to allow the administrator to navigate
though the information available. VXML Server creates MBeans for metrics it exposes,
functions it allows administrators to execute, and for each application deployed on it to
access information and commands relative to that application.

• Say It Smart. This Unified CVP technology is used to take formatted data such as dates, a
state abbreviation, a currency value, etc. and render it as a series of audio files played one
after the other. Using Say It Smart allows an application to use pre-recorded audio files for
dynamic data, providing a consistent experience to the caller, without resorting to using TTS.
Unified CVP provides an API that allows developers to create their own Say It Smart types.

• Standard Elements. Standard elements differ from configurable elements in that they have a
singular, application-specific purpose and are not expected to be very reusable since they do
not have configurations. Due to the fact that they do not have configurations, standard
elements are easier to construct. Action and decision elements are the two types of standard
elements. An example of a standard element would be a mortgage calculator that would only
be used for a specific application.

• UID. A UID is a user ID used by VXML Server to identify users in the user management
database. A developer can associate a UID with a call so that the application can dynamically
make decisions based on user information and historical performance.

• Voice browser. A voice browser is software that is responsible for bridging the telephony
system and its related hardware with VoiceXML. The voice browser connects to telephony
hardware and is responsible for handling the phone calls. It is the voice browser that interacts
with the ASR engine and the TTS engine, listens to the caller for input and plays audio back
to the caller. It is responsible for requesting VoiceXML pages from an external system
(VXML Server) and parsing the pages that come back. Voice browsers typically run on a
separate machine from the one on which VXML Server is installed.

• VoiceXML Gateway Adapter. Gateway Adapters are small plugins installed on VXML Server
that provide compatibility with a particular voice browser. Once installed, all Unified CVP
voice elements (and all custom voice elements not utilizing browser-specific functionality)
will work on that voice browser.

• XML-over-HTTP. The XML-over-HTTP API (also known as the XML API) is developed to
allow the use of non-Java programming languages to extend Unified CVP software. This API
works by sending XML content over a standard HTTP connection and receiving XML in
response. Using this API, any programming language that can handle HTTP can be used to
extend Unified CVP software.

Index

A

Administration7, 57, 58, 60, 61, 62, 68, 71, 74, 76,
77, 80, 98, 116, 120

APIs.. 30, 31, 85
app.callflow file ..21
Application data .. 28, 29, 77
Application Transfer ...14
AUDIUM_HOME 43, 45, 46, 119, 122

B

Browser compatibility ...4, 7

C

Call flow...21
Call Flow Theme...20
Call Log...92, 100, 112
Call Start / End actions.........................27, 30, 31, 33
Callflow folder ..21
Cisco Unified Call Studio.5, 6, 12, 17, 19, 20, 21, 22,

23, 24, 26, 29, 121, 123, 124, 125, 133, 135
Components..27
Configurable elements...138

D

Deploy folder ..21
deployAllNewApps... 74, 99
deployApp ...74, 116, 124
Dynamic configuration..29

E

Element data 8, 29, 55, 100, 102
Enforce call event order............................... 103, 117
Expand call flow elements in Outline View20
Expand elements in Elements View.......................20

F

Fixed configurations..10
Flag elements..13
flushAllOldApps... 76, 99

G

getVersions...62
Global data.. 28, 77
Global loggers...92
Graceful administration functions..........................68
Graphical user interface...5

H

Help ... 6, 26
Hotevents 13, 14, 27, 30, 31, 34, 139
Hotlinks...13, 139

I

Interactive Voice Response................ 1, 2, 3, 91, 101

J

J2SE... 6
Java API............ 8, 10, 30, 31, 32, 34, 36, 48, 91, 106
Java exception 14, 66, 98, 115
Java object... 14, 15, 28, 35
JMX 57, 58, 59, 60, 61, 62, 64, 65, 66, 67, 68, 69, 70,

73, 74, 76, 77, 78, 79, 80, 81, 134, 139

L

Licensing.. 19
Local Hotlinks.. 139
Loggers 28, 30, 31, 35, 36, 91, 92, 99
Logging......7, 31, 36, 53, 65, 82, 83, 84, 91, 121, 122

M

Maintainer .. 139
MBeans .57, 58, 61, 62, 64, 65, 67, 70, 73, 74, 76, 77,

78, 79, 81, 139
Metrics ... 81

O

On Error Notification....................28, 30, 31, 36, 120

P

Plug-ins.. 17
Preferences ... 20
Projects .. 21

R

releaseApp... 75, 76, 116
resumeApp ..74, 116
resumeServer...74, 99

S

Say It Smart plug-ins ...21, 27, 30, 31, 34, 35, 62, 140
Security...58, 59
Session data.. 8, 29
Session management... 6

Standalone Application Builder 123, 124
status60, 61, 62, 71, 76, 99, 116
Subdialog Invoke ..15
Subdialog Return .. 15, 16
Subdialog Start.. 15, 16
Subdialogs .. 15, 16
suspendApp .. 74, 116
suspendServer ... 74, 99

T

Trial Period...17

U

updateAllApps .. 70, 71
updateApp .. 71, 116
updateCommonClasses.............................77, 99, 116
URL..... 15, 29, 54, 59, 60, 73, 94, 95, 96, 97, 98, 101
User Management6, 7, 40, 42, 85, 128, 130

V

Variables... 10, 28

Voice applications ...12, 91
Voice browser .. 140
Voice elements ... 9, 32
Voice Foundation Classes (VFCs)..................... 9, 32
VoiceXML event 13, 14, 27, 34, 106, 139
VoiceXML Forum .. 2
VoiceXML Insert Elements......10, 15, 28, 30, 31, 48,

106
VoiceXML properties 9, 10

W

W3C... 2
Web application archive (WAR)28, 35, 62
Web Services.. 12

X

XML Decision.................... 28, 30, 31, 36, 43, 44, 45
XML-over-HTTP API 8, 10, 31, 36, 49, 69, 101, 106,

140

