

Programming Guide for
Cisco Unified CVP VXML Server
and Cisco Unified Call Studio

Release 7.0(1)

February 2008

Corpora te Headquar ters
Cisco System s, Inc.
170 West Tasman Drive
San Jo se, CA 95134-1706
USA
htt p://ww w.cisco .com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 526-4100

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED
WITHOUT WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY
PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET
THAT SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE
SOFTWARE LICENSE OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s
public domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS”
WITH ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING,
WITHOUT LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM
A COURSE OF DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES,
INCLUDING, WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS
MANUAL, EVEN IF CISCO OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

CCVP, the Cisco logo, and the Cisco Square Bridge logo are trademarks of Cisco Systems, Inc.; Changing the Way We Work, Live, Play, and Learn is a service mark
of Cisco Systems, Inc.; and Access Registrar, Aironet, BPX, Catalyst, CCDA, CCDP, CCIE, CCIP, CCNA, CCNP, CCSP, Cisco, the Cisco Certified Internetwork
Expert logo, Cisco IOS, Cisco Press, Cisco Systems, Cisco Systems Capital, the Cisco Systems logo, Cisco Unity, Enterprise/Solver, EtherChannel, EtherFast,
EtherSwitch, Fast Step, Follow Me Browsing, FormShare, GigaDrive, HomeLink, Internet Quotient, IOS, iPhone, IP/TV, iQ Expertise, the iQ logo, iQ Net Readiness
Scorecard, iQuick Study, LightStream, Linksys, MeetingPlace, MGX, Networking Academy, Network Registrar, PIX, ProConnect, ScriptShare, SMARTnet,
StackWise, The Fastest Way to Increase Your Internet Quotient, and TransPath are registered trademarks of Cisco Systems, Inc. and/or its affiliates in the United
States and certain other countries.

All other trademarks mentioned in this document or Website are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (0708R)

Programming Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio
Copyright © 2008, Cisco Systems, Inc.
All rights reserved

TABLE OF CONTENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

Table Of Contents
PREFACE ...I

PURPOSE... I
AUDIENCE... I
ORGANIZATION ... I
OBTAINING DOCUMENTATION, OBTAINING SUPPORT, AND SECURITY GUIDELINES ... II
RELATED DOCUMENTATION ... II
CONVENTIONS .. IV

CHAPTER 1: INTRODUCTION .. 1

REQUIREMENTS.. 1

CHAPTER 2: UNIFIED CVP API INTRODUCTION... 3

JAVA API... 3
Design Considerations .. 4
Compiling Custom Java Components... 5
Deployment... 5

XML API .. 8
DTD Diagrams ... 9
Deployment... 11

CHAPTER 3: SESSION API... 13

JAVA API... 13
XML API .. 14

CHAPTER 4: CALL START ACTION .. 21

USING THE JAVA API ... 22
USING THE XML API ... 22

CHAPTER 5: CALL END ACTION... 25

USING THE JAVA API ... 26
USING THE XML API ... 26

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS.. 29

USING THE JAVA API ... 29
USING THE XML API ... 30

Decision and Action Element Configuration DTD.. 31
Voice Element Configuration DTD.. 33
Substitution XML Format .. 37

CHAPTER 7: STANDARD ACTION ELEMENTS ... 39

USING THE JAVA API ... 39
USING THE XML API ... 39

CHAPTER 8: STANDARD DECISION ELEMENTS.. 43

USING THE JAVA API ... 43
USING THE XML API ... 43

CHAPTER 9: CONFIGURABLE ELEMENTS.. 47

TABLE OF CONTENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

DESIGN .. 47
COMMON METHODS ... 49
CONFIGURATION CLASSES .. 51
ACTION ELEMENTS... 52
DECISION ELEMENTS.. 52
VOICE ELEMENTS... 53

Restrictions and Recommendations.. 55
VoiceElementBase Methods... 57
Interaction Logging... 61

CHAPTER 10: APPLICATION START CLASSES... 65

CHAPTER 11: APPLICATION END CLASSES ... 67

CHAPTER 12: SAY IT SMART PLUGINS.. 69

DESIGN .. 69
EXECUTION METHODS.. 70
CONFIGURATION METHODS .. 71
UTILITY METHODS ... 73

CHAPTER 13: LOGGERS.. 75

VXML SERVER LOGGING DESIGN .. 75
Logger Events... 75
How Loggers Work ... 76

LOGGER DESIGN .. 78
GLOBAL LOGGER METHODS ... 79
APPLICATION LOGGER METHODS.. 80
UTILITY METHODS ... 82

Common Utility Methods... 83
Application Logger Utility Methods... 83

CHAPTER 14: HOTEVENTS... 85

CHAPTER 15: ON ERROR NOTIFICATION... 87

CHAPTER 16: APPLICATION MANAGEMENT API ... 89

DESIGN .. 89
MANAGEMENT BEAN SAMPLES... 92
APPLICATION MANAGEMENT INTERFACES .. 93

APPENDIX A: THE VOICE FOUNDATION CLASSES... 95

VFC DESIGN.. 95
VFC CLASSES .. 97

APPENDIX B: THE JAVA 5 MIGRATION... 103

PREFACE PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 i

Preface
Purpose

This document describes how to use the programming APIs provided by Cisco Unified
CVP VXML Server (VXML Server). Topics covered include building custom elements
and the Cisco Unified Customer Voice Portal (Unified CVP) VoiceXML Java and XML
APIs.

Audience

This document is intended for system and voice applications and component developers
using Cisco Unified CVP VoiceXML.

Organization

Chapter Chapter 1: , "Introduction"

Introduces the mechanisms VXML Server provides to be extended via programming.
Chapter Chapter 2: , “Unified CVP API Introduction”

Introduces the Unified CVP Java and XML application programming interfaces.
Chapter Chapter 3: , “Session API”

Describes how to use the SessionAPI to access or changes call or session
information.

Chapter Chapter 4: , “Call Start Action”

Describes how to implement the call start action to run code when a call is received
before the call flow is visited.

Chapter Chapter 5: , “Call End Action”

Describes how to implement the call end action to run code after a call ends.
Chapter Chapter 6: , “Dynamic Element Configurations”

Describes how to create dynamic element configurations.
Chapter Chapter 7: , “Standard Action Elements”

Describes how to create standard action elements that perform a server-side action.
Chapter Chapter 8: , “Standard Decision Elements”

Describes how create a standard decision element that branches the call flow.
Chapter Chapter 9: , “Configurable Elements”

Describes how to create custom voice, action, and decision elements and integrate
them into both Call Studio and VXML Server.

Chapter Chapter 10: , “Application Start Classes”

Describes how to create application start classes to run code when an application
starts.

Chapter Chapter 11: , “Application End Classes”

PREFACE PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 ii

Describes how to create application end classes to run code when an application
ends.

Chapter Chapter 12: , “Say It Smart Plugins”

Describes how create custom Say It Smart plugins.
Chapter Chapter 13: , “Loggers”

Describes how to create custom loggers.
Chapter Chapter 14: , “Hotevents”

Describes how to create hotevents.
Chapter Chapter 15: , “On Error Notification”

Describes how to write classes that are activated when a runtime error occurs.
Chapter Chapter 16: , “Application Management API”

Describes how to manage your voice applications using JXM management.
Appendix A, “The Voice Foundation Classes”

Describes the Unified CVP Voice Foundation Classes that are used to generate
VoiceXML.

Appendix B, “The Java 5 Migration”

Notes about the transition to Java 5.

Obtaining Documentation, Obtaining Support, and Security
Guidelines

For information on obtaining documentation, obtaining support, providing documentation
feedback, security guidelines, and also recommended aliases and general
Cisco documents, see the monthly What’s New in Cisco Product Documentation, which
also lists all new and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Related Documentation

Note: Planning your Unified CVP solution is an important part of the process in setting up Unified CVP. Cisco
recommends that you read the Cisco Unified Customer Voice Portal Release 7.x Solution Reference Network Design
(SRND) guide before configuring your Unified CVP solution. With Unified CVP 7.x, the Planning Guide for Cisco
Unified Customer Voice Portal has been incorporated into the SRND guide.

• Cisco Security Agent Installation/Deployment for Cisco Unified Customer Voice Portal provides
installation instructions and information about Cisco Security Agent for the Unified CVP deployment. We
strongly urge you to read this document in its entirety.

• Cisco Unified Customer Voice Portal Release 7.x Solution Reference Network Design (SRND) provides

design considerations and guidelines for deploying contact center voice response solutions based on Cisco
Unified Customer Voice Portal (Unified CVP) 7.x releases.

• Configuration and Administration Guide for Cisco Unified Customer Voice Portal describes how to set up,

run, and administer the Cisco Unified CVP product, including associated configuration.

PREFACE PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 iii

• Element Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio describes the

settings, element data, exit states, and configuration options for Elements.

• Installation and Upgrade Guide for Cisco Unified Customer Voice Portal describes how to install Unified
CVP software, perform initial configuration, and upgrade.

• Operations Console Online Help for Cisco Unified Customer Voice Portal describes how to use the

Operations Console to configure Unified CVP solution components.

• Port Utilization Guide for Cisco Unified Customer Voice Portal describes the ports used in a Unified CVP
deployment.

• Reporting Guide for Cisco Unified Customer Voice Portal describes the Reporting Server, including how to

configure and manage it, and discusses the hosted database.

• Say It Smart Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio describes in
detail the functionality and configuration options for all Say It Smart plugins included with the software.

• Troubleshooting Guide for Cisco Unified Customer Voice Portal describes how to isolate and solve

problems in the Unified CVP solution.

• User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio describes the functionality
of Cisco Unified Call Studio including creating projects, using the Cisco Unified Call Studio environment,
and deploying applications to the Cisco Unified CVP VXML Server.

PREFACE PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 iv

Conventions

This manual uses the following conventions:

Convention Description

boldface font Boldface font is used to indicate commands, such as user entries, keys, buttons, and folder and
submenu names. For example:

� Choose Edit > Find.
� Click Finish.

italic font Italic font is used to indicate the following:

� To introduce a new term. Example: A skill group is a collection of agents who share
similar skills.

� For emphasis. Example:
Do not use the numerical naming convention.

� A syntax value that the user must replace. Example:
IF (condition, true-value, false-value)

� A book title. Example:
See the Cisco CRS Installation Guide.

window font Window font, such as Courier, is used for the following:

� Text as it appears in code or that the window displays. Example:
<html><title>Cisco Systems,Inc. </title></html>

� File names. Example: tserver.properties.

� Directory paths. Example:
C:\Program Files\Adobe

< > Angle brackets are used to indicate the following:

� For arguments where the context does not allow italic, such as ASCII output.

� A character string that the user enters but that does not appear on the window such as a
password.

CHAPTER 1: INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 1

Chapter 1: Introduction
Cisco Unified Customer Voice Portal (Unified CVP) software has been designed to be easy to
use but highly extendable. While the software provides enough to produce high quality voice
applications out of the box, many users will want to extend the functionality of the software by
building custom components that perform very specific tasks. This document describes the
processes and application programming interfaces (APIs) provided for a developer to construct
and deploy these components.

The components a developer uses the APIs to construct are: configurable action, decision, and
voice elements, standard action and decision elements, dynamic element configurations, start and
end of call actions, start and end of application actions, the on error notification, hotevents, Say It
Smart plugins, and global and application loggers.

Requirements

All components require programming effort to construct. In order to build these components,
Unified CVP provides a Java API as well as an API that allows the use of other programming
languages. Therefore, the reader should at least possess a familiarity with programming
concepts.

Some components can only be constructed using the Java API and so for these components, the
reader should possess a familiarity with the Java programming language. The reader should
understand Java interfaces and abstract classes, extending classes and overriding methods, static
variables and methods, Java collections, and compiling and deploying Java classes and JAR files.
Unified CVP does not require very complex Java coding, knowing the basics of the Java
language will be sufficient to start working with the Unified CVP Java API. Most of the
information about the Java API is encapsulated in the API’s Javadocs. This document will serve
to provide a starting point and the Javadocs will provide the details.

Some components are used to produce VoiceXML, the language used to communicate with a
voice browser. When building these components, a familiarity with VoiceXML is essential. The
Java API used to produce VoiceXML follows the same design as the VoiceXML language, so a
developer that understands how to write VoiceXML will be able to produce it using the API
much easier and faster than a developer not familiar with VoiceXML.

Finally, the reader should familiarize themselves with the way Cisco Unified CVP VXML Server
(VXML Server) works by reading the User Guide for Cisco Unified CVP VXML Server and
Cisco Unified Call Studio, especially Chapter 2, which explains the purpose for each of the
components described in this document. Familiarity with Cisco Unified Call Studio (Call Studio)
and Builder for Call Studio is also recommended for understanding how to construct
configurable elements and Say It Smart plugins since they define how they are displayed within
the Builder.

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 3

Chapter 2: Unified CVP API Introduction
Unified CVP’s API design has three goals: to be simple to use, to provide all the information a
developer may need, and to allow the use of as many programming languages as possible. The
API is used for simple tasks such as getting the ANI of the call or complex tasks such as creating
a custom voice element. The API defines some mechanisms for custom components to integrate
with Call Studio, though the API is primarily used to create components for integration with
VXML Server.

Unified CVP provides a Java API, which is the most efficient way to interface with Unified CVP
software. The Java API is also the most comprehensive; all components can be constructed using
it. It is also the only way to build the components that require integration with Unified CVP
Studio. Many components can be built with an equivalent API called the XML API. This API
works by sending and receiving XML documents over an HTTP connection. This scheme allows
for the use of any programming language with the ability to create and parse XML and handle
HTTP connections. Languages such as Perl or ASP in conjunction with a web server like Apache
are sufficient to interface with VXML Server using the XML APIs. The requirement for
integrating with Call Studio must be through Java, so the XML API is used to construct only
those components that need to integrate with VXML Server. The table below lists each
component, which API can be used to construct it, and whether that component must integrate
with Call Studio.

Unified CVP Component

Build With
Java API

Build With
XML API

Call
Studio

Integration
On Call Start / On Call End Actions Yes Yes No
Dynamic Element Configurations Yes Yes No
Generic Action and Decision Elements Yes Yes No
Hotevents Yes No No
Say It Smart Plugins Yes No Yes
On Application Start / End Actions Yes No No
Loggers Yes No No
On Error Notification Yes No No

Java API

There are two parts of the Unified CVP Java API: a set of Java interfaces and classes that are
implemented or extended to build a custom component and a set of classes used by those
components to obtain information on the environment in which the call is occurring. Each
component implements or extends a different class, though many of them share a common base.
Similarly, the class used to obtain environment information differs for each component, though
each of those classes shares a common base class.

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 4

The classes used to obtain and change environment information are referred to as the Session
API. All components receive an instance of one of the classes to act as the conduit between the
component and VXML Server. The classes in the Session API are organized into a hierarchy
where the classes for each component add unique capabilities to the common base with regards
to what data is available to it and what it is allowed to modify.

When building a component, the design requires the component to implement a single execution
method VXML Server uses to access the component. This method can be seen as the “main”
method for that component; it is where VXML Server leaves its context and enters the
component’s. It is this execution method that receives as a parameter a class belonging to the
Session API to provide the component access to environment information.

The execution method is used exclusively by VXML Server. Two components, custom
configurable elements and Say It Smart plugins, require integration with Builder for Call Studio.
For those components, the API additionally requires methods that define how to render it.

For those components that need to produce VoiceXML (primarily configurable voice elements
and hotevents), Unified CVP provides another set of Java API classes called the Voice
Foundation Classes (VFCs). These classes act as an abstraction layer to VoiceXML and allow
Unified CVP components to work seamlessly on any supported voice browser. Building
VoiceXML using the VFCs is very much like building VoiceXML statically, except in a Java
environment.

The API Javadocs contain detailed descriptions for each of the classes in the Java API, including
the Session API and the VFCs.

Design Considerations

A few notes on VXML Server and how it interacts with custom components written in Java is
warranted. This information is important to keep in mind since how a developer approaches the
design of the components they wish to build is impacted by them:

• Each application is run by VXML Server in its own separate classloader. The classloader’s
focus includes all Java classes found in the local application’s java folder, all classes found
in VXML Server’s common folder, and the other classes available in the application server’s
CLASSPATH. The advantage of this approach is that developers need only worry about class
name conflicts within an individual application. One consequence, however, is that static
class variables are static only within each application, even if they appear in classes stored in
common. Additionally, when an application is updated, a new classloader is created for the
application, replacing the previous one. This is not a problem unless dealing with static
variables, which would be reset once the application is updated. While knowledge of
classloaders is not required in order to know how to build custom components, it can be
useful to understand how classloaders work in Java to understand how custom component
code integrates with VXML Server.

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 5

• An application is loaded into memory when VXML Server first starts up or the application is
updated. During this process, a single instance of each element (both standard and
configurable) is created and cached for the application to use. Whenever a call to that
application encounters an element, VXML Server will call the execution method of that
single instance. This means that a single element instance will handle requests made across
all calls to the application. This applies to multiple uses of an element type in the call flow
(e.g. if the call flow contains two Digits elements, VXML Server will actually use the same
instance for both across all calls). This is very important because in this design, the element
class acts as if it is static. The consequence of this is that all member variables defined in the
element class act as static variables, meaning that once changed, every caller experiencing
that element type is exposed to the same value. It is highly recommended to use only static
final member variables, store any persistent data in the session (which the API provides
access to), and keep all other variables local to the execution method. Everything an element
needs is provided by the API so while this is important to be aware of, this design restriction
should not prevent the developer from implementing any desired functionality within the
element.

• VXML Server runs in a multi-threaded environment. If the guidelines above are followed,
such as avoiding member variables and non-final static variables this does not pose a
problem. The developer does not need to worry about architecting their code with
synchronization in mind when dealing with local or session variables. They would, however,
when performing tasks such as accessing external resources such as files.

Compiling Custom Java Components

Once a component is constructed in Java, the process for compiling and deploying these classes
is very simple. The VXML Server lib directory includes JAR files containing everything a
developer requires to compile custom components. The main JAR file of interest is
framework.jar, which defines the entire Unified CVP Java API (including the VFCs). To create
custom components, all that is needed is to ensure that this JAR file appears in the compiler’s
CLASSPATH or referred to in a Java IDE project file. Some Java IDEs may require additional JAR
files, servlet.jar and xalan.jar, to appear in the CLASSPATH since the classes within
framework.jar refer to classes defined in those JAR files and these IDEs cannot compile
without definitions for these additional classes. The command-line Java compiler does not
require servlet.jar or xalan.jar to appear in the CLASSPATH. The developer is then
responsible for adding to the CLASSPATH any additional JAR files their custom code requires.

Deployment

Once compiled, component class files are deployed separately for Call Studio and VXML
Server. Within these deployments, a developer can choose to associate component classes with a
specific application or with the system as a whole so that the components can be shared across
all applications. The deployment process for Call Studio and VXML Server are described in the
following sections. A third section provides details on the specific deployment directories
developers should use.

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 6

Call Studio Deployment

Call Studio provides a location to place components that are to be shared across all applications:
Call Studio/eclipse/plugins/com.audiumcorp.studio.library.common_5.1.0.
Individual classes are placed in the classes subdirectory and JAR file archives are placed in the
lib subdirectory. Note that the only classes that need to be placed here are custom configurable
elements and Say It Smart plugins since all other components have no Call Studio interface and
hence require deployment only on VXML Server. Once deployed in this folder, custom
configurable elements will appear in the element pane directly under the “Elements” folder
alongside with Unified CVP-provided elements.

For component classes that apply to a specific application only, a developer uses the
deploy/java directory found in that application’s project folder. Within Call Studio, compiled
classes and/or JAR files can be dragged from outside Call Studio to the appropriate subdirectory
in the deploy/java folder. An alternative method that does not require Call Studio to be running
would be to copy the files into the appropriate subdirectory of the deploy/java folder using the
file system. The application project folder can be found in Call Studio/eclipse/workspace
(unless the developer sets the workspace to a custom directory) and the deploy/java folder
within the application will appear here exactly as it appears in the Call Studio application project
window. This can also be done while Call Studio is running, though to view the copied files in
Call Studio, the deploy folder should be selected and the Refresh option chosen from the
contextual menu.

Custom configurable elements placed in the deploy/java directory will appear in Call Studio’s
element pane under the folder named “Local Elements”. The call flow editor for that application
must be closed and reopened in order for newly copied local elements to appear in the element
pane.

When the application is deployed from within Call Studio, the VXML Server folder created for
that application will contain a folder named java whose contents is identical to the
deploy/java folder in the Call Studio project.

VXML Server Deployment

When an application is deployed through Call Studio, a folder is created that encapsulates all the
information for that application, including all Java code the developer placed in the Call Studio
project as per the instructions given in the previous section. If the application is to change in any
way, from changes to the call flow, to the addition or subtraction of required Java files, those
changes must be done through Call Studio and then redeployed to VXML Server.

One deployment requirement that must be performed by the developer is to ensure that the Java
components and utility libraries stored in the Call
Studio/eclipse/plugins/com.audiumcorp.studio.library.common_5.1.0 folder are also
placed in the VXML Server common folder. When an application is deployed from Call Studio,
only that application’s files are created, any common code is not included. As a result, it is the

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 7

developer’s responsibility that the contents of the common folder in Call Studio also appear in the
VXML Server common folder.

Note that when VXML Server initializes, it first loads the classes in common and then loads each
application’s classes. Due to the way Java classloaders work, if a Java class appears in both the
common folder and an application’s java folder, the one in common will take precedence and the
one in the application’s java folder will not be loaded. Also note that due to the order in which
these classes are loaded, the developer cannot place a class in common that refers to a class that
only appears in an application’s java folder since the classes in common are loaded first. Keep in
mind that some application servers have advanced options to change this precedence to “parent-
last”, meaning that the application-level classloaders take precedence. By default, all application
servers should be configured to be “parent-first”.

Subdirectories of the Java Folder

The java folder of a Call Studio project and a VXML Server application folder contain two
subdirectories named application and util. Each folder encapsulates Java classes used for
different purposes, their distinctions applying primarily to how the application works within
VXML Server.

The application folder should contain all Java code for components that are used by the
application. Note that in Call Studio, any custom configurable elements that are utilized only by
the application would be placed in this folder and will appear in Call Studio’s element pane
under the folder named “Local Elements”. The call flow editor for that application must be
closed and reopened in order for newly copied local elements to appear in the element pane.

The second subdirectory of the java folder is the util folder. This is used for Java libraries that
provide the application with utilities unaffiliated with Unified CVP (such as math libraries, XML
parsing libraries, etc.).

There are several notes that must be made concerning which folder to use:

• Any class that refers to Unified CVP-specific API classes cannot be deployed in the util
folder. If the class is application-specific, it must be placed in the application folder of that
application. If the class is to be shared across all applications, it must be placed in the common
folder of VXML Server.

• The classes in the util folder will not be reloaded when the application is updated using the
updateApp administration script. If this behavior is not desired or the utility libraries are
frequently updated, place these files in the application folder. See the VXML Server User
Guide for Cisco Unified Customer Voice Portal, Chapter 3 in the section describing the
update capabilities for more information.

• Utility classes that do not refer to Unified CVP classes at all (such as third-party libraries)
can be placed anywhere within the CLASSPATH of the application server. For example, on the

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 8

Apache Jakarta Tomcat application server, a library for connecting to a mainframe system
can be placed in TOMCAT_HOME/common/lib rather than any Unified CVP directory.

XML API

The philosophy behind the XML API is to provide as much of the functionality found in the Java
API as possible in a way that can be accessed by non-Java developers. This is managed by using
XML, which can be produced and parsed easily, and by using HTTP connections, which can be
handled by many different programming languages. Interpreted languages such as Perl or PHP
are just as effective in interfacing using this API as other languages such as ASP or CGI via
C++.

The API works in a similar fashion as the Java API. VXML Server creates one or more XML
documents and places their contents in POST arguments in an HTTP request. These documents
contain the same environment information available through the Java Session API classes. This
request is sent to a developer-specified URL whose purpose is to produce an XML document and
return it as the HTTP response. As with the Java API, the XML documents returned by various
components differ to reflect the different functionality each component possesses. All these
XML documents comprise the XML API. The DTDs for the XML API documents are found in
the dtds directory in VXML Server. The DTDs exist as a reference, a DOCTYPE line is not
required in either request or response XML documents. The format of each XML document will
be described in detail in each component’s section in this document.

A component using the Java API has the ability to access methods that interface with VXML
Server whenever needed. The XML API, since it is executed over HTTP in a request / response
fashion does not have that luxury. VXML Server does not know in advance what session
information the component will need. Providing a separate interface for every piece of
information desired would cause unnecessary overhead since a component could potentially
access this information dozens of times, each time requiring a new HTTP request and response.
To resolve this issue, VXML Server sends to the component all information in several XML
documents passed as a POST parameters. While this may seem like a lot to put into a single
document, especially if the component does not need more than a few pieces, a typical
application will not possess so much session information as to adversely affect the performance
of the XML API.

Another consequence of the request/response mechanism for accessing the XML API is that
while the Java API can call a method to read information and set information, the XML API
must separate the read and write functionality. The HTTP request XML documents produced by
VXML Server contains all desired information to read while the XML response sent back from
the component specifies how to manipulate the desired information. Since the tasks each
component can perform are different, the response XML document will differ for each
component type.

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 9

While the XML API provides the same functionality as the Java API, there are some small
deficiencies. Firstly, there is additional overhead involved in the XML API since it involves the
creation and parsing of XML as well as the overhead inherent in HTTP communications. This
overhead, though, is not large as the XML documents involved are typically small and only a
single HTTP request and response are used per component. However the developer should test
their system to ensure that any overhead introduced is acceptable. Secondly, some components,
both Unified CVP and custom built, utilize Java classes as efficient mechanisms for storing data.
Using the Java API, these classes can be accessed and modified directly. The XML API,
however, will not be able to because it is a text-only interface designed to work identically using
different programming languages. A developer must be aware of this restriction before designing
components that rely on Java-only concepts.

Due to the nature of XML and HTTP and the complexity of some Unified CVP components, the
XML API is available as an alternative only for some components. The components that can
utilize the XML API are: standard action and decision elements, dynamic element
configurations, and start and end of call actions. Since configurable elements require more
integration with Call Studio and VXML Server, they can only be created using the Java API.

DTD Diagrams

While the Java API has Javadocs explaining what can be done with the classes and methods in
the API, the DTDs for every XML document sent either as a request or a response is described
within this document. A quick introduction to DTD diagrams is warranted at this point in order
to fully understand the XML API.

Figure 2-1

Figure 2-1 shows a sample DTD diagram that contains most of what can be found in an XML
DTD. A DTD diagram is a graphical representation of a DTD, which explains how an XML
document is formatted. Due to the nature of XML, syntax is very important and DTD diagrams
describe the syntax of an XML document. The diagram shows the hierarchical structure of XML

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 10

by using a sideways tree display, listing tags and their child tags from left to right. The diagram
shows the attributes of tags as well as how those tags can be added to their parent tags.

In the above diagram, the root tag is named parent. Tags are denoted by a blue diamond in its
box. parent has two attributes, attribute1 and attribute2 displayed in a red box emerging from
the tag. An attribute is denoted by a blue circle in its box. The type of those attributes are shown
in the gray section of the box. An enumerated type is an attribute whose value can be one of a
select group of options (for example, “apple”, “orange” or “grape”). attribute2 is an optional
attribute, denoted by a question mark to its left. attribute1 is a required attribute, denoted by
having no symbol to its left.

parent has four child tags that can appear within the encapsulating parent tag. This is denoted by
a red bracket encapsulating all the tags. A bracket indicates that the child tags must appear within
the parent tag in the order set in the diagram. A * next to the tag indicates it can appear from 0 to
many times. A + indicates it can appear from 1 to many times (it must appear at least once in the
document). A ? indicates it can appear from 0 to 1 time (if it appears, it can only once).

The child2 tag contains its own tags, another_child1 and another_child2. This time, however, an
angled red line is used to encapsulate the tags. This indicates that either one or the other can
appear, but not both. child4 has a similar situation, but a + sign appears, indicating that the child
tags can appear any number of times in any order, as long as there is at least one.

The following is an example XML document that conforms to the above DTD:

<parent attribute1=”something”>
 <child1 attribute=”a value”/>
 <child1/>
 <child2>
 <another_child1 attribute=”this is required”>
 Some value for the another_child1 tag.
 </another_child1>
 <another_child2>
 The content for another_child2.
 </another_child2>
 </child2>
 <child4>
 <child1_of_child4/>
 <child2_of_child4/>
 <child2_of_child4/>
 <child1_of_child4/>
 </child4>
</parent>

Notes:

• child1 is allowed to appear multiple times because it has a * next to it. One child1 tag does
not have an attribute because it is optional. Additionally, since these tags do not encompass
any additional content, the tag is closed with a “/>” so there is no need for a closing tag.

CHAPTER 2: UNIFIED CVP API INTRODUCTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 11

• child2 contains its two child tags. The another_child1 and another_child2 tags encapsulate
text so they have an open and close tag. another_child1 must specify its required attribute.

• child3 can be omitted because it is optional.

• child4 contains any number of its child tags in any order. It would be a syntax error to not
include any child tags at all since at least one is required.

• The order in which the child tags of parent must conform to the diagram. If child4, for
example, appeared before the child1 tag, that would be a syntax error.

Deployment

It is up to the developer to set up the environment necessary to support the requests made by
VXML Server. Since the API is accessed over HTTP, the XML content must be served by a web
or application server. This content could potentially be served on the same machine as VXML
Server though the act of parsing XML and the details of using HTTP will add additional
overhead to the performance of VXML Server. To get the best performance, the setup should
consist of a separate system handing the requests on the same subnet as the machine on which
VXML Server is installed. Maintaining the two systems on the same subnet will reduce any
network overhead as well as allow the administrator to restrict communication to occur only
within the same subnet.

Keep in mind that unlike Java, changes made to components using the XML API are not
graceful. Components using the Java API are deployed on top of VXML Server and therefore
take advantage of the graceful nature of VXML Server administration activity, while
components using the XML API are hosted on separate systems. Any changes made to system
that would affect the XML sent as response to VXML Server requests would be available
immediately. The administrator must ensure that maintenance activity be performed on both
systems to ensure callers do not experience changes within a single phone call. A recommended
method for handling updates to applications using components using the XML API is to suspend
the application before changes are made to the server hosting the XML.

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 13

Chapter 3: Session API
As described in the previous chapter, Unified CVP provides a mechanism for the developer to
access and change information having to do with the phone call or the session. Through this API
one can get environment information such as the phone number of the caller (ANI), the time the
call began, and application settings such as the default audio path. This API is also the conduit
for the developer to set element or session data, send custom logging events, or access the user
management system. A subset of the Session API, called the Global API provides access to data
that exists beyond individual sessions.

Any custom component built by the developer will be sent this API to interface with the session.
This section of the document describes the API and what it can be used for. Both the Java and
XML versions of this API are described. Subsequent chapters will detail the APIs used to
actually construct components.

Java API

As described previously, every Unified CVP component is constructed by implementing a Java
interface or extending a Java class and overriding a single execution method. One argument to
this method is a Unified CVP-specified Java class that acts as the API to the session. Methods in
this class are used to get or change information stored in the session, such as element or session
data.

A different API class is used depending on the component. All API classes are derived from the
base class APIBase, though all non-logger API classes directly extend ComponentAPI (both are
found in the com.audium.server.session package). APIBase defines information retrieval
functions any component accessed within a call session can use, such as:

• Obtaining telephony information such as the ANI and DNIS.

• Obtaining application setting data such as the gateway adapter name, default audio path,
maintainer, etc.

• Getting element or session data created by components run prior to the current component.

• Retrieving a list of elements and the exit states encountered by the caller prior to the current
component.

• Obtaining information on where the current application resides in order to aid in the loading
of custom content found there.

ComponentAPI adds to this the ability to alter some environment settings:

• Getting access to the User Management system, allowing the component to create, modify, or
query information on users.

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 14

• Creating session data. This class does not allow the creation of element data because only
elements can do so (the start of call class cannot, for example).

• Adding custom content to the activity log and warnings to the error log.

• Triggering custom logging events and warning events that are picked up by loggers.

• Setting the maintainer, default audio path, application language and encoding, as well as the
call’s session timeout. At any point in the application, these settings can be changed.

• Accessing the Global API to get and set application and global data (see the User Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio Chapter 2 in the section
entitled Variables for more on application and global data).

The following lists the API classes that are used for various components (also found in the
com.audium.server.session package). A detailed description of what each class provides is
given in the individual section for that component.

• CallStartAPI. This class is sent as an argument to the start of call class.

• CallEndAPI. This class is sent as an argument to the end of call class.

• ElementAPI. This class is used by all standard and configurable element classes as well as
dynamic configuration classes. The following classes extend ElementAPI to provide
additional functionality required for different kinds of elements.

o ActionAPI / ActionElementData. The ActionAPI class is used by generic action element
classes and is extended by ActionElementData which is used by configurable action
element classes.

o DecisionElementData. This class is used by configurable decision element classes.

o VoiceElementData. This class is used by configurable voice element classes.

• LoggerAPI. This class is sent as an argument to a logger’s execution method for handling a
session-specific logging event.

XML API

When a component uses the Java API, the Session API is accessed via an object passed to the
execution method. A similar setup exist when a component uses the XML API. The entire
contents of the Session API is made available via a set of XML documents passed to the
component in the HTTP request. Each component will receive this information whether they
need it or not, since VXML Server does not know in advance what information the component
could require. The component can choose to ignore these documents if the information contained
within are not required, or use a fast, event-based parser to extract only the desired information
from the documents.

Each component receives two POST arguments containing complete XML documents
representing the Session API. The first, named “inputs”, lists the session information

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 15

representing the state of the application up to the point when the component was reached. The
second argument, named “settings”, lists the current value for the application settings.

XML Document Sent in “inputs”

Figure 3-1 shows the DTD diagram for the XML document sent to all components in the
“inputs” argument. Its DTD is defined in the file ElementRequest.dtd in the VXML Server
dtds folder.

Figure 3-1

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 16

The tags in this XML document are:

• telephony – This tag holds information about the call itself such as the ANI. It also contains
the area code and exchange of the ANI. All values are “NA” if not sent by the voice browser
(area code and exchange won’t appear at all in the case that the ANI is not sent).

• call – This tag holds call information. The session ID is used by VXML Server to identify the
call. The <source> tag, if applicable, contains the name of the application that transferred to
this one (the tag does not appear if application visit is a new call). <start> contains when the
call started. <application> contains the name of the application.

• history – This tag holds the history of elements visited so far in the call. The name and exit
state of the element is included as attributes to a <visited> tag. Multiple tags are listed in
the order in which the elements were visited in the call. The <history> tag will not appear if
no elements were visited before this one (i.e. the start of the call).

• data – This tag holds all the element and session data created so far in the call. The
<element> tag’s name attribute holds the name of the element. All the variables created by
this element appear in this tag. The log attribute indicates whether this variable’s value will
appear in the activity log file (no session variables appear in the log). The <data> tag will not
appear if no element or session data exist. If the session data variable holds a Java class, the
tag will contain the results of the toString() method called on that object.

• user – This tag appears only if the application is configured to use the user management
system and the call has been associated with a particular UID. The <demographics> tag
holds the user demographic information. The <account> tag contains information about the
account such as when it was created and modified, the account number and pin (if
applicable), etc. This data appears exactly as in the user database. See Chapter 4: User
Management in the User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call
Studio for more on user management.

• user_by_ani – This tag appears only if the application is configured to use the user
management system, though unlike <user>, the tag will appear even if the call is not
associated with a UID. The tag holds information about the number of calls made to this
application by the current phone number and the last time a call was received to the
application by that number.

• call_ended – This tag appears only when being sent as a request to an end of call event. It
defines how the call ended and the result of the call. The possible content of <how> are:
hangup (the caller hung up), disconnect (the application hung up on the caller),
application_transfer (the application visit ended by transferring to another application),
call_transfer (a blind transfer took place) and app_session_complete (the application visit
ended even if the call itself continued - such as via a CTI event). The possible content of
<result> are normal, max_ports (the caller hung up while on hold waiting to enter the
application), suspended (the caller called into a suspended application), error (an error
occurred during the call), timeout (the session timed out) and invalidated (the session was

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 17

invalidated by an element). Note that the invalidated attribute of <call_ended> also
indicates if the session was invalidated by an element.

XML Document Sent in “settings”

Figure 3-2 shows the DTD diagram for the XML document sent to all components in the
“settings” argument. Its DTD is defined in the file Settings.dtd in the VXML Server dtds
folder. Note that this document shares the same DTD as the static application settings file
settings.xml created when an application is deployed from Call Studio to VXML Server. This
document is simply an XML representation of the application settings in Call Studio’s project
preferences for the application.

Figure 3-2

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 18

The tags in this XML document are:

• application – The root tag. The key and serial attributes are used by Call Studio and
VXML Server and can be safely ignored here. The version attribute holds the version of the
file. The above diagram represents version 1.2 of the DTD. The subdialog attribute holds a
true if the application is accessed as a subdialog, false if not.

• maintainer – This tag holds the e-mail address of the maintainer.

• language – This tag holds the language for the application. This value shows up in the
VoiceXML pages produced by VXML Server. The contents of this tag are formatted
according to the specification for using languages in VoiceXML (e.g. “en-US”).

• encoding – This tag holds the encoding format for the application. This value determines
how the VoiceXML pages produced by VXML Server are encoded. The contents of this tag
are formatted according to the specification for encoding XML pages (e.g. “UTF-8”).

• audio – This tag holds all audio files and/or TTS phrases to use for various situations.

o error – This tag encapsulates the message to play when an error occurs and the
application does not contain an error element.

o suspended – This tag encapsulates the message to play when a caller calls an application
that is suspended.

o initial_on_hold – This tag encapsulates the first message a caller hears when all the
VXML Server ports are in use.

o main_on_hold – This tag encapsulates the message repeatedly played after the initial on
hold audio is played until a VXML Server port is available.

o default_path – This tag lists the URI path in which all pre-recorded audio for this
application is located.

• session_timeout – This tag lists the length of time in minutes of inactivity VXML Server will
time out the call session.

• voice_browser – This tag lists the voice browser selected for this application. Note that the
real name of the voice browser is used here, not the display name. Gateway Adapter real
names can be seen by reading the folder name for that adapter in the gateways folder of
VXML Server.

• user_management – This tag encapsulates information concerning the user management
database. The <database> tag’s jndi_name attribute contains the JNDI name for the
database and the tag itself contains the database to use, which is either “MySQL” or
“SQLServer”.

• endpoints – This tag encapsulates actions to perform at the endpoints of an application and a
call.

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 19

o on_start_call. The Java class or URI to call when a call to the application starts. The
class attribute lists the full class name of the Java class. The src attribute contains the
URI to call. The two attributes are mutually exclusive. The attribute run_in_background
is “true” if the Java class or URI is to be accessed in a separate thread by VXML Server
and “false” if the call is to wait for the action to complete.

o on_end_call. The Java class or URI to call when a call to the application ends. The class
attribute lists the full class name of the Java class. The src attribute contains the URI to
call. The two attributes are mutually exclusive.

o on_start_app. The Java class(es) to call when the application is loaded or updated. The
class attribute lists the full class name of the Java class. The tag can appear multiple
times, denoting multiple classes to run at the start of an application. The classes will be
run in the order in which they appear in the document. The error_cancels_deploy
attribute is set to “true” when an error in the class should cause the application loading to
fail.

o on_end_app. The Java class(es) to call when the application is taken down (either as a
result of the application server shutting down or due to an update). The class attribute
lists the full class name of the Java class. The tag can appear multiple times, denoting
multiple classes to run at the end of an application. The classes will be run in the order in
which they appear in the document.

• root_doc – This tag contains tags representing the additions made to the application’s root
document. This tag will not appear if no language, encoding, properties or variables are
added to the root document. The possible additions are:

o vxml_property – This tag can appear any number of times listing the VoiceXML
properties to add to the root document. Typically most voice browsers will take a
property set here as an indication that it apply to the entire application. The name attribute
lists the name of the property and the tag itself encapsulates the value.

o vxml_variable – This tag can appear any number of times listing the VoiceXML variables
to add to the root document. A variable set in the root document is available to all
VoiceXML pages in the application. The name attribute lists the name of the variable and
the tag itself encapsulates the value.

o javascript – This tag encapsulates a Javascript function to place in the application’s root
document. Any number of these tags can appear to add multiple Javascript functions to
the root document.

• loggers – This tag contains one or more <logger_instance> tags defining the loggers that
are to listen to the events for calls for this application. The name attribute defines the logger
instance name (all logger instances must have unique names). The class attribute defines the
full Java class name of the logger to use. The optional configuration tag points to a
configuration file for the logger instance. When the optional attribute
enforce_call_event_order is “true” VXML Server will ensure that the logger receive the
logger events for a call in the order in which they occurred in the call.

CHAPTER 3: SESSION API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 20

Again, these two documents are sent as HTTP POST arguments to any URL using the XML
API. The documents mirror all the functionality provided in the Java API to obtain session
information. Changing session information, such as setting session data, is done in the response
XML document. Since each component has a separate response document, they are described in
each component’s individual chapter.

CHAPTER 4: CALL START ACTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 21

Chapter 4: Call Start Action
VXML Server can be configured to run code when a call has been received before the call flow
is visited. The call start action can be implemented with either the Java API or the XML API.
The call start action is a good way to create session data to be used by the rest of the application.
There are two situations where session data may already exist:

• If the voice browser passed additional arguments to VXML Server when the call was first
received, these additional arguments are added as session data with the arguments’
name/value pairs translated to the session data name and value (both as Strings).

• If a separate Unified CVP voice application transferred to the current application, the
application designer may have chosen to transfer element and session data to the destination
application. This data will be converted to session data in the destination application.

The call start action is also given the ability to change the voice browser and any root document-
affecting settings for the call. These changes apply to the current call only, and allows for a truly
dynamic application. By allowing the voice browser to change, the application can be deployed
on multiple voice browsers at once and use a simple DNIS check to output VoiceXML to the
appropriate browser. Changing root document settings such as properties and language allow the
call start action to control how the application appears to the caller using information it knows
only at call time. Note that these changes can only be made by the call start action because it runs
before VXML Server has returned the first VoiceXML page and therefore can make changes that
affect the outputted VoiceXML. Aside from these settings, the call start action can also change
the maintainer and default audio path, though any component run within the call can do this as
well.

The start of call event can be run in the background by checking the appropriate checkbox in the
Call Studio application settings. If this is not done, the caller will hear silence until the call start
action is complete and the call flow reaches the first VoiceXML-producing element. Answering
the phone with too much silence could cause the caller to hang-up, thinking something went
wrong. Latency issues are not as big a concern later in the application because audio can be
played while action is executing or the application could make the caller aware that some
potentially lengthy action is about to occur. Running the call start action in the background will
ensure that the call flow will begin immediately.

Some notes of caution are warranted when running the call start action in the background.
Firstly, ensure that elements in the call flow that attempt to access data created by the call start
action do not try too quickly since it is possible the data has not been created yet. Since the call
start action is run in a separate thread, there is no guarantee it will complete before the data it
creates is required. The application can be architected to handle this by checking if the data
exists before accessing it and if not, make the caller wait until it is created. Secondly, any errors
that occur during execution of this action are placed in the error log but do not end the call
(unless the application cannot run without performing the tasks in the call start action).

CHAPTER 4: CALL START ACTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 22

Using the Java API

The call start action is built in Java by implementing the Unified CVP class
StartCallInterface found in the com.audium.server.proxy package. It contains a single
method named onStartCall that is the execution method for the call start class. This method
receives a single argument, an instance of CallStartAPI. This class belongs to the Session API
and is used to access and modify session information such as session data (See Chapter 3:
Session API for more on this API). The method does not have a return value. It is expected that
should an unrecoverable error occur, the call start action will throw an AudiumException.

Using the XML API

As described in Chapter 3: Session API, the standard “inputs” and “settings” XML documents
are sent via POST to the call start URI. Figure 4-1 shows the DTD diagram of the XML
document that must be sent in response. The DTD for the start of call action response is defined
in the file CallStartResponse.dtd found in the VXML Server dtds folder.

Figure 4-1

CHAPTER 4: CALL START ACTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 23

The tags in these XML documents are:

• new_data – This tag holds the session data to be created. Any number of <session> tags can
appear, one for each session data variable to be created. Note that element data cannot be
created because the call start action is not an element.

• set_uid – This tag is used to associate the call to a UID in the user management system. The
content of the tag should be the integer UID.

• log – This tag is used to trigger logger events for this application. Any number of <custom>
tags can appear, denoting the triggering of a custom event. The name attribute holds the name
of the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can
appear, denoting the triggering of a warning event. The <warning> tag encapsulates the
warning message.

• error – This tag reports to VXML Server that an error occurred while executing the call start
action. VXML Server will then throw an exception whose message is contained in the
<error> tag. This allows the XML API to throw exceptions just as the Java API does.

• set_default_path – This tag is used to change the default audio path.

• set_maintainer – This tag is used to change the maintainer e-mail address.

• set_voice_browser – This tag is used to change the voice browser for this particular call.
Note that the real name of the voice browser must be used here, not the display name.
Gateway Adapter real names can be seen by reading the folder name for that adapter in the
gateways folder of VXML Server.

• set_timeout – This tag allows the timeout length set for this session to be changed. The
contents of the tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the
application to be changed for this call. The <language> tag content is formatted according to
the specification for using languages in VoiceXML (e.g. “en-US”). The <encoding> tag
content is formatted according to the specification for encoding XML pages (e.g. “UTF-8”).

• set_root_doc_content – This tag allows for the addition and removal of VoiceXML
properties and variables. The <delete> tag is necessary only if properties or variables were
set in the application’s project pane in Call Studio and due to runtime circumstances the call
start action determines they are no longer needed. The name attribute specifies the property or
variable name and the tag contents encapsulates the value.

Note that all the tags are optional, there is no tag required except for the root <result> tag.
Since the XML API requires a document in response, it is acceptable to return an XML
document whose <result> tag is empty.

CHAPTER 5: CALL END ACTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 25

Chapter 5: Call End Action
VXML Server can be configured to run code once a call has ended. Unlike the call start action,
the call end action can occur at any time in the call and there are several different situations that
would trigger the call end action. The following lists those situations:

• The caller hangs up normally.

• The application hangs up on the caller. This includes any errors that are caught by the system
that yield a hang-up, or places in the application when the call’s purpose is over.

• A blind telephony transfer takes place. Blind transfers connect the caller with the party called
using telephony switching equipment, removing the voice browser (and hence VXML
Server) from the calling context. Even though the physical phone call continues, the role of
the automated system ends and so for it, the call has ended. Note that the availability of blind
transfers is determined by the voice browser’s functionality and network setup.

• The application performs a transfer to another Unified CVP application. This is not a
telephony transfer, but the results are very similar. Since the call leaves the source
application, it is considered the end of the “call” to that application.

• VXML Server times out a session. This occurs only rarely, it would be seen only when some
error prevented VXML Server from receiving a request in the middle of a call and it waited a
certain amount of time before timing out the session. This could be due to a voice browser
going down or if the request coming from the voice browser is malformed and VXML Server
cannot determine which call that request was supposed to be for.

• The session is invalidated by a custom element. Standard and configurable elements have the
ability to invalidate the session for situations where some process ends the call that would not
prompt VXML Server to be notified that the call ended. This functionality is described in
more detail in the chapters on custom elements.

The call end action can be implemented with either the Java API or the XML API. Unlike the
call start action using the XML API, the call end action does not have an option to perform it in
the background. In fact, one need not worry about performing time consuming tasks in the call
end action because it will not affect the performance of the call since it has ended. One must still
be careful not to perform tasks that maximize CPU usage since that would aversely affect the
handling of other calls.

Like the call start action, the call end action can modify the session such as creating session data
or changing the default audio path, though these actions would not make sense as there is no
more call flow to visit. The call end action can access everything that occurred within the call,
including how the call ended (hangup, call transfer, etc.) This is useful for activities such as
creating CDR records which must list everything a caller did.

CHAPTER 5: CALL END ACTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 26

A unique feature of the call end action is to optionally send back a final VoiceXML page to the
voice browser. Some voice browsers will actually interpret a VoiceXML page sent back in
response to a request triggered by a disconnect or hang-up event. Since the caller is no longer
interacting with the IVR, this page would obviously only be useful for limited functionality that
had nothing to do with interacting with the caller, such as executing <log> tags. Note that this
final page applies only to when the caller hangs up on the application or the application hangs up
on the caller.

Using the Java API

The end of call action is built in Java by implementing the Unified CVP class
EndCallInterface found in the com.audium.server.proxy package. It contains a single
method named onEndCall that is the execution method for the call end class. This method
receives a single argument, an instance of CallEndAPI. This class belongs to the Session API
and is used to access session information such as session data (See Chapter 3: Session API for
more on this API). The method does not have a return value. It is expected that should an
unrecoverable error occur, the call end action will throw an AudiumException.

If the call end action is to return a final VoiceXML page to the voice browser, this is done by
using the Voice Foundation Classes (VFCs) (See Appendix A: The Voice Foundation Classes for
more on the VFCs) and accessing methods in the CallEndAPI Session API class.

Using the XML API

As described in Chapter 3: Session API, the standard “inputs” and “settings” XML documents
are sent via POST to the call start URI. Figure 5-1 shows the DTD diagram of the XML
document that must be sent in response. The DTD for the end of call action response is defined
in the file CallEndResponse.dtd found in the VXML Server dtds folder.

Figure 5-1

CHAPTER 5: CALL END ACTION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 27

The tags in these XML documents are:

• new_data – This tag holds the session data to be created. Any number of <session> tags can
appear, one for each session data variable to be created. Note that element data cannot be
created because the call end action is not an element.

• set_uid – This tag is used to associate the call to a UID in the user management system. The
content of the tag should be the integer UID.

• log – This tag is used to trigger logger events for this application. Any number of <custom>
tags can appear, denoting the triggering of a custom event. The name attribute holds the name
of the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can
appear, denoting the triggering of a warning event. The <warning> tag encapsulates the
warning message.

• error – This tag reports to VXML Server that an error occurred while executing the call end
action. VXML Server will then throw an exception whose message is contained in the
<error> tag. This allows the XML API to throw exceptions just as the Java API does. Note
that since the call has ended, there would be no adverse affect to the call itself, though an
error event will be thrown.

• set_default_path – This tag is used to change the default audio path.

• set_maintainer – This tag is used to change the maintainer e-mail address.

• vxml_response – This optional tag encapsulates the VoiceXML page that is to be passed to
the voice browser for the final response. It is expected to contain a CDATA tag that
encapsulates the entire VoiceXML document as it is to be returned to the voice browser
(including the first line starting with <?xml).The developer is responsible for ensuring the
VoiceXML is correct as VXML Server does no validation of the VoiceXML before returning
it to the browser. Note that since the VFCs are not used to generate the VoiceXML like the
Java API, the developer is responsible for ensuring the VoiceXML is compatible with the
voice browser(s) being deployed to.

Note that all the tags are optional, there is no tag required except for the root <result> tag.
Since the XML API requires a document in response, it is acceptable to return an XML
document whose <result> tag is empty.

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 29

Chapter 6: Dynamic Element
Configurations

Configurable voice, action, and decision elements used in an application must have
configurations. Usually, the configuration will be fixed, i.e., it acts the same every time a caller
visits it. In this case, the configuration itself exists as an XML file stored on the system. Builder
for Call Studio creates this file when the application is deployed. Programming is required when
a dynamic element configuration is desired, i.e., one which is generated at runtime each time a
caller visits it.

The manner in which configurations are used warrant closer examination. Configurations are
used by pre-built elements in order to tell it how to function. Since configurable elements are
constructed with Java, the configuration for the element must be given to it in the form of a Java
class. The API provides a set of Java classes that encapsulate an entire element configuration,
which are nothing more than just Java expressions of the visual Builder for Call Studio’s
Configuration Pane: three tabs General, Settings, and Data for action and decision elements and
a fourth tab, Audio, for voice elements. When a static configuration is used, this information is
stored as an XML file generated by Builder for Call Studio. VXML Server converts this XML
file to one of the Java configuration classes and then passed it on to the element.

A dynamic configuration is simply a way of adding an additional step in this process. Once
VXML Server loads the static representation of the configuration (known as the base
configuration), it will pass this to the dynamic configuration Java class or URI for modification
instead of passing it directly to the element. The class or URI adds to or changes the base
configuration depending on the application business logic and returns a complete configuration.
VXML Server then passes this new configuration to the element.

Using the Java API

Dynamic voice, action, and decision element configurations are constructed in the Java API by
implementing the Java interfaces VoiceElementInterface, ActionConfigInterface and
DecisionConfigInterface respectively, all found in the com.audium.server.proxy package.
Note that the name of the voice element interface is not consistent with the others due to
backwards compatibility concerns. Each of these interfaces contain a single method named
getConfig that receives three arguments:

• The name of the element as a String.

• An instance of ElementAPI or ActionAPI (for dynamic action element configurations).
These classes belong to the Session API and are used to access session information (See
Chapter 3: Session API for more on this API).

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 30

• An instance of VoiceElementConfig, ActionElementConfig or DecisionElementConfig
(found in the com.audium.server.xml package) that contains the base configuration for
the element (or null if there is no base configuration).

The method must return an instance of the configuration object (VoiceElementConfig,
ActionElementConfig or DecisionElementConfig). This can be a modified version of the
object passed as input to the method or one built from scratch. It is expected that should an
unrecoverable error occur, the dynamic configuration class should throw an AudiumException.

Due to the fact that most dynamic configurations involve only a few changes to the static
configuration, obtaining a base configuration as input to the execution method saves significant
coding effort since the dynamic configuration class simply needs to modify this object in order to
create the final configuration object then return it.

All three configuration classes extend a common base class, ElementConfig. This class defines
those features common to all three element configurations: settings, element and session data
created, custom log content, and associating the call with a UID. ActionElementConfig and
DecisionElementConfig are essentially identical, separate classes are used for design
considerations and for possible future differentiation. VoiceElementConfig, however, expands
upon the ElementConfig class by introducing voice element only features: local hotlinks,
VoiceXML properties and audio groups. The three configuration classes allow the developer to
obtain everything about a configuration as well as change or add to the configuration in any way.

In order to handle audio groups, VoiceElementConfig introduces inner classes that define an
audio group (AudioGroup) and a generic audio item (AudioItem). Two additional inner classes
define audio item types that extend the AudioItem class to define a Say It Smart audio item
(SayItSmart) and a static audio item (StaticAudio). The AudioGroup class encapsulates any
number of AudioItem objects of either type. A developer can create new audio groups separately
and call a method in VoiceElementConfig to add the audio group to the configuration, or an
existing AudioGroup object can be obtained, modified, then reinserted into the configuration.

In order to handle local hotlinks, which are supported on voice elements only and add page-
scoped VoiceXML links to the pages generated by the voice element, VoiceElementConfig
introduces an inner class called LocalHotlink.

The Javadocs provide much more detail regarding these classes and their methods.

Using the XML API

Dynamic element configurations using the XML API send four HTTP POST arguments to the
URI specified:

• “name”. The name of the element whose configuration is dynamic as a string.

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 31

• “inputs”. One of the standard arguments passed to all components utilizing the XML API as
described in Chapter 3: Session API.

• “settings”. One of the standard arguments passed to all components utilizing the XML API as
described in Chapter 3: Session API.

• “base”. The base configuration for the element represented as an XML document. If there is
no base configuration, this argument is not included. There are two possible DTDs for this
argument. One is used if the dynamic configuration is for a voice element and the other is if
the dynamic configuration is for decision and action elements.

The response must contain the final configuration to use, which follows the same DTD as the
base configuration XML document. Incidentally, this DTD is the same one used for the fixed
element configuration XML files created by Builder for Call Studio.

Decision and Action Element Configuration DTD

Figure 6-1 shows the DTD for decision and action element configurations sent in the argument
“base”. The DTD for decision element configurations is defined in the file
DecisionElementConfiguration.dtd and the DTD for action element configurations is
defined in the file ActionElementConfiguration.dtd, both in the VXML Server dtds folder.
Each are stored as separate files despite being syntactically identical in order to allow for future
divergence.

Figure 6-1

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 32

The tags in this XML document are:

• configuration – The root tag. The class attribute refers to the Java class defining the
configurable action or decision element whose configuration is being dynamically produced.
Refer to the Element Specifications for Cisco Unified CVP VXML Server and Cisco Unified
Call Studio document for the full Java class names of all Unified CVP elements. The serial
attribute is used by Call Studio and can be safely ignored here.

• error – This tag reports to VXML Server that an error occurred while executing the dynamic
configuration. VXML Server will then throw an exception whose message is contained in the
<error> tag. This allows the XML API to throw exceptions just as the Java API does.

• setting – This tag holds an element setting, the name appearing in the name attribute and the
value of the setting contained within the <setting> tag. It is repeated for each setting
included in the base configuration. No <setting> tags appear if the base configuration
contains no settings or the element itself defines no settings.

• substitute – This tag holds information on substitution. Substitution is typically used in static
configurations and since static and dynamic configuration XML documents share the same
DTDs, it appears here. Substitution would not normally be used with dynamic
configurations. The substitution tag contents are fully described in the section entitled
“Substitution XML format” at the end of this chapter.

• new_data – This tag holds the element and session data this dynamic element configuration is
to create. Any number of <set_element> and <set_session> tags can appear, one for each
element and session data variable to be created. The log attribute of <set_element> sets
whether the value of the variable is stored in the activity log. The optional type attribute is
used to specify the data type of the variable and can be string, int, float, or boolean. The
create attribute found in both tags determines when the variable is created, before the
element is entered (before_enter), or after the element exits (after_exit).

• set_uid – This tag is used to associate the call with a UID in the user management system.
The content of the tag should be the integer UID.

• log –This tag is used to trigger logger events when this dynamic configuration is executed.
Any number of <custom> tags can appear, denoting the triggering of a custom event. The
name attribute holds the name of the data, and the <custom> tag encapsulates the value. Any
number of <warning> tags can appear, denoting the triggering of a warning event. The
<warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards
for this call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point
onwards for this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The
contents of the tab must be an integer representing the number of minutes in the timeout.

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 33

• set_main_doc_content – This tag allows the encoding and language settings for the
application to be changed for this call. The <language> tag content is formatted according to
the specification for using languages in VoiceXML (e.g. “en-US”). The <encoding> tag
content is formatted according to the specification for encoding XML pages (e.g. “UTF-8”).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to
invalidate the call session it retains in memory, call the end of call class or URI (if defined),
and free up the VXML Server port utilized by the call. The session is invalidated only after
the execution method of the dynamic configuration is completed. This tag is rarely used and
would be needed in a few circumstances where some external process takes the call away
from VXML Server such as when using a CTI system to transfer the call to an agent.

Voice Element Configuration DTD

Figure 6-2 shows the DTD diagram for the voice element configuration XML document sent in
the argument “base”. The DTD is defined in the file VoiceElementConfiguration.dtd found
in the VXML Server dtds folder.

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 34

Figure 6-2

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 35

The tags in this XML document are:

• configuration – The root tag. The class attribute refers to the Java class defining the
configurable voice element whose configuration is being dynamically produced. Refer to the
Element Specifications for Cisco Unified CVP VXML Server and Cisco Unified Call Studio
document for the full Java class names of all Unified CVP elements. The serial attribute is
used by Call Studio and can be safely ignored here.

• error – This tag reports to VXML Server that an error occurred while executing the dynamic
configuration. VXML Server will then throw an exception whose message is contained in the
<error> tag. This allows the XML API to throw exceptions just as the Java API does.

• setting – This tag holds an element setting, the name appearing in the name attribute and the
value of the setting contained within the <setting> tag. It is repeated for each setting
included in the base configuration. No <setting> tags appear if the base configuration
contains no settings or the element itself defines no settings.

• substitute – This tag holds information on substitution. Substitution is typically used in static
configurations and since static and dynamic configuration XML documents share the same
DTDs, it appears here. Substitution would not normally be used with dynamic
configurations. The substitution tag contents are fully described in the section entitled
“Substitution XML format” at the end of this chapter.

• vxml_property – This tag holds a VoiceXML property, the name appearing in the name
attribute and the value of the property contained within the <vxml_property> tag. It is
repeated for each VoiceXML property referred to in the base configuration.

• audio_group – This tag holds all the audio items for a single audio group. Attributes to
<audio_group> set its name, bargein preference and count (for those audio groups that can
have counts greater than 1), and the language that it encapsulates. Each audio item is
represented as a single <audio> or <say_it_smart> tag.

o The <audio> tag defines a name for the audio item, the source of the audio file (optional
if no audio file is being referenced), whether to use the default audio path (the
use_default_path attribute may be true or false), and encapsulates the TTS backup
message.

o The <say_it_smart> tag’s attributes define the name of the audio item, the output
format to represent the data, and Java class name of the Say It Smart plugin. Its contents
encapsulate a <value> tag representing either a static value or a value from a variable.
The format attribute of <value> defines the input format of the data. The <variable>
tag contains tags for obtaining the data from element data, session data or call data. The
var_name attribute can contain the following values: ani, dnis, iidigits, uui, start_date,
start_time, and application_name. Note that one can avoid using the <variable> tag by
referring to a substitution string in the contents of the <value> tag. This also allows for
the substitution of content in addition to element, session, and call data. The <variable>
tag remains for backwards compatibility and for those not willing to use substitution.

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 36

• new_data – This tag holds the element and session data this dynamic element configuration is
to create. Any number of <set_element> and <set_session> tags can appear, one for each
element and session data variable to be created. The log attribute of <set_element> sets
whether the value of the variable is stored in the activity log. The optional type attribute is
used to specify the data type of the variable and can be string, int, float, or boolean. The
create attribute found in both tags determines when the variable is created, before the
element is entered (before_enter), or after the element exits (after_exit).

• local_hotlink – This tag is used for local hotlink configurations. The name attribute defines
the local hotlink’s name and must be unique within the element configuration.

o The child <speech> tag indicates whether the inline or external speech grammar was set
for this hotlink. The <external> tag should contain the URI to the external speech
grammar. The <inline_component> tags encapsulate each utterance that activates the
hotlink.

o The child <keypad> tag indicates whether the inline or external DTMF grammar was set
for this hotlink. The <external> tag should contain the URI to the external DTMF
grammar. The <inline_component> tags encapsulate each DTMF entry that activates
the hotlink.

o The optional child <throw_event> tag is used if this hotlink throws an event.

• set_uid – This tag is used to associate the call with a UID in the user management system.
The content of the tag should be the integer UID.

• log – This tag is used to trigger logger events when this dynamic configuration is executed.
Any number of <custom> tags can appear, denoting the triggering of a custom event. The
name attribute holds the name of the data, and the <custom> tag encapsulates the value. Any
number of <warning> tags can appear, denoting the triggering of a warning event. The
<warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards
for this call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point
onwards for this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The
contents of the tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the
application to be changed from this point onwards for this call. The <language> tag content
is formatted according to the specification for using languages in VoiceXML (e.g. “en-US”).
The <encoding> tag content is formatted according to the specification for encoding XML
pages (e.g. “UTF-8”).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to
invalidate the call session it retains in memory, call the end of call class or URI (if defined),

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 37

and free up the VXML Server port utilized by the call. The session is invalidated only after
the execution method of the dynamic configuration is completed. This tag is rarely used and
would be needed in a few circumstances where some external process takes the call away
from VXML Server such as when using a CTI system to transfer the call to an agent.

Substitution XML Format

The DTD for element configuration XML documents contain a tag <substitute> that is used to
define substitution. Substitution is the process of constructing a value from a combination of
static and dynamic content. It is used as a way for a developer to use dynamic content in an
element configuration without having to resort to a dynamic configuration. Substitution can be
used throughout an element’s configuration such as settings, audio, VoiceXML properties, etc.
See the User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio for more
on substitution.

Since the DTDs of the documents returned by the XML API are the same as those for static
element configurations produced by Builder for Call Studio, dynamic configurations may also
utilize substitution. Using substitution in dynamic configurations, however, makes little sense as
the dynamic configuration is produced by programming code which could just as easily set the
appropriate value rather explicitly rather than assemble it using substitution. To be
comprehensive, this section briefly describes the contents of the <substitute> tag.

A value for a setting, audio source, audio TTS or any other configuration option that supports
substitution contains static content combined with integer values encapsulated by braces. When
this format is detected, VXML Server knows to replace (substitute) the parts encapsulated in
braces with the dynamic data. For example, “http://{0}/grammar/{1}” as a value for a
setting indicates to substitute some dynamic content for “{0}” and “{1}”, where the indices are
used for uniqueness (the same index can be used multiple times in the same value or in separate
values if applicable).

This is where the <substitute> tag comes in. Each <substitute> tag specifies what dynamic
data to substitute for a particular number surrounded by braces. The index attribute must be an
integer that matches the number to substitute. A diagram of what it can contain is shown in
Figure 6-3.

CHAPTER 6: DYNAMIC ELEMENT CONFIGURATIONS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 38

Figure 6-3

The content to substitute can be one of the six possible tags:

• call_data – Represents call information such as the ANI.

• data – Represents element or session data.

• user_info – Represents information about the user associated with the call (available only
when the user management system is turned on and the call is associated with a particular
UID).

• general_date_time – Represents the current time or the start of the call.

• caller_activity – Represents the activity taken by the caller in this call.

• historical_data – Represents past actions taken by the user associated with this call (available
only when the user management system is turned on and the call is associated with a
particular UID).

These tags are identical to tags of the same name used within the XML decision format. These
tags are fully described in Chapter 2 of the User Guide for Cisco Unified CVP VXML Server and
Cisco Unified Call Studio.

For example, in the above situation where a setting has the value “http://{0}/grammar/{1}”,
the following substitute tag can represent index 0 coming from element data:

<substitute index="0">
<data>

<element name="AnElementName" variable="SomeValue"/>
</data>

</substitute>

CHAPTER 7: STANDARD ACTION ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 39

Chapter 7: Standard Action Elements
Action elements are responsible for performing some action and returning an indication whether
the action was a success. A pre-built, configurable action element has already defined the actions
to take and only requires a configuration to modify its behaviors. Standard action elements,
however, are defined by the developer and have no configuration since they represent actions
specific to an application.

A standard action element, in addition to the functionality provided all components, is allowed to
create and modify element data. It can also act as a flag if desired.

Using the Java API

A standard action element is built in Java by extending the abstract base class
ActionElementBase found in the com.audium.server.voiceElement package (this package’s
name is such due to backwards compatibility considerations). It contains a single abstract method
named doAction, that acts as the execution method for the action element, and must be
implemented by the developer. The method receives two arguments: the name of the action
element (as a String) and an instance of ActionElementData. This class belongs to the Session
API and is used to access session information (See Chapter 3: Session API for more on this
API). The method does not expect anything in return because all action elements have a single
exit state (“done”). It is expected that should an unrecoverable error occur, an AudiumException
is thrown.

The ActionElementBase class defines many methods in addition to doAction. These are used
for configurable action elements, which also extend the class. The only method required for
standard action elements is doAction, as it is the only abstract method in ActionElementBase.

Using the XML API

As described in Chapter 3: Session API, the standard “inputs” and “settings” XML documents
are sent via POST to the standard action element URI. An additional parameter, called “name”,
is sent containing the name of the action element. Figure 7-1 shows the DTD diagram of the
XML document that must be sent in response. The DTD for the standard action element response
is defined in the file ActionResponse.dtd found in the VXML Server dtds folder.

CHAPTER 7: STANDARD ACTION ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 40

Figure 7-1

The elements in this XML document are:

• status – Since the XML API accesses a process that exists in context separate from VXML
Server, there is no automatic way for an error that occurs during the creation of a response to
be caught and handled properly by VXML Server. This tag exists to simulate that process by
containing either the word “success” or a text message describing the error. When anything
but “success” is returned, VXML Server throws an exception using the content of <status>
as the error message. This way, from the perspective of VXML Server and the application
logs, the result will be the same no matter whether the Java API or the XML API is used. See
the description for the <error> tag below as there is some overlap in functionality.

• error – This tag reports to VXML Server that an error occurred while executing the standard
action. VXML Server will then throw an exception whose message is contained in the
<error> tag. This tag acts almost exactly like the <status> tag and was introduced later to
allow for consistency across all components. An error listed in this tag takes precedence over
an error message listed in the <status> tag. The <status> tag must still be used to indicate
that the standard action element executed without error by containing the word “success”.

CHAPTER 7: STANDARD ACTION ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 41

• new_data – This tag holds the element and session data this standard action element is to
create. Any number of <set_element> and <set_session> tags can appear, one for each
element and session data variable to be created. The log attribute of <set_element> sets
whether the value of the variable is stored in the activity log. The optional type attribute is
used to specify the data type of the variable and can be string, int, float, or boolean. The
create attribute found in both tags determines when the variable is created, before the
element is entered (before_enter), or after the element exits (after_exit).

• set_uid – This tag is used to associate the call with a UID in the user management system.
The content of the tag should be the integer UID.

• set_flag – This tag is used to make the action element act like a flag when visited. If it
appears, a flag with the same name as the action element will be considered triggered and
that fact will be noted in the activity log.

• log – This tag is used to trigger logger events when this standard action element is executed.
Any number of <custom> tags can appear, denoting the triggering of a custom event. The
name attribute holds the name of the data, and the <custom> tag encapsulates the value. Any
number of <warning> tags can appear, denoting the triggering of a warning event. The
<warning> tag encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards
for this call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point
onwards for this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The
contents of the tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the
application to be changed from this point onwards for this call. The <language> tag content
is formatted according to the specification for using languages in VoiceXML (e.g. “en-US”).
The <encoding> tag content is formatted according to the specification for encoding XML
pages (e.g. “UTF-8”).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to
invalidate the call session it retains in memory, call the end of call class or URI (if defined),
and free up the VXML Server port utilized by the call. The session is invalidated only after
the execution method of the standard action element is completed. This tag is rarely used and
would be needed in a few circumstances where some external process takes the call away
from VXML Server such as when using a CTI system to transfer the call to an agent.

CHAPTER 8: STANDARD DECISION ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 43

Chapter 8: Standard Decision Elements
Decision elements apply business logic to decide which exit state to return. A pre-built,
configurable decision element has already defined the business logic and only requires a
configuration to modify its behavior. Standard decision elements, however, are defined by the
developer and have no configuration since they represent decisions specific to an application. For
simple to moderately complex decisions, Unified CVP provides a means of defining decisions
without programming by constructing an XML document (the Unified CVP XML decision
format is described in Chapter 2 of the User Guide for Cisco Unified CVP VXML Server and
Cisco Unified Call Studio). Should this format prove insufficient, Java or XML APIs are
provided to allow the developer to build the business logic programmatically.

A standard decision element, in addition to the functionality provided all components, is allowed
to create and modify element data.

Using the Java API

A standard decision element is built in Java by extending the abstract base class
DecisionElementBase found in the com.audium.server.voiceElement package (this
package’s name is such due to backwards compatibility considerations). It contains a single
abstract method named doDecision that acts as the execution method for the decision element,
and must be implemented by the developer. The method receives two arguments: the name of the
decision element (as a String) and an instance of DecisionElementData. This class belongs to
the Session API and is used to access session information (See Chapter 3: Session API for more
on this API). The method expects a String object in return containing the exit state in the exact
format specified in Builder for Call Studio when the standard decision element was first defined.

The DecisionElementBase class defines many methods in addition to doDecision. These are
used for configurable decision elements, which also extend the class. The only method required
for generic decision elements is doDecision, as it is the only abstract method in
DecisionElementBase.

Using the XML API

As described in Chapter 3: Session API, the standard “inputs” and “settings” XML documents
are sent via POST to the decision element URI. An additional parameter, called “name”, is sent
containing the name of the decision element. Figure 8-1 shows the DTD diagram of the XML
document that must be sent in response. The DTD for the generic action element response is
defined in the file DecisionResponse.dtd found in the VXML Server dtds folder.

CHAPTER 8: STANDARD DECISION ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 44

Figure 8-1

The elements in this XML document are:

• exit_state – This tag contains the string value representing the exit state in the exact format
specified in Builder for Call Studio when the standard decision element was first defined.

• error – This tag reports to VXML Server that an error occurred while executing the standard
decision element. VXML Server will then throw an exception whose message is contained in
the <error> tag. This allows the XML API to throw exceptions just as the Java API does.

• new_data – This tag holds the element and session data this standard decision element is to
create. Any number of <set_element> and <set_session> tags can appear, one for each
element and session data variable to be created. The log attribute of <set_element> sets
whether the value of the variable is stored in the activity log. The optional type attribute is
used to specify the data type of the variable and can be string, int, float, or boolean. The
create attribute found in both tags determines when the variable is created, before the
element is entered (before_enter), or after the element exits (after_exit).

• set_uid – This tag is used to associate the call with a UID in the user management system.
The content of the tag should be the integer UID.

CHAPTER 8: STANDARD DECISION ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 45

• set_flag – This tag is used to make the decision element act like a flag when visited. If it
appears, a flag with the same name as the decision element will be considered triggered and
that fact will be noted in the activity log.

• log – This tag is used to store information in log files for this application when this standard
decision element is executed. Any number of <custom> tags can appear, denoting the
information to insert in the application’s activity log. The name attribute holds the name of
the data, and the <custom> tag encapsulates the value. Any number of <warning> tags can
appear, denoting warnings to be placed in the application’s error log. The <warning> tag
encapsulates the warning message.

• set_default_path – This tag is used to change the default audio path from this point onwards
for this call.

• set_maintainer – This tag is used to change the maintainer e-mail address from this point
onwards for this call.

• set_timeout – This tag allows the timeout length set for this session to be changed. The
contents of the tab must be an integer representing the number of minutes in the timeout.

• set_main_doc_content – This tag allows the encoding and language settings for the main
VoiceXML documents to be changed from this point onwards for this call. The <language>
tag content is formatted according to the specification for using languages in VoiceXML
(e.g. “en-US”). The <encoding> tag content is formatted according to the specification for
encoding XML pages (e.g. “UTF-8”).

• invalidate_session – This tag, if included in the XML, will prompt VXML Server to
invalidate the call session it retains in memory, call the end of call class or URI (if defined),
and free up the VXML Server port utilized by the call. The session is invalidated only after
the execution method of the standard decision element is completed. This tag is rarely used
and would be needed in a few circumstances where some external process takes the call away
from VXML Server such as when using a CTI system to transfer the call to an agent.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 47

Chapter 9: Configurable Elements
The large array of Unified CVP Elements bundled with Unified CVP software encapsulate a lot
of functionality a typical voice application requires. There are, however, situations where more
customized, proprietary, or robust elements are desired. This is certainly the case with action and
decision elements, which tend to be highly specialized for interfacing with proprietary backend
systems or implementing custom business logic. To a lesser extent this applies for voice
elements as well. Unified CVP has tried to provide pre-built voice elements that cover most of
what a typical voice application requires. There is always the option of using VoiceXML insert
elements to handle a situation that there are no voice elements to manage. The disadvantages of
VoiceXML insert elements, however, are in their inconsistencies across various voice browsers,
the size they can be before management becomes burdensome, the difficulty of interacting with
backend systems, and their overall performance. Custom voice elements are the best way to
achieve these goals as they are fast, use the Unified CVP Voice Foundation Classes (VFCs) that
work consistently across multiple voice browsers, and are built with Java, so complex
calculations and integrations are simple.

Unified CVP software was designed to be modular without compromising integration. Custom
elements are integrated into both VXML Server and Call Studio as easily as Unified CVP
Elements are. They can be deployed for a specific application or shared across all applications
and are configured in the Call Studio alongside Unified CVP Elements, including supporting
dynamic configurations. With such seamless integration and effortless deployment, a developer
can, over time, create entire libraries of custom elements to use for their voice applications or
potentially for resale.

Due to the requirements to integrate with both Call Studio and VXML Server, configurable
elements can only be constructed using the Java API. This is not to be confused with standard
action and decision elements, both of which can be constructed using both Java and XML APIs.
It is the configuration of a configurable element that places demands that can only be met by the
Java API. Building standard action and decision elements are fully explained in Chapter 7:
Standard Action Elements and Chapter 8: Standard Decision Elements.

This chapter describes in detail how to create custom voice, action, and decision elements and
integrate them into both Call Studio and VXML Server.

Design

Configurable elements are built by extending an abstract Java class. This base class lays out the
methods used to identify the element’s configuration, how it is executed, and any utility methods
available to it. The developer simply implements the appropriate methods and uses the Java API
provided to build the element. Within the execution method, the developer is then free to use
Java in any way possible, such as creating a complex class hierarchy, accessing files or backend
systems, utilizing third party libraries, even communicating with external systems via HTTP or

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 48

RMI. Voice elements must extend VoiceElementBase, action elements ActionElementBase,
and decision elements DecisionElementBase, all found in the
com.audium.server.voiceElement package. These three base classes all extend a common
base class for configurable elements, ElementBase.

In order for Builder for Call Studio to identify the Java class representing the actual element (as
opposed to another class lower in the class hierarchy or a standard element that also extends that
class), a “marker” Java interface named ElementInterface must be implemented. Only those
classes that implement this interface are shown in the Builder’s Element Pane.

Each configurable element contains a single execution method in which the element performs its
function. This method is called by VXML Server when that element is visited in the call flow.
One can equate this method to the element’s main() method, it begins and ends there.

One argument to the method is an instance of a Session API class. Aside from the standard
functionality available in this class such as obtaining the ANI and setting element data, this API
class can be used to obtain a Java object representing the element’s configuration. VXML Server
automatically creates this configuration object with the data entered by the application developer
in the Builder or made available through a dynamic configuration. The name of the execution
method and the API class passed to it differ for each element type as do the classes encapsulating
the element’s configuration. The execution method for decision and voice elements must return
an exit state and the execution method for action elements do not return anything (since all action
elements explicitly have a single exit state).

The execution method for action and decision elements can throw an AudiumException while
voice elements can throw an ElementException. The developer would throw this exception if
an error was encountered within the execution method that the developer wishes to end the call.
A call that encountered this exception would then visit the error element (or the application-
specific error message if the error element was not defined), and the error message is placed in
the error log including the exception’s full stack trace.

The base class also includes various methods used to define the element’s configuration. These
methods define everything from the element’s name to its possible exit states. These methods are
essential for Builder for Call Studio to visually render the element and its configuration
correctly. Custom elements will be indistinguishable from Unified CVP Elements within the
Builder. The developer can choose as simple or complex a configuration as desired (or even no
configuration at all, though it wouldn’t be very reusable).

Note that element data generated by an element will be overwritten if that same element is
visited again in the call flow. For example, a variable set by a voice element handling the main
menu of an application will be reset the next time the main menu is visited. The activity log,
however, is a historical account of the call, so would have all values of the element data. Should
the developer wish to retain all data created by all visits to the element, they must build that into
the element, such as creating new variables or appending the new value to an existing variable.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 49

Common Methods

The methods listed below are defined in ElementBase and are common to all configurable
elements no matter what type. All custom Unified CVP classes used by these methods are
defined in the com.audium.server.voiceElement package. Refer to the Javadocs for more in
depth explanations of these methods and the classes they utilize.

String getElementName()

This returns the display name for the element. This is the name displayed in the Element Pane of
Builder for Call Studio. There are no restricted characters for the display name, though best
practices recommend a short name that avoids spaces and punctuation.

String getDescription()

This returns the description of the element. The Builder displays this information in a tool tip
when the cursor is placed above the element’s icon in the Element Pane. There is no restriction
on the size or contents of the description.

String getDisplayFolderName()

This returns the name of the folder in the Builder Element Pane in which the element resides. If
null is returned, the element appears directly under the Elements folder (currently, only the
Audio voice element appears directly under the Elements folder). To support a hierarchy of
folders, the folder name can include a full path and the folder tree will automatically be
generated by the Builder (i.e. “MyElements/Financial/Banking/” would put the element icon
inside three levels of folders). Best practices recommend short folder names that avoid spaces
and punctuation.

ExitState[] getExitStates()

This method defines the exit states this element can return. It is necessary in order for the Builder
to properly render the exit state dropdown menu when the element is right-clicked. The method
returns an array of ExitState classes. The ExitState class encapsulates the real and display
name for an exit state. The display name is used only by the Builder and the real name is used
everywhere else (within code or XML decisions). Note that for configurable action elements, this
method need not be implemented as all action elements automatically have a single exit state
named “done”.

ElementData[] getElementData()

This method describes the element data generated by this element. This method returns an array
of ElementData objects or can be null if the element does not create any element data. The
ElementData object encapsulates the variable’s name and its description. The description exits
for future compatibility when the Builder obtains the ability to display a tool tip for element data.
Note that element data does not have a display name.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 50

At this juncture, neither the Builder nor VXML Server use the information returned from this
method. One of the reasons is that for some elements, what element data is created may not be
known until runtime. In future versions, the Builder may utilize the results of this method to aid
the application designer in choosing element data when using substitution. In the meantime, the
method must be configured to return something, either null or at least one element data variable.

Setting[] getSettings()

This method describes the settings this element contains in its configuration. All element types
have settings which allow a designer to control how the element functions when visited. The
Builder uses information returned in this method to render the Settings tab in the Element
Configuration Pane. This method returns an array of Setting objects, where each Setting
object represents a single setting rendered on a separate line in the Element Configuration Pane.
The setting object lists the following information about a setting:

• Its real and display name. The Builder uses the display name in the Element Configuration
Pane and the real name is used everywhere else (such as when referring to the setting in the
element Java code).

• The setting data type. The data type determines how the information is entered in the Builder.
The following lists the different data types available:

o Boolean. The boolean data type displays a dropdown menu with two options, true and
false.

o Enumerated. The enumerated data type displays a dropdown menu with the options
defined in the enumeration.

o Float. The float data type displays a text box that accepts only floating point numbers.
The setting can define upper and lower limits for the entered number.

o Integer. The integer data type displays a text box that accepts only integer numbers. The
setting can define upper and lower limits for the entered number.

o String. The string data type displays a text box that accepts any input.

o Textbox. The textbox data type displays a button that when clicked produces a large text
field that accepts any input. It should be used when text content tends to be long and it is
desirable to give more space to enter the setting value than would normally be given with
a string data type.

• Whether the setting is required or repeatable. A required setting is displayed with a red star
next to it and the Builder will not allow the application to be deployed or validated if this
setting is left blank. A repeatable setting is displayed with a plus sign next to it and can be
given multiple values by the application designer. A setting can be both required and
repeatable in which case there must be at least one value.

• Whether the setting allows substitution within it. Substitution is a mechanism for specifying
the assembly of dynamic content in the Builder at build time. A setting can be configured to

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 51

allow substitution or prevent it, for example if that setting’s behavior would be too
unpredictable if its value were set dynamically. See the User Guide for Cisco Unified CVP
VXML Server and Cisco Unified Call Studio for more on substitution.

• The setting default value. When an element is dragged to the workspace for the first time, the
element can specify default values for all settings. This allows the application designer to
create applications very rapidly by choosing the default values and tweaking them later
during the testing phase. A setting need not have a default value, especially if one cannot be
predicted (such as a call transfer phone number).

• Setting dependencies. A setting can specify criteria that determine whether it appears in the
Builder’s Element Configuration Pane. The criteria involve setting the relationship between
the setting and the other setting(s) that it depends on. One can even build complex logic
expressions for determining when the setting appears. The main purpose for setting
dependencies is to simplify the process of configuring the element in the Builder. By
displaying only the settings appropriate for the configuration the designer desires, settings
that are not applicable can be safely hidden to avoid confusion and possible conflicting
information. For example, a setting for specifying the confidence value of a data capture field
would not be required if the input mode of the element were set to DTMF. So one can set the
confidence setting to appear only when the input mode setting is not DTMF. Many Unified
CVP Elements employ dependencies to simplify their configuration and so are good
examples of how dependencies are implemented.

A setting’s dependencies are defined by using the Dependency Java class. A single
dependency instance defines any number of setting values combined with the “and” logical
operator. For example, single Dependency object can define that a setting appears only if one
setting is set to “true” and another is set to “10”.

A setting can take an array of Dependency objects. Each Dependency object in the array is
considered combined with the “or” logical operator. So to make a setting appear when one
setting is “true” or another setting is “10”, two Dependency objects are created and placed in
a 2-member array.

Configuring dependencies for settings can be complex and involved, though once set up, they
can greatly simplify the configuration of a complex element. The Javadocs for the various
classes describe what each class and its member methods are used for.

Configuration Classes

As described in the above section, each configurable element’s execution method receives a
Session API class that is used to obtain the element’s configuration. Do not confuse this with the
methods in ElementBase that are used to describe the configuration to Builder for Call Studio.
We are referring here to a Java object that contains a full configuration the application designer
entered in the Builder or that came from a dynamic element configuration Java class or via the
XML API.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 52

These Java classes, ActionElementConfig, DecisionElementConfig, and
VoiceElementConfig are found in the com.audium.server.xml package and all extend the
base class ElementConfig. These classes are identical to those used when constructing dynamic
element configuration classes. Refer to Chapter 6: Dynamic Element Configurations for a good
description of these configuration classes. While dynamic configurations are responsible for
creating and editing a configuration object, a custom element uses these classes basically to read
their information. There is little reason to edit the configuration classes within a custom element
as the configuration object applies only to that particular use of the element (revisiting the
element will provide it with a new configuration).

Action Elements

A configurable action element extends the abstract Java class ActionElementBase found in the
com.audium.server.voiceElement package. This class has default implementations for the
abstract configuration methods inherited from the ElementBase class. The default
implementation sets an empty configuration (null name, folder name, description, element data,
settings, and one exit state named “done”). This was done because this same base class is
extended to create standard action elements as well as configurable action elements. What makes
a configurable action element different is the fact that it defines a specific configuration, so the
custom action element must re-implement all the configuration methods rather than relying on
the default implementation. Some of the default implementations, though, may be appropriate
even for a custom action element. For example, the default implementation of the
getExitStates method returns a single exit state named “done”, which applies to all action
elements and so a custom action element need not implement this method.

The execution method, doAction(), receives an instance of the API class ActionElementData.
This class belongs to the Session API and is used to access session information (See Chapter 3:
Session API for more on this API). In addition to providing access to session information, this
API class is also used to return the action element configuration that drives the functionality of
the element. The getActionElementConfig() method in ActionElementData returns an
ActionElementConfig object. VXML Server takes care of obtaining the appropriate
configuration and returning it in this method, whether or not the configuration is dynamic. The
element need not worry about where the configuration came from.

ActionElementConfig is almost a direct extension of the base ElementConfig class. It is kept
separate for future differentiation.

Decision Elements

A configurable decision element extends the abstract Java class DecisionElementBase found in
the com.audium.server.voiceElement package. This class has default implementations of the
abstract configuration methods inherited from the ElementBase class. The default
implementation sets an empty configuration (null name, folder name, description, element data,
settings, and exit states). This was done because this same base class is extended to create

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 53

generic decision elements as well. What makes a configurable decision element different is the
fact that it defines a specific configuration, so the custom decision element must re-implement all
the configuration methods rather than relying on the default implementation. Some of the default
implementations, though, may be appropriate even for a custom decision element. For example,
if the decision element creates no element data, the custom decision element need not implement
the getElementData method as the default implementation is sufficient.

The execution method, doDecision(), receives an instance of the API class
DecisionElementData. This class belongs to the Session API and is used to access session
information (See Chapter 3: Session API for more on this API). In addition to providing access
to session information, this API class is also used to return the decision element configuration
that drives the functionality of the element. The getDecisionElementConfig() method in
DecisionElementData returns a DecisionElementConfig object. VXML Server takes care of
obtaining the appropriate configuration and returning it in this method, whether or not the
configuration is dynamic. The element need not worry about where the configuration came from.

DecisionElementConfig is almost a direct extension of the base ElementConfig class. It is
kept separate for future differentiation.

Voice Elements

Voice elements are more complex custom elements because they are responsible for producing
VoiceXML pages to send to the voice browser. The execution method for voice elements
contains more arguments and the voice element class requires additional configuration methods
to be implemented. Finally, while action and decision elements complete in one call of the
execution method, a typical voice element requires multiple VoiceXML pages to be produced in
a certain order determined at runtime. Voice elements, therefore, must have state management
where other elements do not.

It is important to understand how voice elements integrate with VXML Server and the voice
browser to prepare the developer for constructing voice elements. Unlike a traditional static
VoiceXML page or a script-generated VoiceXML page that is accessed directly from the voice
browser, the system uses VXML Server as an abstraction layer between the voice browser and
the voice element that produces the VoiceXML pages. This abstraction layer not only allows the
developer to avoid coding to a specific browser, it also saves the developer from having to deal
with HTTP request and response management. Each page the voice element produces is passed
through VXML Server, which acts as the central access point for the voice browser. Each link
for a new document specified in the VoiceXML page points back to VXML Server and VXML
Server’ internal call flow data indicates which voice element it is currently visiting. All
arguments passed by the voice browser through those links are sent by VXML Server to the
voice element for it to manage.

Each VoiceXML page generated by a voice element begins as a “shell” page that contains the
VoiceXML VXML Server requires. The voice element then adds to this page any custom

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 54

VoiceXML content desired before passing it back to VXML Server to send to the voice browser.
Most voice elements will require multiple pages, the content of each depending on the actions of
the caller. When a voice element is done producing VoiceXML pages, it returns an appropriate
exit state so VXML Server can visit the next element according to the call flow. As long as the
proper VoiceXML is passed back through the execution method, the developer is free to do
anything allowed by Java, including creating helper classes, accessing backend systems, etc.

Having a single voice element class produce multiple VoiceXML pages poses a problem. With
multiple calls simultaneously accessing the element in various stages of a call, how is the voice
element to know where a particular caller is within the element at any one moment in time?
Unified CVP helps by providing “scratch space” for custom voice elements to store any data it
wishes. VXML Server maintains separate scratch data for each call and makes this data available
to the voice element through the Session API. Usually the data stored in the scratch space will be
the state of the element for a particular call. Each time the execution method is called, the
element can check the scratch space, determine where the caller is within the element’s internal
call flow, and produce the appropriate VoiceXML page. Borrowing web application
terminology, scratch space provides “session and state management” functionality to voice
elements. Any Java class can be added to the scratch space so the developer can get as complex
as desired in handling the state management. Note that when the voice element is complete, the
scratch space is automatically cleared by VXML Server, meaning that a voice element that is
revisited in the same call will start off with empty scratch space.

Figure 9-1 shows a diagram that visualizes the above points concerning how a voice element
interacts with VXML Server and the voice browser.

Figure 9-1

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 55

The diagram shows a typical exchange between the voice browser, VXML Server, and several
voice elements. In step 1, the voice browser makes an HTTP request for a VoiceXML page to
VXML Server. According to its record of the application call flow, VXML Server in step 2
accesses the voice element Foo. The voice element Foo is shown on the right. The element is
coded to contain within it a small call flow with three possible exit states. It can produce three
separate VoiceXML pages, A, B, and C. In step 2, the scratch space is empty, indicating that the
element is being visited for the first time. Foo therefore needs to produce the VoiceXML page A.
Note that the A contains in it a submit that points back to VXML Server and includes two
arguments “arg1” and “arg2”. In step 3, Foo produces the VoiceXML page by assembling VFC
objects and passes those objects back to VXML Server. Before exiting, it puts in the scratch
space information indicating that page A was completed. Foo returns a null exit state, indicating
to VXML Server that the voice element is not done. In step 4, VXML Server converts the VFC
objects into a complete VoiceXML page that is sent back to the voice browser. In step 5, the
voice browser has parsed the VoiceXML and makes a new request for the next VoiceXML page.
The request contains the two arguments specified in the VoiceXML page A. In step 6, VXML
Server knows to go back to Foo because it previously returned a null exit state. It revisits Foo,
passing along the two arguments. Since VXML Server maintains the session for each call, and
the scratch space is stored in the session, Foo can access the Session API to get the scratch space.
Foo’s scratch space indicates that A is complete. It makes a decision C based on the arguments
passed to it and chooses option 3, therefore requiring page D to be produced. Foo also notes that
after producing this page, it is done. In step 7, Foo returns the VFC objects containing page D
and returns with the exit state “Exit3”. In step 8, VXML Server produces the VoiceXML page
and sends it to the voice browser. In step 9, the voice browser parsed the VoiceXML page and
asks for the next one. Finally, in step 10, VXML Server notes that Foo returned an exit state of
“Exit3” so refers to the application call flow to discover where to go once Foo returns an exit
state of “Exit3”. It determines that the next voice element to access is “Bar”. The call continues
in this manner until it ends.

Restrictions and Recommendations

Unified CVP tries to make as few restrictions on building custom elements as possible. However,
in order to ensure proper integration of custom voice elements with the rest of the system, some
restrictions must be set. Additionally, there are guidelines that do not necessarily need to be
followed, though they are recommended for design and tighter integration considerations.

Restrictions

• The voice element must produce VoiceXML using the Unified CVP Voice Foundation
Classes (VFCs). The VFCs are the mechanism through which the voice element produces the
VoiceXML to send to the voice browser and VXML Server is tightly integrated with them.
See Appendix A: The Voice Foundation Classes for a full description of the VFCs.

• The voice element cannot define its own root document. The root document is automatically
generated by VXML Server and is vital for many features to function such as the ability to
activate hotlinks, perform logging, and activate the end of call action.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 56

• The voice element cannot use a <submit> or <goto> to link to a VoiceXML page external to
VXML Server. When it is time to return to the voice element in a VoiceXML page, a URL
pointing back to VXML Server must be used. This is required by the design using VXML
Server as the abstraction layer between the voice browser and the voice element. The only
exception to this rule allows for the call to continue from a Unified CVP application to an
external application but only if steps are taken to properly end the VXML Server session
first.

• The VoiceXML <form> the developer wishes the browser to visit first must be named
“start”.

• The voice element must obtain the VPreference object to use in all VFC constructors by
calling the getPreference() method in VoiceElementData. This VPreference object
contains, among other things, the voice browser choice made by the application designer in
Builder for Call Studio (or dynamically in a start of call action). VPreference is a VFC and
is described in more detail in Appendix A: The Voice Foundation Classes.
VoiceElementData is described in more detail in the following sections.

Recommendations

• The interaction category of the activity log is used to record the activity of callers within the
VoiceXML pages produced by voice elements. Since this activity occurs on the voice
browser, the only way to record this in the VXML Server logs is to store the appropriate
information within the VoiceXML and submit it back to VXML Server. Unified CVP defines
an interaction logging convention for recording caller behavior within the VoiceXML. By
conforming to this convention, the developer ensures that the activity log will contain the
detail expected for application testing and reporting. While interaction logging is not required
in a custom voice element, not performing logging will reveal nothing about what the callers
did within the element. See the section entitled “Interaction Logging” in this chapter for
more. A full description of the activity log can be found in Chapter 5 of the User Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio.

• Try to produce VoiceXML that conforms to the VoiceXML specifications, understanding
that using browser-specific functionality will prompt that element to function correctly only
on that browser.

• Throw an ElementException where appropriate so an error logger event can be thrown.
Exceptions should indicate the voice element encountered a situation which prevents it from
doing its assigned task. Non-fatal exceptions should be caught within the voice element (and
possibly linked to exit states) and warnings placed in the error log.

• Do not end the call in the voice element manually using the <exit> or <disconnect> tags.
Instead, exit the voice element with a specific exit state that can then be linked to a hang-up
element in the call flow. If it must be done, use <disconnect> so that VXML Server can
detect the hang-up and execute the on end call action. Using <exit> would cause VXML
Server to not know the calls had ended, using up an VXML Server port until it times out on
its own. This is obviously not a desirable situation.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 57

• A voice element can add any Java object to scratch space via the setScratchData() method
in VoiceElementData. Scratch data is used for voice element internal uses only since the
scratch space is cleared when the voice element ends, even if it is revisited in the same call.
Additionally, the data in the scratch space is stored in the session managed by VXML Server.
To minimize performance issues, placing large Java objects in the scratch space is not
suggested.

VoiceElementBase Methods

A voice element extends the abstract Java class VoiceElementBase found in the
com.audium.server.voiceElement package. Like other elements, it shares methods obtained
from the base class ElementBase described in the previous sections. VoiceElementBase,
however, adds many additional methods that apply to voice elements only. Its execution method
is also more complex.

Execution Method

String addXmlBody(VMain vxml, Hashtable params,
 VoiceElementData data) throws VException, ElementException

This is the execution method for voice elements. The arguments to the method are:

• vxml. The VMain object is the container VFC object in which all VoiceXML content is added
(by adding other VFC objects to it). The desired VoiceXML page to produce must be
assembled using the VFCs and added to this object. If no VFCs are added, an incomplete
VoiceXML page will be produced, causing the voice browser to encounter an error. Simply
add all VForm objects to this object. VXML Server will take care of the rest. Note that the
form you wish to be visited first must be named start. This is very important!

• params. The params object is a Hashtable that contains all HTTP arguments passed by the
voice browser through VXML Server. For example, if the voice element produces a
VoiceXML page with a variable named dataToCollect that is then included in a submit
argument list, the params Hashtable will contain an entry with the key “dataToCollect” and
the value as a String. To access it, the developer would write:

String data = (String) params.get("dataToCollect");

• data. The VoiceElementData object belongs to the Session API and is used to access session
information (See Chapter 3: Session API for more on this API). Aside from the standard
functionality, VoiceElementData provides all data required by the voice element such as
ways to access the scratch space, obtain the VPreference object used to instantiate the
VFCs, and obtain the voice element’s configuration object, VoiceElementConfig.

The String return value of the method must refer to the real name of the voice element’s exit
state. The real name of the exit state must match one of the names given in the
getExitStates() configuration method. Since voice elements can span multiple VoiceXML
pages, returning null indicates that the voice element is not done and the execution method
should be visited again when the voice browser sends its next request to VXML Server. Only

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 58

when the method returns a proper exit state will VXML Server follow the application call flow
and proceed to the next element. The method throws an ElementException that is used to
indicate an error occurred within the execution method that prevented the voice element from
doing its assigned task. The error message will be logged in the application’s error log and the
error element (if applicable) will be visited. This method additionally throws a VException,
which is thrown by incorrectly configured VFCs and does not need to be thrown explicitly by the
element execution method itself.

Utility Methods

String getSubmitURL()

One of the restrictions listed for creating a voice element is to use a Unified CVP-specified URL
when submitting back to VXML Server. This method returns the URL to use. The developer
would use this URL in a <submit> adding any arguments desired.

VAction getSubmitVAction(String args, VPreference pref)

This is a convenience method which provides more than getSubmitURL() does by returning a
new VAction object containing the entire submit to VXML Server along with any arguments
passed as input (as a space-delimited list). The VPreference object is required to instantiate the
VAction object and can be obtained by calling the getPreference() method of the
VoiceElementData object. The VAction object returned by the getSubmitVAction() method is
just like any other, the developer can add additional actions to it as desired.

VAction getSubmitVAction(VAction existing, String args)

This convenience method does the same as the above method except it adds the submit to an
existing VAction object passed as input. There is no VPreference object required because no
new VFC objects are instantiated in this method. This method may be more convenient if the
developer wants to perform some actions (such as the declaration or assigning variables) before
the submit occurs.

See Appendix A: The Voice Foundation Classes for a full description of the VFCs.

VoiceElementResult createSubVoiceElement(VoiceElementBase mainVoiceElement,
 VMain vxml, Hashtable params, VoiceElementData data)

There are times when one wishes to create a voice element that acts a combination of a group of
existing voice elements, something like a “super-element”. While one can simply build this
element from scratch, it would be desirable to somehow leverage the work already done with
existing voice elements. The advantage would be that the super-element code need not contain
any VFC code, it would only act as the container for sub-elements within it. This is possible
utilizing the createSubVoiceElement() method.

This method is intended to be called from an instance of a sub-element, not the super-element.
The super-element first creates an instance of the sub-element and then calls this method from

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 59

that instance. This executes a sub-element within the super-element using the same context. The
sub-element executes normally, it reads from a configuration object and creates VFC classes.
The difference is that the super-element can take what the sub-element produced and modify it or
add to it.

The arguments to the createSubVoiceElement() method are required in order to provide the
correct context for the sub-element to execute within. A voice element requires the correct
context in order for it to be able to read from a configuration object, use the appropriate VFC
objects, and have access to the system. The first argument to the createSubVoiceElement()
method must be an instance of the super-element (which will be “this”). The last three
arguments are simply the arguments the super-element receives in it’s addXmlBody() method.

The VoiceElementResult object returned is a small data structure class containing the exit state
of the sub-element (if any), and whether the sub-element produced any VoiceXML. This last
value is important because the only time a voice element is allowed to produce no VoiceXML is
when it is visited for the last time. It returns an exit state and no VoiceXML so VXML Server
knows to visit the next voice element immediately rather than producing a VoiceXML page first
and visiting the element after the browser makes the next request. If the sub-element does not
return any VoiceXML, the super-element must either add its own VoiceXML content directly,
visit another sub-element, or exit with an appropriate exit state. After the
createSubVoiceElement() method executes, the VMain object will contain a complete
VoiceXML page. If the VoiceElementResult object indicates that the sub-element returned no
VoiceXML, VMain will contain an incomplete VoiceXML page.

Building super-elements in this manner is a tricky process. The developer must be aware of the
following:

• Since the sub-element executes in the super-element’s context, it shares the same
configuration. The consequence of this is that the super-element must ensure that its
configuration contains all the settings and audio groups expected by the sub-element. If it
does not, the super-element must modify its configuration object before calling the
createSubVoiceElement() method or the sub-element may throw an exception. This issue
is compounded when the super-element encapsulates multiple sub-elements that have settings
or audio groups with the same real name. The super-element’s configuration would need to
define separate settings for each sub-element’s settings and then rename them appropriately
in order for the sub-element to understand it.

• The scratch space for a super-element is shared with all sub-elements. The consequence for
this is that any scratch data stored by the super-element must not conflict with the scratch
data stored by the sub-element. Many times, though, voice elements do not publicize the
names of the scratch data used. A good bet would be to name the super-element scratch data
uniquely so there will not be any conflicts. Another consequence is that the super-element
must be responsible for clearing the scratch data when a sub-element is complete. VXML

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 60

Server automatically clears the scratch data, but only for the elements it is aware of, which in
this case is only the super-element.

• The element data namespace is shared across the super-element and all sub-elements. Again,
VXML Server uses a separate namespace for each element it is aware of, which means the
super-element. The super-element must ensure that element data created by one sub-element
does not overwrite the element data created by another sub-element.

• The super-element must handle all the “internal call flow” between sub-elements.
Essentially, the super-element must perform the tasks VXML Server normally performs to
handle the call flow between sub-elements. This means keeping track of state, managing the
exit states of sub-elements, and knowing when to leave the super-element with its own exit
states.

Even though creating super-elements can be a tedious and potentially error-prone process, it may
still be preferable over creating a new voice element from scratch.

Configuration Methods

In addition to the existing configuration methods defined in ElementBase, two additional
methods are required for a voice element class to implement. These methods deal with audio, a
feature unique to voice element configurations. The values returned by these methods are used
by Builder for Call Studio to render the contents of the Audio tab of a voice element’s
configuration.

HashMap getAudioGroups()

Unlike element settings, which are defined in a simple one-dimensional array, audio groups are
combined into sets. This is done to facilitate organization and ease of use when configuring the
voice element in the Builder. When right-clicking on the Audio Groups folder in the Element
Configuration Pane, the dropdown menu lists all the audio group sets. The designer can then
choose an audio group within a set by selecting the appropriate name from the submenu. This
method is used to return the audio groups for the element and the sets they belong to.

A single audio group is contained within a single AudioGroup instance (AudioGroup is found in
the com.audium.server.voiceElement package). The object encapsulates the audio group’s
real name, display name, and description. The display name is shown within the dropdown menu
in the Builder, the real name is used for all other situations. The audio group description is
displayed as a tool tip when the cursor points to the audio group in the Element Configuration
Pane.

The AudioGroup class also defines setting dependencies. As with element settings, the
appearance of audio groups can also depend on the values of certain settings. Again, this exists to
simplify configuring a complex voice element in the Builder. For example, an audio group that
introduces a confirmation menu would not be necessary if a setting determining if a confirmation
should exist is turned off. See the previous section describing the getSettings() method for a

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 61

full description of how dependencies work. Configuring audio groups to depend on settings
works the same way as configuring settings to depend on other settings.

The audio groups are arranged in sets by storing them in a HashMap Java collection. The keys of
the HashMap are the names of the audio group sets and the values of the HashMap are arrays of
AudioGroup instances that belong to their set. The array represents the audio groups to display
within that set. The order specified in the array is the order they appear in the Builder.

String[] getAudioGroupDisplayOrder()

This method is provided for the developer to determine the order in which the sets of audio
groups appear in the Builder. The String array is a list of set names in the order in which they
should appear in the dropdown menu. The values must match those used as keys to the HashMap
returned by the getAudioGroups() method.

Interaction Logging

As listed in one of the recommended guidelines, interaction logging is a Unified CVP-defined
mechanism for voice elements to record to the VXML Server logs the actions of a caller when
they are interacting with the voice browser. Many voice browsers have the ability to record
detailed logs of a phone call and a caller’s interaction with a VoiceXML page. These logs,
however, are stored on the voice browser, which may be inaccessible or at least difficult to
access. Additionally, logs on the VXML Server side and the browser side would need to be
cross-referenced in order to determine what happened in a particular call. It would be desirable to
store all pertinent information in one place, which is what the interaction logging attempts to do.
Interaction logging is stored in the application’s activity log, which already stores other
information such as the ANI and DNIS, what elements were visited in the call with what exit
states, element data, etc. While it does not have the fine level of detail that a browser log can
provide, interaction logging is sufficient for an administrator to determine what happened in a
call or a designer to calculate call statistics to aid in improving the application.

Since VoiceXML is used to tell the voice browser how to interact with the caller, it must also be
used to keep track of the caller’s activity. The mechanism Unified CVP uses to do this is to
create a single VoiceXML variable in which all the interaction logging data is stored. As new
data becomes available, it is appended to the variable using a convention to delineate the data.
This variable is automatically defined in the VXML Server-generated root document; all the
voice element developer needs to do is append content to it. The variable is named
audium_vxmlLog, though a voice element developer should not use this name directly in their
code. Instead, they should use the Java constant VXML_LOG_VARIABLE_NAME, defined in
VoiceElementBase to refer to the variable. The reason for this is that the VoiceXML variable
name is subject to change while the Java constant name is not. The Java constant will always
contain the name of this variable so the developer need not recompile their code if the
VoiceXML variable name changes.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 62

Once a VoiceXML page is visited and the audium_vxmlLog variable is filled with content, it
must be passed back to VXML Server for parsing to place in the activity log. This means that
every submit back to VXML Server must include this variable as an argument. If the voice
element uses the getSubmitURL() method to obtain the submit URL, audium_vxmlLog must be
explicitly added to the argument list in order to log correctly. Another advantage of using the
getSubmitVAction() methods are that they already add this variable to the submit.

The convention used to for interaction logging appends the action name, description, and
timestamp using the following format:

“|||ACTION$$$VALUE^^^ELAPSED”

where:

• ACTION is the name of the action. There are currently seven different actions that can be
logged (the names are exactly as listed, all lowercase):

o audio_group. This is used to indicate that the caller heard an audio group play. The value
is the name of the audio group.

o inputmode. This is used to report how the caller entered their data, whether by voice or
by DTMF keypresses. The value is stored in the inputmode VoiceXML shadow variable.

o utterance. This is used to report the utterance as recorded by the speech recognition
engine (available using a VoiceXML shadow variable). The value is the actual utterance.

o interpretation. This is used to report the interpretation as recorded by the speech
recognition engine. The value is the actual interpretation.

o confidence. This is used to report the confidence as recorded by the speech recognition
engine (available using a VoiceXML shadow variable). The value is the confidence
value.

o nomatch. This is used to indicate the caller entered the wrong information, incurring a
nomatch event. The value is the count of the nomatch event.

o noinput. This is used to indicate the caller entered nothing, incurring a noinput event. The
value is the count of the noinput event.

• VALUE is the value (description) to put in the log.

• ELAPSED is the number of milliseconds since the VoiceXML page was entered. This is
required in order to keep an accurate timestamp in the activity log. Luckily, the VXML
Server-generated root document provides a Javascript function named
application.getElapsedTime(START_TIME) that returns the number of milliseconds
elapsed since the time specified in START_TIME. A VoiceXML variable is declared in the root
document that holds the time the VoiceXML page was entered and should be passed as input
to this method. The variable name is audium_element_start_time_millisecs, though just
as with audium_vxmlLog, a Java constant defined in VoiceElementBase named
ELEMENT_START_TIME_MILLISECS should be used to refer to this variable.

CHAPTER 9: CONFIGURABLE ELEMENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 63

Interaction logging is best explained though several examples. The first example wishes to add to
the interaction log the fact that the xyz audio group was played. The VoiceXML necessary to
produce this logging as per the specified convention would be:

<assign name="audium_vxmlLog" expr="audium_vxmlLog+'|||audio_group$$$xyz^^^' +
application.getElapsedTime(audium_element_start_time_millisecs)"/>

Note that the expr attribute of <assign> is used because the value is actually an expression that
concatenates various strings together. First, the audium_vxmlLog variable must be listed because
we are appending new data to it. We append the string listing the audio group action and the
name of the audio group, all contained within single quotes because this is a string literal. The
final part is the Javascript, which cannot be within single quotes.

To do this within a voice element, one would have to use the VAction object (since it handles the
<assign> tag) like this:

VAction log = VAction.getNew(pref, VAction.ASSIGN,
 VXML_LOG_VARIABLE_NAME,
 VXML_LOG_VARIABLE_NAME + "+'|||audio_group" +
 "$$$xyz^^^' + application.getElapsedTime(" +
 ELEMENT_START_TIME_MILLISECS + ")",
 VAction.WITHOUT_QUOTES);

Note that the audium_vxmlLog and audium_element_start_time_millisecs variables are not
mentioned by name, the VXML_LOG_VARIABLE_NAME and ELEMENT_START_TIME_MILLISECS Java
constants are used instead. Where Java constants are used, they must appear outside the double
quotes defining the string. Also note that pref is expected to be a valid VPreference object.

In a more complex example, the utterance of a field named xyz is to be appended to the log. The
utterance is determined by a VoiceXML shadow variable. The VoiceXML would look like:

 <assign name="audium_vxmlLog" expr="audium_vxmlLog + '|||utterance$$$' +
xyz.$utterance + '^^^' + application.getElapsedTime(
audium_element_start_time_millisecs)"/>

and the VAction object would be configured like:

VAction log = VAction.getNew(pref, VAction.ASSIGN,
 VXML_LOG_VARIABLE_NAME,
 VXML_LOG_VARIABLE_NAME + "+'|||utterance" +
 "$$$' + xyz.$utterance + '^^^' + " +
 "application.getElapsedTime(" +
 ELEMENT_START_TIME_MILLISECS + ")",
 VAction.WITHOUT_QUOTES);

See Chapter 5 in the User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call
Studio for more detail about the different logs VXML Server records and the data that can appear
in the logs.

CHAPTER 10: APPLICATION START CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 65

Chapter 10: Application Start Classes
Application start classes are unlike most components in that they are not related to a call session.
Application start classes are instead associated with a particular application and are executed
when the application itself is initialized or updated. Currently, only the Java API can construct
code to run when an application starts.

An application can define in its application settings any number of application start classes.
VXML Server will execute the classes sequentially in the order they appear in the application’s
settings. By conforming to this order, a developer can create an application start class that stores
information that can then be referenced by subsequent start of application classes.

The application settings can specify that an error on a particular application start class will cancel
the application’s deployment. This is an optional attribute and by default the system will not
allow an error in one of these classes to stop the application deployment. If set, an error
encountered in the class will stop the application from being deployed, an error message will
appear in the application server console, and an error event will be thrown to be logged by any
error loggers. This attribute is provided should an application require its application start class to
run without error for calls the application to succeed.

There are four situations where the application start class is run:

• The application server is launched. VXML Server is configured to begin initializing
applications once it is loaded by the application server. This process triggers each
application’s start classes to be run.

• The VXML Server web application is restarted. Most application servers provide the ability
to restart just a certain web application running within it rather than restarting the entire
application server. The act of restarting the web application that defines the VXML Server
will prompt it to start the application loading process just like an application server restart.

• An application is deployed after the VXML Server has started. Using the deployment
administration scripts, an application can be deployed while the system is actively handling
calls to other applications. When the application is loaded, the application start classes will
be run.

• An application is updated. The process of updating an application prompts VXML Server to
create a new instance of the application in memory, while keeping the old instance in
memory long enough for all existing callers to complete their calls. The new application must
initialize itself, including calling all application start classes.

An application start class only has access to the Global API, which allows for the creation of
global and application data. It does not have access to the Session API because it is not run
within a call session and is associated only with an application, not a call.

CHAPTER 10: APPLICATION START CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 66

The main purpose for an application start class would be to prepare information that would then
be used by call-specific components, especially if the setup process takes a long time to run. For
example, if an application has elements that are written to access a backend database or
mainframe system, they could initiate connections to that system each time they need to. This,
however, would incur overhead in initiating the connection each time. An alternative would be to
write an application start class that will open up the connection to the database or mainframe and
perform all necessary setup. The class could take as long as necessary to run because the
application is being initialized and is not actively taking calls. The application start class could
then store the connection in application data that the elements could then access when needed.
This solution incurs overhead at the best time, during application initialization, and eliminates it
at the worst time, during a call.

The application start class action is built by implementing the Unified CVP class
StartApplicationInterface found in the com.audium.server.proxy package. It contains a
single method named onStartApplication that is the execution method for the application
start class. This method receives a single argument, an instance of ApplicationStartAPI. This
class belongs to the Global API and is used to access and create application data and global data
(see the User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Chapter
2 in the section entitled Variables for more on application and global data). The method does not
have a return value. It is expected that should an unrecoverable error occur, the application start
class will throw an AudiumException.

CHAPTER 11: APPLICATION END CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 67

Chapter 11: Application End Classes
Application end classes are unlike most components in that they are not related to a call session.
Application end classes are instead associated with a particular application and are executed
when the application itself is taken down or updated. Currently, only the Java API can construct
code to run when an application starts.

An application can define in its application settings any number of application end classes.
VXML Server will execute the classes sequentially in the order they appear in the application’s
settings. By conforming to this order, a developer can create an application end class that stores
information that can then be referenced by subsequent end of application classes.

Unlike application start classes, an error in one application end class does not cancel the
application release, once started the application will be released no matter what occurs. Should
an error occur in an application end class, an error event will be thrown for any error loggers to
report.

There are four situations where the application end class is run:

• The application server is shut down. VXML Server is configured to shut down all of its own
operations as well as shut down each individual application by running their application end
classes.

• The VXML Server web application is restarted. Most application servers provide the ability
to restart just a certain web application running within it rather than restarting the entire
application server. The act of restarting the web application that defines VXML Server will
prompt it to initiate the application unloading process, including calling its application end
classes just like an application server restart.

• An application is released after the VXML Server has started. Using the release
administration scripts, an application can be released while the system is actively handling
calls to other applications. VXML Server will first run all application end classes for the
application and then release it from memory.

• An application is updated. The process of updating an application prompts VXML Server to
create a new instance of the application in memory, while keeping the old instance in
memory long enough for all existing callers to complete their calls. Once all calls have
completed with the old instance, that instance’s application end classes are run.

An application end class only has access to the Global API, which allows for the creation of
global and application data. It does not have access to the Session API because it is not run
within a call session and is associated only with an application, not a call.

The main purpose for an application end class would be to perform cleanup operations for an
application. Typically this would involve closing database connections or files that were opened

CHAPTER 11: APPLICATION END CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 68

by an application start class or by code run within calls to the application. Application end
classes have the ability to create application or global data, though the concept of creating data
right before the application is released would seem pointless. The one situation where this would
be useful would be to set data that a subsequent application end class could use. For example, an
application start class could open up a database connection and store it in global data so that all
applications deployed on VXML Server could utilize the connction. This connection would need
to be closed, but if there are multiple applications with multiple application end classes, the
desire would be to close the connection by the last application to be released, in case the
application end classes need to use the connection. Each application start classes could increment
an application count value stored in global data that the application end classes would decrement.
The application end class that yielded a zero would know that it was the last application released
and so close the database connection.

The application end class action is built by implementing the Unified CVP class
EndApplicationInterface found in the com.audium.server.proxy package. It contains a
single method named onEndApplication that is the execution method for the application end
class. This method receives a single argument, an instance of ApplicationEndAPI. This class
belongs to the Global API and is used to access and create application data and global data (see
the User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Chapter 2 in
the section entitled Variables for more on application and global data). The method does not
have a return value. It is expected that should an unrecoverable error occur, the application end
class will throw an AudiumException.

CHAPTER 12: SAY IT SMART PLUGINS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 69

Chapter 12: Say It Smart Plugins
Similar to the ability for a developer to create custom elements, a developer can create their own
Say It Smart plugins. A developer can produce plugins that handle brand new Say It Smart types
as well as plugins that extend the functionality of existing Say it Smart plugins. Due to the
integration requirements for Say It Smart plugins, they can be built only by using the Java API.

Custom Say It Smart plugins are integrated into both VXML Server and Call Studio as easily as
Unified CVP Say It Smart plugins are. They can be deployed for a specific application or shared
across all applications and are configured in the Studio in the same manner Unified CVP Say It
Smart plugins are. With such seamless integration and effortless deployment, a developer can,
over time, create entire libraries of custom Say It Smart plugins to use for their voice
applications or potentially for resale.

This chapter describes in detail how to create custom Say It Smart plugins and integrate them
into both Call Studio and VXML Server.

Design

Say It Smart plugins were designed to be very simple to build, extend, and deploy. Much of the
design mirrors that of custom configurable elements, though Say It Smart plugins are simpler
and set far fewer restrictions. Their sole purpose is to take input representing formatted data and
convert it into a list of pre-recorded audio files with TTS backups and pauses if desired.

Similar to configurable elements, a Say It Smart plugin is constructed by creating a Java class
that extends an abstract base class, SayItSmartBase. The base class defines abstract methods
that must be implemented by the plugin to describe how Builder for Call Studio displays the
plugin. A plugin that is to appear in the Builder must implement a Java marker interface named
SayItSmartPlugin. Unlike elements, though, Say It Smart plugins have two execution methods,
one for converting data to a set of audio files with TTS backups, and the other for converting the
data using TTS only. These execution methods may throw a SayItSmartException that is used
to indicate the inability of the plugin to convert the data passed to it.

The configuration of a Say It Smart plugin involves four options. The first is the Say It Smart
type (such as phone number or date). Each type must be defined in a separate plugin class. The
second option is the chosen input format. Input formats list how to expect the input data to arrive
(such as a date with just the month and year or a date with the month, day and year). A plugin
defines all the input formats it supports. The next option is the chosen output format. Output
formats list how to render the converted data (such as reading back a time where 12:00AM is
read back as “noon” as opposed to “12 A M”). Output formats are dependent on input formats,
so when the input format changes, the list of output formats available changes accordingly. The
plugin defines these dependencies using a configuration method. The final option is the fileset.
Filesets determine what group of audio files are used to render the same data (such as one that

CHAPTER 12: SAY IT SMART PLUGINS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 70

reads back a better-sounding number by requiring more audio files). Filesets are dependent on
output formats, so when the output format changes, the list of filesets available changes
accordingly. The plugin defines these dependencies using a configuration method. Note that a
fileset deals with audio files so does not apply when the Say It Smart value is rendered in TTS
only.

As usually occurs with components configured in Builder for Call Studio, each type, input
format, output format, and fileset has a real name, display name, and description. The display
name is shown in the Builder in dropdown menus. The real name is used everywhere else. This
design allows the Say It Smart plugin developer to use a display name that visually represents the
appropriate information but choose a real name that is small, easy to remember, and will not
change. As long as the real name stays the same, the developer can change the display name of
any component without affecting backwards compatibility. At this point, the descriptions are not
displayed in the Builder and are there for future compatibility.

All Java classes related to Say It Smart plugins are found in the
com.audium.server.sayitsmart package.

Note that unlike elements, Say It Smart plugin classes are instantiated as needed. This means that
the developer is free to use static, member, and local variables as they would expect. It is still
recommended to avoid using static variables in Say It Smart plugin classes unless they are static
final because static variables will be reset whenever the application is updated.

Execution Methods

SayItSmartContent convertToFiles(Object data, String inputFormat,
 String outputFormat, String fileset)

This is the execution method for converting data to a list of audio files with TTS backups. The
first argument is the data to convert. This data can be any Java object and it is up to the plugin to
cast to the appropriate type (usually depending on what the input format is). Most of the time,
though, it will be considered a String. The next three arguments list the real names of the input
format, output format, and fileset specified in the voice element configuration (either statically in
Builder for Call Studio or dynamically).

The method returns an instance of SayItSmartContent. This class encapsulates any number of
audio filenames, their TTS backups, and pauses to insert in the playback. The execution method
must create an instance of this class, add the desired content to it, and return it. VXML Server
then reads this content to generate the VoiceXML for the Say It Smart audio item in the audio
group. Note that the path and file type options available in the Say It Smart configuration in the
Builder are not passed here as they are added automatically by VXML Server once the plugin
has converted the data. The plugin should produce just the audio file names without any paths or
extensions.

CHAPTER 12: SAY IT SMART PLUGINS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 71

Note that while the option exists, the plugin need not include TTS backups for the audio files.
They are used as a backup in case the audio file is not found or is corrupted. Not including a
transcript (by making it null) would mean that if the audio file could not be found, the
application would prematurely end with an error.

The developer can throw a SayItSmartException in this method indicating the data passed to
the plugin could not be converted using the specified configuration. This would most likely end
the call prematurely so the exception should be thrown only when the Say It Smart plugin cannot
do what it is supposed to do and is unable to recover.

convertToFiles() is abstract, meaning every Say It Smart plugin must implement this method.

SayItSmartContent convertToTTS(Object data, String inputFormat,
 String outputFormat, String fileset)

This is the execution method for converting data to a TTS string. The arguments are identical in
this method as the convertToFiles() method. Note that even though the fileset option
technically does not apply here, it is included in case the plugin does alter the TTS output based
on fileset information.

The method must still return a SayItSmartContent object since the plugin may still decide to
play back the TTS content with pauses at certain points. In this case, the filename value would be
set to null.

Note that convertToTTS() is not abstract, SayItSmartBase actually provides a default
implementation of this method. The default implementation simply calls the converToFiles()
method, combines the TTS transcripts it receives and returns a new SayItSmartContent object
with just those transcripts and any pauses. The plugin need only provide its own implementation
of this method if the desired behavior is different.

The developer can throw a SayItSmartException in this method indicating the data passed to
the plugin could not be converted using the specified configuration. This would most likely end
the call prematurely so the exception should be thrown only when the Say It Smart plugin cannot
do what it is supposed to do and is unable to recover.

Configuration Methods
SayItSmartDisplay getDisplayInformation()

This method is used to specify display information for Builder for Call Studio to render this
plugin’s configuration. The SayItSmartDisplay object lists the plugin type, input formats,
output format, and filesets. Each type, input format, output format, and fileset must have a real
name, display name, and description. The relationship between the input formats, output formats,
and filesets are defined by the methods listed below.

CHAPTER 12: SAY IT SMART PLUGINS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 72

This method throws a SayItSmartException if the SayItSmartDisplay object is not
configured correctly.

getDisplayInformation() is abstract, meaning every Say It Smart plugin must implement this
method.

SayItSmartDependency getFormatDependencies()

As described in the design section, a plugin’s output formats are dependent on the input formats.
This method defines those relationships. The SayItSmartDependency object is used to specify
which output formats listed in the getDisplayInformation() method apply to which input
formats.

The SayItSmartDependency class is defined generically with the concepts of “parents” and
“children”. For this method, the parents are input formats and the children are output formats.
The developer simply uses the addParent() methods to add a new input format and the output
formats that depend on it. The addChild() and addChildren() methods are used to add
additional output formats that are dependent on the specified parent. This is done until all input
formats are listed and all the output formats that depend on it are listed. Remember that the
names to use here are the real names, the display names are used only by the Builder. All the
input formats and output formats defined in the getDisplayInformation() method must be
mapped here.

This method throws a SayItSmartException if the SayItSmartDependency object is not
configured correctly.

getFormatDependencies() is abstract, meaning every Say It Smart plugin must implement this
method.

SayItSmartDependency getFilesetDependencies()

This method is identical to the getFormatDependencies() method except it defines which
filesets are dependent on which output formats. This method also returns a
SayItSmartDependency object, except this time the “parent” is an output format, and the
“child” is a fileset. Again, the real names of the output formats and filesets must be used here.
All the output formats and filesets defined in the getDisplayInformation() method must be
mapped here.

This method throws a SayItSmartException if the SayItSmartDependency object is not
configured correctly.

getFilesetDependencies() is abstract, meaning every Say It Smart plugin must implement
this method.

CHAPTER 12: SAY IT SMART PLUGINS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 73

Utility Methods

These utility methods are provided to aid Say It Smart plugin developers. Their use is optional.

void validateArguments(Object data, String inputFormat,
 String outputFormat, String fileset)

This method validates each argument and throws a SayItSmartException if there is an error
with one of them. The exception is thrown if data is null, or inputFormat, outputFormat, or
fileset does not correspond to the ones defined in the getDisplayInformation() method.
Additionally, an exception is thrown if outputFormat does not depend on inputFormat or
fileset does not depend on the outputFormat. The error message lists all the appropriate
options available.

All Unified CVP Say It Smart plugins call this method in the first line of their execution
methods.

String createError(String header, String[] options, String footer)

This utility method is a shortcut for creating an error message when some value does not match
one of an array of different possible values. The error conveys that and lists all the values the
data can be. Many Unified CVP Say It Smart plugins provide an array of Strings containing
formats that they will accept input data to arrive in and this method is used when the input data
does not arrive in a supported format. The output string starts with “SayItSmart Error –
PLUGIN” where PLUGIN is the name of the plugin type as returned by the
getDsplayInformation() method. The header then appears, followed by a comma-delimited
list of correct values (with the last option following an “and”) followed by the footer.

This is best explained with an example. A Say It Smart plugin named "Foo" has the input
formats "a", "b", "c", and "d". If the input format passed was "e", this method can be called to
create the error message. Calling the message like so:

createError("Only the input formats supported are: ", new String[] {"a", "b",
"c", "d"}, " Please use a supported format.").

will produce the following error message:

SayItSmart Error - Foo: Only the input formats supported are: "a", "b", "c",
and "d". Please use a supported format.

String[] getFilesetContents(String fileset)

This utility method returns an array of Strings containing the filenames required for the fileset
passed as input. This method can be used to determine what audio files need to be recorded to
fully support a fileset for a Say It Smart plugin. At this point, this method exists only for
informational purposes, it is not accessed by either Builder for Call Studio or VXML Server.

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 75

Chapter 13: Loggers
The mechanism used by VXML Server to record information about global administrations,
errors caused by sub-systems, activities taken by callers to deployed applications or
administrators is by using loggers. Loggers collect this information and can do any number of
tasks with it, from aggregating it for reporting purposes, to sending that information to external
systems for managing, to simply storing the information in log files. A developer can produce a
logger to supplement or replace the functionality the loggers included with VXML Server
provide. Due to the complexity of integrating with VXML Server, loggers can be built only by
using the Java API.

This chapter describes in detail how to create custom loggers and integrate them with VXML
Server. For more detail on the loggers included with VXML Server , refer to the User Guide for
Cisco Unified CVP VXML Server and Cisco Unified Call Studio Chapter 5: VXML Server
Logging.

VXML Server Logging Design

Before discussing the design of an individual logger, it is warranted to introduce the design of
the logging mechanism within VXML Server. Knowledge of this design will help the logger
developer create loggers that work harmoniously with the system.

Logger Events

The mechanism by which information is passed to a logger is through an event object. This
object will encapsulate information about what just occurred, including a timestamp. Event
objects are created by VXML Server in many different situations that belong to three levels:
related to global activities, related to an application and related to a call session. The event object
will contain all the information accessible to the logger for the particular event as well as
information about the environment. For global level events, the environment varies. For some
events the environment consists of HTTP information about the request such as parameters and
headers. Other events were activated internally and so do not define any environment
information. For application-level events such as an administration event, the environment
consists of application data and global data (not call data since this event is not affiliated with a
call). For call-level events such as a call start event, the environment consists of information
about the call such as the ANI, element and session data, default audio path, etc. Since the
purpose of a logger is to report information, loggers are limited to obtaining environment
information and cannot change any value. Loggers may still need to store session-related
information for its purposes so to accommodate this VXML Server provides loggers “scratch”
data that is stored in the session and will be available to the logger only for those events
associated with the session.

Figure 13-1Error! Reference source not found. shows the class hierarchy for all events both
global and application:

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 76

Figure 13-1

Notes on events:

• GlobalEvent and ApplicationEvent both extend the generic event class LoggerEvent. In
this structure, new event types in the future can be added without affecting the existing class
hierarchy.

• All events have an ID, obtained by calling the getID method.

How Loggers Work

An application designer can define any number of loggers to use in an application and an
administrator can define any number of global loggers to deploy to Unified CVP VXML Server.
Logger instances are defined with unique names and loggers can be built to support
configurations. Multiple instances of the same logger class can also be defined, with a different
configuration for each. Unified CVP VXML Server will then create a separate instance of the
logger class for each instance referenced in the application’s settings and in the server
configuration. Application logger instances are created when the individual applications are
initialized and are maintained for the lifetime of the application. All events for the application,
both application-level events as well as call-level events, are handled by this single instance.

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 77

Note that an instance variable in the logger class will allow it to maintain information that spans
calls. Global logger instances are created when VXML Server initializes and are maintained for
the lifetime of the system and hence the logger class can maintain information that lasts the
lifetime of the system. It will handle any global events that occur.

A logger is expected to “register” the events it wishes to act on. This is done on logger
initialization. When VXML Server loads, it initializes all the global loggers and the loggers
referenced for an application and records which events each will act on. When a situation occurs
that would constitute an event, VXML Server checks to see if any loggers will act on the event
and if so, will create the event object and pass it to the logger instances. This registration
mechanism allows VXML Server to save the overhead in creating an event if no loggers will act
on it. Additionally, should there be multiple loggers acting on an event, only one event object is
created and passed to all of them.

In order to ensure that no call be held up due to logging activities, the entire VXML Server
logging mechanism is fully multi-threaded. The only logging-related activity that an HTTP
request thread (provided by the application server) performs is creating an event object and
adding it to a queue. It does not actually handle the logging of that event and once it has added
the event to the queue, it continues with the call. A separate, constantly running asynchronous
process, called the Logger Manager, will process the events in the queue. This allows the logging
process to act independently from the process of handling a call and so will not directly affect the
performance of the system.

In order to ensure that no logger be held up due to the activities of another logger (or the same
logger) while handling an event, a second layer of threads are used. While the Logger Manager
handles the queue, when it is time for a logger to be given the event to handle, this is itself done
in a separate thread. The Logger Manager therefore is responsible only for managing the queue
of events and spawning threads for loggers to handle them. This ensures that a logger that takes a
long time to handle an event does not hold up the logging for the same or other applications, it
only holds up the thread in which it is running. A thread pooling mechanism exists to efficiently
manage thread use. To avoid creating too many threads when under load, the maximum number
of allowable threads in the pool can be configured in the global configuration file named
global_config.xml found in the conf directory of VXML Server by editing the contents of the
<maximum_thread_pool_size> tag. For a thread to be reused after it is done with the current
task, the <keep_alive_time> tag from the same configuration file can be set. When all the
allowable threads in the pool are taken, VXML Server will not process the queue until a thread
becomes available from the pool. Note that one of the consequences here is that the longer the
events remain in the queue, the less “real-time” the logging will occur. Additionally, if the
maximum thread pool size is made too low to handle a given call volume, the queue can become
very large and could eventually cause issues with memory and spiking CPU. Typically, though, a
logger handles an event in a very short period of time, allowing a small number of threads to
handle the events created by many times that number of simultaneous callers.

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 78

There are times when the true asynchronous nature of the logging design works against the
developer. The tasks done by a logger can take a variable amount of time to complete so there is
no guarantee when a call event will be handled. This is by design, and for a logger that simply
records events that are then sorted by timestamp later, this is not a problem. A logger that
requires more context, though, could encounter issues. For example, if a logger needed to note
when a call was received so that an event that occurred later on in the call could be handled
correctly, problems could be encountered because there would be no guarantee that the events
would be handled in the same order they occurred within the call. To remedy this situation while
keeping the design unfettered, it is possible to specify that VXML Server pass a logger instance
events in the same order they occurred in a call. With this option on, the logger developer can be
assured that the events for a call would not be handled out of order. In fact, the Activity Logger
included with VXML Server has this requirement. The penalty for this requirement, however, is
a loss of some of the true asynchronous nature of the system as there will now be situations
where events that are ready to be handled must wait for a previous event to be handled by the
logger. If a logger hung while handling one event, the queue would forever contain the events
that occurred after it in the call, and that call session would not be fully logged. This feature,
however, is available to application loggers only, global loggers handle their events as soon as a
thread is allocated from the pool to handle it. This is understandable because global log events
are more holistic in nature and do not track detailed behavior as application loggers do.

Some of the conclusions that can be deduced from the VXML Server logging design can be
summarized in some best practices:

• A logger developer need not worry about the time taken by the logger to handle an event as it
will have no bearing on the performance of the call. With that said, the developer must also
be aware of the expected call volume and ensure that the logger not take so long as to use up
the event threads faster than they can be handled.

• Loggers work under a multi-threaded environment and the logger developer must understand
how to code with this in mind. A single logger class can be handling events for many calls
and so it must manage internal and external resources in a synchronized manner to prevent
non-deterministic behavior.

• When possible, design an application logger so that it does not rely on events within a call
being passed to it in the order in which they occurred in the call. Doing so will maximize
performance due to being able to handle events whenever they occur. Should the logger be
unable to do so, require that the enforce call event order option be turned on for the logger.

Logger Design

Similar to configurable elements, a logger is constructed by creating a Java class that extends an
abstract base class, GlobalLoggerBase or ApplicationLoggerBase, which in turn extend from
the LoggerBase class. The base classes define abstract methods that must be implemented by the
logger. Loggers have methods for initialization and destruction as well as an execution method to

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 79

call when an event is to be handled. These methods may throw an EventException to indicate
an error in the logger.

An application logger has the additional requirement of implementing a Java marker interface
named LoggerPlugin to allow Unified CVP Builder for Call Studio to recognize it as a valid
logger.

All Java classes related to loggers are found in the com.audium.server.logger package while
the logger event classes are found in the com.audium.server.logger.events package.

Global Logger Methods

void initialize(File configFile, LoggerGlobalAPI api)

This method is called by VXML Server when a new logger instance is created. This occurs in
two different situations: the application server starts up or the VXML Server web application is
restarted.

The global logger designer has optionally included a reference to a configuration file for the
logger which is passed here as a File object. If no configuration file reference was specified in
the conf directory, this object will be null.

The method also receives a LoggerGlobalAPI object, which is used to access the GlobalAPI.
The GlobalAPI provides access to global data (see the User Guide for Cisco Unified CVP VXML
Server and Cisco Unified Call Studio Chapter 2 in the section entitled Variables for more on
global data).

Aside from initializing the logger, this method is also responsible for configuring which events
the logger instance is to handle. This is done by setting the value of the member variable
eventsToListenFor. This variable is a HashSet that must contain all the event IDs that the
logger listens for. VXML Server accesses this HashSet to determine if a new event should be
sent to the logger. When an event occurs, eventsToListenFor is accessed to see if the event ID
can be found. If so, the logger will be notified of the event. The IDs for the events are defined in
the interface IEventIDs. GlobalLoggerBase implements this interface so the event IDs are
available directly within the logger class. Note that global loggers can only register for global
events (those whose event names begin with GLOBAL).

void destroy(LoggerGlobalAPI api)

This method is called in two different situations: the application server is shut down, or the
VXML Server web application is restarted.

The method also receives a LoggerGlobalAPI object, which is used to access the GlobalAPI.
The GlobalAPI provides access to global data (see the User Guide for Cisco Unified CVP VXML

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 80

Server and Cisco Unified Call Studio Chapter 2 in the section entitled Variables for more on
global data).

The purpose of this method is to give the logger the opportunity to perform clean up operations.
Typically, this would involve closing database connections or files that were opened by the
logger in its initialize method or while handling events. A logger that does not have that
requirement must still implement the destroy method but can define an empty implementation.

void log(GlobalEvent event)

This method is the execution method for the logger and is called by VXML Server when a new
event has occurred that the logger must handle. This method is called only if VXML Server has
found the event’s ID in the eventsToListenFor HashSet.

Only one object is passed to this method, a GlobalEvent. This object encapsulates all the
information about the event and provides access to other environment information depending on
the type of event. GlobalEvent is a base class for all global level events and the logger will
typically check for the event type and cast to the appropriate event to get its information. All
event classes are found in the com.audium.server.logger.events package.

void doPreLogActivity(GlobalEvent event)
void doPostLogActivity(GlobalEvent event)

These two methods can be optionally overridden to perform any activity desired before and after
the log method is called. By default these methods are defined in the GlobalLoggerBase class
to do nothing.

Application Logger Methods

void initialize(File configFile, LoggerApplicationAPI api)

This method is called by VXML Server when a new logger instance is created. This occurs in
four different situations: the application server starts up, VXML Server web application is
restarted, the application the logger instance belongs to is deployed after the application server
had started up, and the application is updated. These situations are the same as those for when
the application start class is called (see Chapter 10: Application Start Classes for more on these
situations).

The application designer has optionally included a reference to a configuration file for the logger
which is passed here as a File object. If no configuration file reference was specified in the
application settings, this object will be null.

The method also receives a LoggerApplicationAPI object, which is used to access the
GlobalAPI. The GlobalAPI provides access to application data and global data (see the User
Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Chapter 2 in the
section entitled Variables for more on application and global data).

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 81

Aside from initializing the logger, this method is also responsible for configuring which events
the logger instance is to handle. This is done by setting the value of the member variable
eventsToListenFor. This variable is a HashSet that must contain all the event IDs that the
logger listens for. VXML Server accesses this HashSet to determine if a new event should be
sent to the logger. When an event occurs, eventsToListenFor is accessed to see if the event ID
can be found. If so, the logger will be notified of the event. The IDs for the events are defined in
the interface IEventIDs. ApplicationLoggerBase implements this interface so the event IDs
are available directly within the logger class.

void destroy(LoggerApplicationAPI api)

This method is called by VXML Server when an application is released. This occurs in four
different situations: the application server is shut down, VXML Server web application is
restarted, the application the logger instance belongs to is released, and the application is
updated. These situations are the same as those for when the application end class is called (see
Chapter 11: Application End Classes for more on these situations).

The method also receives a LoggerApplicationAPI object, which is used to access the
GlobalAPI. The GlobalAPI provides access to application data and global data (see the User
Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Chapter 2 in the
section entitled Variables for more on application and global data).

The purpose of this method is to give the logger the opportunity to perform clean up operations.
Typically, this would involve closing database connections or files that were opened by the
logger in its initialize method or while handling calls. A logger that does not have that
requirement must still implement the destroy method but can define an empty implementation.

void log(ApplicationEvent event)

This method is the execution method for the logger and is called by VXML Server when a new
event has occurred that the logger must handle. This method is called only if VXML Server has
found the event’s ID in the eventsToListenFor HashSet.

Only one object is passed to this method, an ApplicationEvent. This object encapsulates all the
information about the event and provides access to other environment information depending on
the type of event. ApplicationEvent is a base class for all application-level events and the
logger will typically check for the event type and cast to the appropriate event to get its
information. All event classes are found in the com.audium.server.logger.events package.

Referencing Figure 13-1 for application events, the following notes must be given:
• All application events have access to the Global API to get application and global data (see

the User Guide for Cisco Unified CVP VXML Server and Cisco Unified Call Studio Chapter
2 in the section entitled Variables for more on application and global data).

• Application events are defined at two levels: call-level, and application-level.

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 82

o Call-level events extend from ActivityEvent and are associated with a particular call.
As such, these events provide information about the call environment through the method
getLoggerAPI(). The resulting LoggerAPI object is from the Session API (See Chapter
3: Session API for more) and provides read-only access to session information such as
element and session data.

o Application-level events are associated only with an application and not a call session.
Currently, the only application-level events are the application administration event
(ApplicationAdminEvent) that reports on administration activity performed on the
application and the application administration error event
(ApplicationAdminErrorEvent) that reports any errors encountered while performing
administration activities.

• The events extending ActivityEvent are all the events that can occur in a call: a new call, a
call ending, an element being entered, an element exiting, an element storing data, a flag
element being triggered, an element interacting with the caller, a hotevent being activated, a
hotlink being activated, a custom event caused by calling the addToLog method of the
Session API or entering data in an element’s configuration pane in Builder for Call Studio, a
warning event, an error event, and an HTTP event signifying a new HTTP request made to
VXML Server.

• Error events are defined in a hierarchy to define different types of errors. This allows a
logger developer to act on certain types of errors or to do different tasks based on the error
type.

• Currently, when a voice element returns interaction data, VXML Server sends loggers a
DefaultInteractionEvent, which extends from ElementInteractionEvent. This design
will allow for different interaction content in the future without affecting the existing class
hierarchy.

void doPreLogActivity(ApplicationEvent event)
void doPostLogActivity(ApplicationEvent event)

These two methods can be optionally overridden to perform any activity desired before and after
the log method is called. By default these methods are defined in the ApplicationLoggerBase
class to do nothing.

Utility Methods

These utility methods provide important information to the logger.

CHAPTER 13: LOGGERS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 83

Common Utility Methods

These methods are defined in the LoggerBase class and are therefore applicable to both
application and global loggers.

int getLoggerType()

This method returns the type of the logger, and is for future use. Currently, it returns
APPLICATION_LOGGER or GLOBAL_LOGGER.

String getLoggerInstanceName()

This method returns the name of the logger instance as defined in either VXML Server’s
configuration or the settings of the application.

HashSet getEventsListeningFor()

This method returns the HashSet containing the event IDs that the logger is handling. This
method is called by VXML Server to determine if to send a new event to the logger. This
methods simply returns the protected member variable eventsToListenFor defined in
LoggerBase.

String getLogFileDirectory()

This method returns the full path of the directory VXML Server has provided this logger to store
its logs, if necessary. On startup, VXML Server creates a folder for each global logger instance
within the global logs folder. It also creates a folder for each application logger instance within
the logs folder of the particular appliation. The folders are given the logger instance name. The
folder is for exclusive use of the logger instance should it require it. Should the logger create log
files, it should use this directory unless the logger’s is designed to log somewhere else. Should
the logger not use files, such as if it logs directly to a database, this method and the folder it
references can be ignored.

Application Logger Utility Methods

These utility methods apply only to application loggers.

String getApplicationName()

This method returns the name of the application that the logger instance belongs to.

String enforceCallEventOrder()

This method returns true if the logger instance has been configured to enforce the call event
order, false otherwise. This is useful if the logger wishes to throw an error if the logger instance
was not configured a certain way.

CHAPTER 14: HOTEVENTS PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 85

Chapter 14: Hotevents
Hotevents can only be produced through the Java API because they involve the use of the
Unified CVP Voice Foundation Classes (VFCs), which are Java-only (see Appendix A: The
Voice Foundation Classes for more on the VFCs).

When a new hotevent is added to the workspace in Builder for Call Studio, the full name of a
Java class must be entered in the hotevent dialog box. This class, when executed, is expected to
produce the VoiceXML to run when the event is triggered. The VoiceXML generated by this
class is placed in the root document automatically generated by VXML Server. Since the root
document is cached by the voice browser, this class is executed only once per call, it is not called
when the event is triggered and therefore does not have access to the Session API to obtain
dynamic session information like the ANI, element and session data.

Following the standard design of the Java API, the hotevent class must implement a Java
interface named HoteventInterface found in the com.audium.server.proxy package. The
interface defines a single method addEventBody that is called when the call’s root document is
being generated. The method receives two VFC classes as arguments, a VPreference object and
a VEvent object. The VoiceXML code to execute when the hotevent is triggered must be added
to the VEvent object and the VPreference object is used to instantiate the VFC classes defining
that VoiceXML. The method does not need to return anything as all content is encapsulated
within the VEvent object passed by reference to the method.

CHAPTER 15: ON ERROR NOTIFICATION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 87

Chapter 15: On Error Notification
The error notification process can only be implemented using Java because when an error occurs,
one desires the most reliable method for reporting that error. There is no guarantee an HTTP
request to a URI could even be generated, a response received and the XML parsed without
incurring another error.

The on error notification class is built in Java by implementing the class
GlobalErrorInterface found in the com.audium.server.proxy package. It contains a single
method named doError that acts as the execution method for the class. The method receives
nine arguments containing information on the status of the application and VXML Server at the
time the error occurred. No API classes are passed to this method because accessing them may
cause additional errors due to their complexity. Any of the arguments may be null if the data
cannot be determined or the error is such that it is not related to a specific application.

The arguments are: the VXML Server session ID (as a String), the name of the application (as a
String), the ANI (as a String), the DNIS (as a String), the IIDIGITS (as a String), the UUI
(as a String), an ArrayList of Strings listing the elements visited in the call up to the time the
error occurred, an ArrayList of the Strings listing the exit states for each of the elements, and
a HashMap containing the session data created up to the time the error occurred (the key of the
HashMap is the name of the session data, and the value is the session data value).

The on error notification class must be deployed in the common directory of VXML Server since
classes placed there are shared across applications.

To configure VXML Server to use this class if an error occurs, a file named
global_config.xml found in the conf directory of VXML Server must be used. This XML file
contains a tag named <error_class> that should encapsulate the full Java name of this class
(package name included). The changes will take effect only the next time the Java application
server on which VXML Server is installed is restarted.

CHAPTER 16: APPLICATION MANAGEMENT API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 89

Chapter 16: Application Management
API

VXML Server comes with an application management facility to provide visibility into the
runtime environment and provides control over the platform together with its components and
services. This comprehensive feature set allows an administrator to operate, administrate and
manage (OA&M) the health of the platform as well as obtain statistics and performance
measurements.

This chapter describes in detail how to the management server system has been designed and
how to create custom management support based on the API provided with the VXML Server
platform.

Design

All the OA&M features on VXML Server are built with JMX management standards.
Applications and components on VXML Server are instrumented using Managed Beans
(MBeans). MBeans expose their management interfaces, composed of attributes, operations and
event notifications, through a JMX agent for remote management and monitoring.

Managed resources are categorized at levels of application, global configuration and command,
and platform. Each level may facilitate three typical JMX managements: lookup and modify
configuration, collect and avail application statistics, notify of state changes and erroneous
conditions.

At the application level, administrators can operate the following:

• Get/set default audio path
• Get/set suspended audio
• Get/set session timeout
• Get gateway adapter
• Application release
• Application resume
• Runtime status
• Application update
• Suspend/resume application
• Retrieve application administration history
• Get application data
• Set and remove application data
• Remove all application data
• Get application data names

CHAPTER 16: APPLICATION MANAGEMENT API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 90

The global level manages VXML Server as a web application. It allows:

• Read logger event queue size
• Read/write maximum logger thread pool size
• Read/write minimum logger thread pool size
• Read/write logger thread keep alive time
• Read/write session invalidation delay
• Get global status
• Deploy all new applications. This command assumes all the deployable applications have

been updated to the AudiumHome. All this command does is to deploy these
applications.

• List all new applications. This command lists the names of all new applications (i.e.,
those which have yet to be deployed).

• Deploy new application. This command deploys the specified application. To retrieve a
list of new application names, use “List all new applications” (above) first.

• Flush all old applications
• Update all applications
• Update common classes
• Suspend/resume VXML Server
• Retrieve global administration history
• Get/set global data
• Get all global data names
• Remove all global data

At the same level, the management system also provides information regarding metrics
collection:

• The total number of calls since VXML Server starts up.
• Maximum and average number of concurrent calls, the timestamp when it reaches the

maximum calls.
• Maximum and average response time.
• Number of calls that time out.
• Number of calls that encounter errors.
• Transfer/zero-out rate. The number of calls transfering to an operator or live agent.
• Abandon rate. The number of calls that end as hang up.
• Call completion rate. The number of calls that are completed as expected through the

callflow.
• Maximum logger event queue size.
• Maximum loggers thread count.

The platform level consists of information for VXML Server as a product:

• Product Name
• Product Version

CHAPTER 16: APPLICATION MANAGEMENT API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 91

• Installation Key
• Licensed Ports
• License Expiration Date
• Licensed GW Adapters

VXML Server MBeans implement a Java API set that is defined for management interfaces.
Developers can create custom management beans that use the API. Figure 16-1 depicts the
relationship among the management API packages: com.audium.server.management and the
built-in beans (which use the package com.audium.server.management.mbean) and custom
beans.

Figure 16-1

When VXML Server starts, all the beans that are deployed to management directory would be
loaded and registered to the JMX server. Depending on the base class it extends, a bean is
grouped in VoiceApplication, Global or Info under the domain “Cisco VXML Server
Application Management API”. For an application-scoped bean that either extends
AbstractApplicationCommand, AbstractApplicationConfig or
AbstractApplicationData, a bean instance will be created for each application. For instance, if
bean A extends AbstractApplicationCommand and there are currently two applications
deployed: appA and appB, then two instances of bean A class will be created, one for appA, the
other for appB.

For a logger that has been deployed with an application, a management bean will be dynamically
generated and registered for it. Currently there is no extra requirement for a logger to become
manageable. However, the following operations are excluded from logger beans due to their
irrelevance with respect to managealibility: log(), init(), equals(), destroy(),
initialize(), hasCode(), getClass(), wait(), notify(), notifyAll(),
toString().

CHAPTER 16: APPLICATION MANAGEMENT API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 92

Custom beans that directly implement AudiumManagementBeanInterface but do not
extend any of the following abstract classes will be loaded but not registered
when VXML Server starts up: AbstractApplicationCommand,
AbstractApplicationConfig, AbstractApplicationData, AbstractGlobalCommand,
AbstractGlobalConfig, AbstractGlobalData, and AbstractCallServicesInfo.

This type of bean should register itself to the management server and will not have access to the
information provided by VXML Server. VXML Server only loads these beans.

Note that the standard VXML Server logging mechanism does not pick up errors or exceptions
that happen in a custom bean and the developer is responsible for handling the errors themselves
or let them propagate to the JMX console.

Management Bean Samples

This section describes how typical bean can be created based on the VXML Server management
system API.

1) Create the bean interface where it defines the attributes and operations it will manage. For
example,

public interface ApplicationConfigMBean {
 public String getDefaultAudioPath();
 public void setDefaultAudioPath(String path);
 public String getSuspendedAudioFile();
 public void setSuspendedAudioFile(String file);
}

2) Create the bean class that implements the interface and extend the predefined abstract class.

public class ApplicationConfig extends AbstractApplicationConfig implements
ApplicationConfigMBean{
 public String getDefaultAudioPath() {
 return super.getDefaultAudioPath();
 }
 public void setDefaultAudioPath(String path) {
 super.setDefaultAudioPath(path);
 }
 public String getSuspendedAudioFile() {
 return super.getSuspendedAudioFile();
 }
 public void setSuspendedAudioFile(String file) {
 super.setSuspendedAudioFile(file);
 }
}

3) By extending the predefined abstract class, a custom bean gets access to the information
provided by VXML Server. For example, a bean class that extends AbstractGlobalData
can call getAllDataNames(), removeAllData(), getData(), etc. These methods are
made accessible when the bean gets loaded.

CHAPTER 16: APPLICATION MANAGEMENT API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 93

Application Management Interfaces

When writing custom management beans, the public APIs are used to gain access to the runtime
information that will be provided by VXML Server. We now discuss each of these interfaces and
abstract classes in details. Figure 16-2 displays the static class structure which corresponds to the
three levels of the aforementioned information structure. The built-in management beans are also
included in the diagram to show the relationship between the APIs and the beans.

Figure 16-2

CHAPTER 16: APPLICATION MANAGEMENT API PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 94

AudiumManagementBeanInterface

This is a marker interface for any JMX MBeans to load at the server startup. All the management
beans must implement this interface or its subinterfaces.

AbstractApplicationCommand

This abstract class encapsulates all the application commands. The JMX beans that extend this
class will have access to all these operations.

AbstractApplicationConfig

This class can be used to set and get application configuration attributes.

AbstractApplicationData

MBeans that extend this class will have access to application data and can manipulate this data
by adding or removing them. Application data is typically used to store application-specific
information that is available to all calls.

AbstractGlobalCommand

This abstract class encapsulates all the global commands. The JMX beans that extend this class
will have access to all these operations.

AbstractGlobalConfig

This class can be used to set and get global configuration attributes.

AbstractGlobalData

Subclasses of this class will have access to global data and can manipulate these data by adding
or removing them. Global data is typically used to store static information that needs to be
available to all components, no matter which application they reside in.

AbstractMetricsCollection

This class can be used to access all the metrics information at the global level.

AbstractMetricsObserver

This is a marker class. When VXML Server starts up, subclasses of this class will be added as
listeners to application activity events, logging management events and global events. Although
a subclass will be notified when any of these events occurs, it only needs to react to the
interested events. Events are supposed to be handled by overwriting the update() method.

APPENDIX A: THE VOICE FOUNDATION CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 95

Appendix A: The Voice Foundation Classes
The Unified CVP Voice Foundation Classes are a Java API for generating VoiceXML. Any
custom component wishing to produce VoiceXML must use the VFCs because their main
purpose is to act as an abstraction layer between VoiceXML and the component. The VFCs
handle the vagaries of VoiceXML and especially the differences in the VoiceXML interpreted by
various voice browsers. This allows the developer to simply focus on the functionality desired
without worrying about the details of writing VoiceXML or the quirks of their chosen voice
browser. The VFCs are primarily used to construct voice elements, though hotevents and on call
end classes use the VFCs as well.

VFC Design

The high level design of the VFCs is to simulate standard VoiceXML in Java. The behavior of
these classes directly match the VoiceXML specifications (both versions 1 and 2). This,
however, acts only as a basis from which supporting a particular voice browser begins, since no
two browsers have exactly the same compliance. The software provides voice browser
compatibility by extending these base VFCs to create a layer that produces the VoiceXML
compatible with a particular voice browser. Most of the functionality is still defined in the base
VFC classes and only the browser-specific functionality needs to be included in the subclasses.
The classes for a particular voice browser are encapsulated in a separate plugin or driver, called a
Gateway Adapter. Installing a new Gateway Adapter will add support for a new voice browser
and a Unified CVP application can be deployed on a new browser by simply selecting the
Gateway Adapter to use.

The design of the base VFCs follows roughly the design of VoiceXML, utilizing similar
concepts and naming, so prior knowledge of VoiceXML is beneficial for understanding the VFC
design. The VFCs allow full compatibility with VoiceXML in that anything you can do in
VoiceXML you can do in the VFCs, including using proprietary tags and/or attributes introduced
by supported browsers. Many times, a single VoiceXML tag maps to a single VFC that is
similarly named. The class VForm, for example, deals with VoiceXML <form> tags and the class
VField with <field> tags. Some tags, however, have been combined into a single VFC for ease
of use. For example, the VAction class encapsulates tags such as <var> and <assign> to
<break> and <submit>. As a result, there are fewer VFCs than VoiceXML tags. The VFCs also
help the developer by producing some VoiceXML automatically. The developer will quickly
find that using the VFCs is very much like coding in VoiceXML, except in Java.

There are a few concepts that need to be described before delving into the individual VFCs. First,
each VFC class extends a common base class, VRoot. The purpose for this is similar to having all
Java classes extend Object, it is a way to help define common functionality of the VFCs as well
as being able to identify if a Java class is a VFC.

The second concept involves the hierarchy of the VFCs. There are, in fact, several layers of
abstraction in the VFCs that separate not only differences between various voice browsers but

APPENDIX A: THE VOICE FOUNDATION CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 96

also versions of the VoiceXML standard. There are separate VFCs for VoiceXML version 1.0
and version 2.0, and the similarities are encapsulated in a common base class. Figure 16-3 shows
this graphically with the VForm class. The main VForm class extends the VRoot class and is itself
extended by VFormV1 and VFormV2, representing VoiceXML 1.0 and 2.0 compliance. Luckily,
there are only a few differences between these versions, so the developer can still do most coding
to the base VForm class. The Gateway Adapters introduce VFCs that extend VFormV1 or VFormV2
depending on whether the voice browser it supports is compatible with VoiceXML 1.0 or 2.0.

Figure 16-3

The last concept is that VFC objects are not instantiated using the new keyword. A static factory
method named getNew is used instead. The reason for this is related to the abstraction of the
voice browser differences. As mentioned previously, a developer need only code using the base
VFC classes. At runtime, the factory methods used to instantiate VFC classes actually returns the
appropriate voice browser-specific VFC (for example, VFormFoo in the example in Figure 16-3).
But since the developer treats the return object as the base VFC, that object is downcasted. This
is the heart of the VFC abstraction design. Since all VFC derivative classes extend their base
VFCs, a developer need only code to the base VFCs and that automatically makes their code
compatible with any voice browser represented by a Gateway Adapter.

In order to identify which voice browser VFC to return, every factory method must include as its
first argument an instance of VPreference. VPreference, while a VFC class, does not match to
a VoiceXML tag, it is used instead to hold preferences made by the user in Builder for Call
Studio for the application, such as the voice browser and default audio path. By passing this
object to all factory methods, the appropriate object can be returned. The VPreference instance
is automatically created for the developer and made available through the Session API passed to
voice elements, hotevents, or call end classes.

APPENDIX A: THE VOICE FOUNDATION CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 97

The following Java code demonstrates the concepts described above:

VPreference pref = ved.getPreference();
VForm form = VForm.getNew(pref, "start");

Here, the VPreference object is obtained from the VoiceElementData object passed as input to
a voice element. It is used to create a VForm object. Assuming the application is using the voice
browser Foo, that choice is reflected in the VPreference object and therefore the getNew factory
method returns a VFormFoo object, which is automatically downcasted to a VForm object. The
developer then uses the form object as desired.

This ability to treat all objects returned as a root VFC object is not available when the developer
wishes to use functionality that exists either in a particular version of VoiceXML or a particular
voice browser. The developer must understand that doing so would prevent their code from
functioning on all voice browsers. In this case, the developer simply treats the return of the
factory method as a class higher in the class hierarchy (VFormV2 or VFormFoo in the example in
Figure 16-3).

The following Java code demonstrates this:

VGrammar myGrammar = VGrammar.getNew(pref);
((VGrammarV2) myGrammar).setMaxage(1000);

The setMaxage method exists only in the VGrammarV2 class since this is a feature that exists only
in VoiceXML 2.0. To call this method, one must first upcast the previously downcasted object
back to VGrammarV2. If this is not done, an exception will be thrown indicating that VGrammar
does not have a method named setMaxage. Also note that if the user in the Builder chose a voice
browser that was compatible with VoiceXML 1.0 only, a runtime exception would be thrown
when this code is encountered because that browser would be unable to understand VoiceXML
referring to maxage.

VFC Classes

The following lists all the VFC classes (with full package names) and briefly explains what they
are responsible for. The Javadocs for the VFCs provide significantly more detail about the
classes, their methods, and how they are used.

• com.audium.core.vfc.util.VMain. This object is the container for a complete VoiceXML
document. It includes methods for managing information about the page such as the meta
tags, the doc type, and the value to put in the <vxml> tag’s xml:lang attribute. It includes
methods for adding document-scope data such as links, variables, and VoiceXML properties.
VForm objects are added to this object to create the VoiceXML page. VXML Server uses the
VMain object to handle the printing of the VoiceXML page. Voice elements receive an
instantiated VMain object as input and the developer need only worry about filling the object
with the appropriate content.

APPENDIX A: THE VOICE FOUNDATION CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 98

• com.audium.core.vfc.form.VForm. This class is a container for all the content in a VoiceXML
page not handled by the VMain class. It is a direct mapping of the <form> tag, though it also
produces other form-level tags such as <var> or <filled>.

• com.audium.core.vfc.list.VList. This class is used to encapsulate a list of items that can be
deployed as either a traverse list or a streaming list. A traverse list presents a menu after an
item is presented that allows the caller to move forwards and backwards through the list. A
streaming list is one where all the items are played one after the other. This VFC class does
not reflect any VoiceXML tags, it was produced by Unified CVP to facilitate the creation of
lists within VoiceXML. The class outputs a set of forms that implement the list.

• Form Items. VForm classes encapsulate most of the content of a VoiceXML page, and each
form has any number of form items added to it. These form items span the range of capturing
input from the caller to performing a telephony transfer. Each form item has a different
purpose, though many form items share features in common. The VFCs relate the classes that
handle each form item by creating a hierarchy starting with the simplest form items, with
features common to all, to more complex form items that add features through each
successive class extension. Figure 16-4 shows this class hierarchy and a description of each
branch is listed below.

Figure 16-4

APPENDIX A: THE VOICE FOUNDATION CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 99

o com.audium.core.vfc.form.VFormItemRoot. This class is the base class for all form items.
It defines the ability to include audio, which every form item shares.

• com.audium.core.vfc.form.VInitial. This class is used when performing mixed
initiative data capture. Mixed initiative data capture is a way of capturing multiple
inputs in one utterance, such as a person’s first and last names together rather than
having to prompt for each individually. It is a direct mapping of the <initial> tag.

o com.audium.core.vfc.form.VFormItem. This class defines a standard form item. It defines
the ability to perform actions within the form item (some form items do this within a
<filled> tag).

• com.audium.core.vfc.form.VBlock. This class deals with producing a block in which
any action and/or audio can be placed. It is a direct mapping of the <block> tag.

o com.audium.core.vfc.form.VFormProcessItem. This class defines form items that process
data from the caller or an external source. Process form items define the ability to catch
and handle VoiceXML events and refer to VoiceXML properties.

• com.audium.core.vfc.form.VSubdialog. This class is used to make a call to a
VoiceXML subdialog. A subdialog acts very much like a function call in VoiceXML,
performing some encapsulated task and then returning to the calling context. It is a
direct mapping of the <subdialog> tag.

• com.audium.core.vfc.form.VObject. This class is used to produce VoiceXML that calls
an external data object. It is a direct mapping of the <object> tag.

o com.audium.core.vfc.form.VFormInputItem. This class defines form items that take input
from the caller. Input form items define a grammar to capture the data.

• com.audium.core.vfc.call.VTransfer. This class deals with performing a telephony
transfer. It is a direct mapping of the <transfer> tag. Note that the reason this is
considered an input form item is because theoretically according to the VoiceXML
specification, a grammar can be active within a call transfer. This, though, is rarely
used or supported.

• com.audium.core.vfc.audio.VRecord. This class deals with performing a recording of
the caller’s voice. It is a direct mapping of the <record> tag.

o com.audium.core.vfc.form.VField. This class defines field form items, which deal with
capturing utterances from the caller and converting them into information. Fields define
the ability to specify utterance links.

• com.audium.core.vfc.form.VBuiltInField. This class deals with producing fields that
capture data specified by grammars built into the voice browser. Any voice browser
supporting VoiceXML is required to support data capture of numbers, dates, times,
currency values, phone numbers, digit-by-digit values, and boolean values (yes / no).
The class produces <field> tags as well as other field-related tags such as <prompt>
and <filled>.

APPENDIX A: THE VOICE FOUNDATION CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 100

o com.audium.core.vfc.form.VMenuField. This class is used when a menu is desired in the
VoiceXML document. The class produces <field> tags with <option> tags defining
each menu option. The <menu> and <choice> tags in VoiceXML are just shortcuts for
this and cannot be produced with the VFCs.

o com.audium.core.vfc.form.VListField. This class is a special kind of menu that is used by
the VList class when it is configured to act as a traverse list. The menu is pre-built to
support options to go forwards and backwards.

• com.audium.core.vfc.util.VAction. This VFC class encapsulates multiple VoiceXML tags that
represent taking certain actions. All the VoiceXML tags produced by this class have the same
parent tags and so can be used in the same locations. Combining these tags into one class
reduces the complexity of the VFCs since special handlers are not needed for each tag. The
following lists the actions that the VAction tag encapsulates and the corresponding
VoiceXML tag: variable declarations (<var>), variable assignment (<assign>), gotos
(<goto>), HTTP submits (<submit>), clearing forms and fields (<clear>), scripts
(<script>), logging (<log>), throwing events (<throw>), reprompting (<reprompt>),
returning from subdialogs (<return>), disconnects (<disconnect>) and exits (<exit>).

• com.audium.core.vfc.audio.VAudio. This class deals with audio, both TTS and through audio
files. A single VAudio object can contain any number of audio items (so an entire voice
element audio group can be encapsulated in one VAudio object). The class also deals with
playing back a recording, managing bargein, adding pauses to the playback. Note that SSML
(Speech Synthesis Markup Language) that is entered by the application designer in Builder
for Call Studio is handled correctly by this class.

• com.audium.core.vfc.util.VEvent. This class handles VoiceXML events and what to do when
they occur. Events may be user-triggered such as nomatch or noinput events, or custom
events thrown by the developer or voice browser. Hotevents are basically VEvent classes that
VXML Server adds to the VoiceXML root document. It is a direct mapping of the <catch>
tag. Note that the <noinput>, <nomatch>, and <help> tags are all shortcuts for variations of
the <catch> tag so are not produced by the VFCs.

• com.audium.core.vfc.util.VGrammar. This class deals with specifying either an inline or
external DTMF or speech grammar. It is a direct mapping of the <grammar> tag.

• com.audium.core.vfc.util.VIfGroup. This class deals with producing an if statement within
VoiceXML. It is a direct mapping of the <if>, <elseif>, and <else> tags.

• com.audium.core.vfc.util.VLink. This class deals with creating an utterance-activated link
within the VoiceXML page. It is a direct mapping of the <link> tag.

• com.audium.core.vfc.util.VProperty. This class deals with including VoiceXML properties in
the VoiceXML page. It is a direct mapping of the <property> tag.

• com.audium.core.vfc.VException. This exception class is thrown when a VFC class
encounters an error.

APPENDIX A: THE VOICE FOUNDATION CLASSES PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 101

• Utility Classes. These classes are used by the VFCs to aid in the organization of data they
require. The following lists those classes:

o com.audium.core.vfc.util.VoiceInput. This class is used to encapsulate how input is to be
expected from the caller. It can encapsulate voice only input, DTMF only input, or both.
It is also used to specify what data to look for, which can be a single or multiple
keywords or keypresses. This class is typically used with menus and forms.

o com.audium.core.vfc.util.IfCondition. This class is used to specify an expression to put
inside an if statement. It handles standard numerical and string operations and can
support expressions contains “ands” (&&) and “ors” (||).

o com.audium.core.vfc.form.UsedInFilled. This class is a Java interface that is used to
identify all the VFCs that can be used inside a <filled> tag. It is used simply as a
marker for those VFCs.

APPENDIX B: THE JAVA 5 MIGRATION PROGRAMMING GUIDE FOR CISCO UNIFIED CVP VXML SERVER
 AND CISCO UNIFIED CALL STUDIO RELEASE 7.0(1)

 103

Appendix B: The Java 5 Migration
From VXML Server 4.1(x) onwards, the entire VXML Server code base has been compiled with
Java 5. To ensure backwards compatibility, all APIs remain unchanged. Any custom Java classes
such as custom elements that have been compiled with JDK 1.4.x will continue to work on the
new VXML Server platform.

Index
A

Action elements ..39
ActionAPI... 14, 29
ActionConfigInterface...29
ActionElementBase................................... 39, 48, 52
ActionElementConfig...................................... 30, 52
ActionElementData 14, 39, 52
ActivityEvent..82
ANI 3, 13, 16, 38, 48, 61, 75, 85, 87
Apache..3, 8
API design ..3
APIBase..13
application directory..7
ApplicationAdminErrorEvent................................82
ApplicationAdminEvent..82
ApplicationEndAPI...68
ApplicationEvent 76, 81, 82
ApplicationLoggerBase................................... 81, 82
ApplicationStartAPI..66
ASP ..3, 8
AudioGroup.. 30, 60, 61
AudioItem...30
AudiumException22, 26, 30, 39, 48, 66, 68

B

Blind telephony transfer ..25

C

C++ ..8
Call End Action .. 3, 25
Call Start Action ...21
CallEndAPI... 14, 26
CGI...8
common directory 4, 6, 7, 87
Compiling...5
ComponentAPI ...13
conf directory.. 77, 79, 87
Configurable elements...47
Creating session data...14

D

Decision elements ...43
DecisionConfigInterface..29
DecisionElementBase................................ 43, 48, 52
DecisionElementConfig 30, 52, 53
DecisionElementData................................ 14, 43, 53

DefaultInteractionEvent .. 82
Dependency.. 51
Deployment...5, 6, 11
DOCTYPE ... 8
DTD diagrams.. 9
DTDs ..8, 9, 10, 15, 17, 18, 22, 26, 31, 32, 33, 35, 37,

39, 43
Dynamic element configurations........................... 30

E

ElementAPI...14, 29
ElementBase.............................48, 49, 51, 52, 57, 60
ElementConfig ..30, 52, 53
ElementException................................ 48, 56, 57, 58
ElementInteractionEvent....................................... 82
ElementInterface... 48
EndApplicationInterface 68
EndCallInterface... 26
Error events .. 82
Events ...94, 100

F

Filesets ... 69
framework.jar ... 5

G

Global API 13, 14, 65, 66, 67, 68, 81
GlobalErrorInterface... 87

H

HoteventInterface ... 85
Hotevents ..3, 85, 100
HTTP connection.. 3, 8
HTTP request parameters...................................... 57

I

Input format.. 69
Interaction logging...61, 63
Invalidating a session..................... 25, 33, 36, 41, 45

J

Java API 1, 3, 4, 5, 8, 9, 11, 13, 14, 20, 21, 22, 23, 25,
26, 27, 29, 32, 35, 39, 40, 43, 44, 47, 65, 67, 69,
75, 85, 91, 95

java directory...4, 6, 7

L

Language ..100
lib directory ..5
LoggerApplicationAPI 80, 81
LoggerEvent ...76
Loggers... 3, 75, 78

M

Multi-threaded19, 21, 77, 78

N

Number of the caller.. 3, 13, 16, 38, 48, 61, 75, 85, 87

O

On Error Notification .. 3, 87
Output format..69

P

Perl ...3, 8
PHP ..8
POST arguments8, 14, 20, 30

R

Recommendations..................................... 49, 55, 56

S

Say It Smart plugins 1, 4, 6, 35, 69, 70, 71, 72, 73
SayItSmartBase... 69, 71
SayItSmartContent .. 70, 71
SayItSmartDependency ...72
SayItSmartDisplay .. 71, 72
SayItSmartException............................69, 71, 72, 73
SayItSmartPlugin ..69
Scratch space 30, 54, 55, 57, 58, 59, 60, 75
servlet.jar ..5

Session API 4, 8, 13, 14, 22, 26, 29, 31, 39, 43, 48,
51, 52, 53, 54, 55, 57, 65, 67, 82, 85, 96

Setting dependencies... 51
StartApplicationInterface 66
StartCallInterface.. 22
StaticAudio... 30
Substitution ... 32, 35, 37, 50

U

User Management..13, 16
util directory... 7
Utility methods... 7

V

VEvent ..85, 100
VFC classes...................... 59, 85, 95, 96, 97, 98, 100
VFC design .. 95
Voice elements ..48, 53, 97
Voice Foundation Classes 4, 5, 26, 27, 47, 55, 56, 57,

58, 59, 85, 95, 96, 97, 98, 100, 101
VoiceElementBase......................... 48, 57, 58, 61, 62
VoiceElementConfig30, 52, 57
VoiceElementInterface.. 29
VoiceElementResult ..58, 59
VoiceXML specification...................... 56, 95, 97, 99
VPreference........................ 56, 57, 58, 63, 85, 96, 97

X

xalan.jar ... 5
XML DTD ... 9
XML-over-HTTP API.3, 8, 9, 11, 14, 20, 21, 22, 23,

25, 26, 27, 30, 31, 32, 35, 37, 39, 40, 43, 44, 47,
51

