
Cisco Unified Contact Center Express
Getting Started with Scripts,
Release 11.0(1)
Cisco Unified Contact Center Express Scripting and Development Series: Volume 1-3
First Published: August 27, 2015
Americas Headquarters
Cisco Systems, Inc.
170 West Tasman Drive
San Jose, CA 95134-1706
USA
http://www.cisco.com
Tel: 408 526-4000

800 553-NETS (6387)
Fax: 408 527-0883

Text Part Number:

http://www.cisco.com

THE SPECIFICATIONS AND INFORMATION REGARDING THE PRODUCTS IN THIS MANUAL ARE SUBJECT TO CHANGE WITHOUT NOTICE. ALL
STATEMENTS, INFORMATION, AND RECOMMENDATIONS IN THIS MANUAL ARE BELIEVED TO BE ACCURATE BUT ARE PRESENTED WITHOUT
WARRANTY OF ANY KIND, EXPRESS OR IMPLIED. USERS MUST TAKE FULL RESPONSIBILITY FOR THEIR APPLICATION OF ANY PRODUCTS.

THE SOFTWARE LICENSE AND LIMITED WARRANTY FOR THE ACCOMPANYING PRODUCT ARE SET FORTH IN THE INFORMATION PACKET THAT
SHIPPED WITH THE PRODUCT AND ARE INCORPORATED HEREIN BY THIS REFERENCE. IF YOU ARE UNABLE TO LOCATE THE SOFTWARE LICENSE
OR LIMITED WARRANTY, CONTACT YOUR CISCO REPRESENTATIVE FOR A COPY.

The Cisco implementation of TCP header compression is an adaptation of a program developed by the University of California, Berkeley (UCB) as part of UCB’s public
domain version of the UNIX operating system. All rights reserved. Copyright © 1981, Regents of the University of California.

NOTWITHSTANDING ANY OTHER WARRANTY HEREIN, ALL DOCUMENT FILES AND SOFTWARE OF THESE SUPPLIERS ARE PROVIDED “AS IS” WITH
ALL FAULTS. CISCO AND THE ABOVE-NAMED SUPPLIERS DISCLAIM ALL WARRANTIES, EXPRESSED OR IMPLIED, INCLUDING, WITHOUT
LIMITATION, THOSE OF MERCHANTABILITY, FITNESS FOR A PARTICULAR PURPOSE AND NONINFRINGEMENT OR ARISING FROM A COURSE OF
DEALING, USAGE, OR TRADE PRACTICE.

IN NO EVENT SHALL CISCO OR ITS SUPPLIERS BE LIABLE FOR ANY INDIRECT, SPECIAL, CONSEQUENTIAL, OR INCIDENTAL DAMAGES, INCLUDING,
WITHOUT LIMITATION, LOST PROFITS OR LOSS OR DAMAGE TO DATA ARISING OUT OF THE USE OR INABILITY TO USE THIS MANUAL, EVEN IF CISCO
OR ITS SUPPLIERS HAVE BEEN ADVISED OF THE POSSIBILITY OF SUCH DAMAGES.

Cisco and the Cisco logo are trademarks or registered trademarks of Cisco and/or its affiliates in the U.S. and other countries. To view a list of Cisco trademarks, go to this
URL: www.cisco.com/go/trademarks. Third-party trademarks mentioned are the property of their respective owners. The use of the word partner does not imply a partnership
relationship between Cisco and any other company. (1110R)

Cisco Unified Contact Center Express Scripting and Development Series Vol 1 - Getting Started with Scripts Release 11.0(1)
Copyright © 2015 Cisco Systems, Inc. All rights reserved

http://www.cisco.com/go/trademarks

Cisco Unified Contact
C O N T E N T S
Preface i

Audience ii
Organization ii
Related Documentation v
Glossary vi

Conventions vii

Obtaining Documentation, Obtaining Support, and Security
Guidelines viii

Documentation Feedback viii

C H A P T E R 1 Installing and Starting the Cisco Unified CCX Editor 1-1

Starting the Cisco Unified CCX Editor 1-1

Prerequisites for a Separate Installation 1-3

Downloading the Cisco Unified CCX Editor for a Separate
Installation 1-3

Installing the Cisco Unified CCX Editor 1-4

C H A P T E R 2 How To Use the Cisco Unified CCX Editor 2-1

About the Cisco Unified CCX Editor 2-2

An Example Cisco Unified CCX Editor Window 2-2

Cisco Unified CCX Editor Window with a Sample Script 2-4

About the Cisco Unified CCX Editor Status Bar 2-5
i
 Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Menu Bar Function Descriptions 2-7

The File Menu 2-8

The Edit Menu 2-9

The Tools Menu 2-10

The Debug Menu 2-10

The Window Menu 2-11

The Settings Menu 2-11

The Help Menu 2-15

Tool Bar Function Descriptions 2-16

About the Cisco Unified CCX Editor Step Palettes 2-18

The Editor Palettes Available in Each Cisco Unified CCX
Product 2-19

The Steps in Each Cisco Unified CCX Editor Palette 2-21

How To Use the Cisco Unified CCX Editor Palettes 2-24

How to Create and Customize a Cisco Unified CCX Editor Script 2-25

Creating a Script 2-25

Customizing a Step 2-28

Defining, Using, and Updating Script Variables 2-31

How to Reorganize the Display of Script Variables in the Editor 2-32

How To Define Local Script Variables in the Cisco Unified CCX
Editor 2-32

How To Map a Script Variable to a Subscript Variable 2-34

Using Enterprise Expanded Call Context (ECC) Variables 2-35

How To Define ECC Variables in the Cisco Unified CCX
Editor 2-35

The Types of Local Variables Available in the Cisco Unified CCX
Editor 2-37

How and Why To Export Variables 2-43

How and When To Configure the Encoding and Decoding of Variable
Types 2-44

Using Multiple Values in a Variable 2-47
ii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Validating and Debugging Your Script 2-48

How to Validate Your Script 2-48

How to Debug Your Script 2-48

Using BreakPoints 2-48

Using Reactive and Active Debugging 2-49

Using Reactive Debugging 2-49

Using Non-Reactive Debugging 2-52

How To Handle Basic Script Errors 2-53

Using the “Continue on Prompt Errors” Option 2-53

Enabling the ”Continue On Prompt Errors“ Option 2-54

Script Execution When Enabling the ”Continue On Prompt
Errors“ Option 2-55

Script Execution When Disabling the ”Continue On Prompt
Errors“ Option 2-55

Using Error Output Branches 2-55

How and Why To Use the CRTP Protocol 2-56

CRTP URI Protocol Syntax 2-57

Example CRTP URI Specifications 2-61

How To Use Cisco Unified CCX Script Templates 2-63

The Script Templates Installed with the Cisco Unified CCX
Editor 2-63

How do I find the script templates installed with the Cisco
Unified CCX Editor? 2-64

Default Script Template Descriptions 2-65

How to Create Your Own Script Template 2-67

How to Create Your Own Script Template Directory 2-68

Where Sample Prompts for Your Scripts Are Stored 2-68

The Cisco Unified CCX Edition Script Web Repository 2-69

The Cisco Unified CCX Script Web Repository Location 2-69

How do I add my favorite Cisco Unified CCX script to the Web
repository? 2-70
iii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Obtaining Technical Assistance 2-70

C H A P T E R 3 Using Expressions and the Expression Editor 3-1

How to Access the Cisco Unified CCX Expression Editor 3-1

How to Use the Expression Editor 3-2

How To Enter Expressions in the Expression Editor 3-2

About the Expression Editor Toolbar 3-4

Toolbar Tabs 3-5

A Pop-Up Menu 3-7

Showing or Hiding the Expression Editor Toolbar 3-8

About the Expression Editor Syntax Buttons 3-9

About Expression and Java Licensing 3-9

C H A P T E R 4 Localizing Cisco Unified CCX Scripts 4-1

Installing Language Groups 4-1

When Do You Need a Language Group? 4-2

Changing a Cisco Unified CCX Installed Language 4-4

Language Restrictions 4-4

Creating a Custom Country-Specific Language 4-4

Using VXML to Implement a Language Not Available in Cisco Unified
CCX 4-5

C H A P T E R 5 Advanced Scripting Techniques 5-1

Managing Contacts in Your Scripts 5-1

Managing Sessions in Your Scripts 5-3

Using Mapping Identifiers 5-3

Using Session Objects 5-4

Using Grammars in Your Scripts 5-4
iv
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
About Grammars 5-5

Grammar Search Algorithm 5-6

File Grammar Formats 5-7

The SRGS File Grammar Format 5-7

The Digit File Grammar Format 5-7

The GSL File Grammar Format (deprecated) 5-8

Automatic Conversion 5-8

Passing Grammars to Steps 5-9

Grammar Template 5-9

Compound Grammar 5-10

Compound Grammar Indexing 5-10

Using Prompts in your Scripts 5-11

About Prompts 5-11

Prompt Types You Can Create 5-13

The Prompt Search Algorithm 5-13

About Prompt Templates 5-14

How To Create or Customize a Prompt 5-15

Recording the Welcome Prompt 5-15

Configuring the Welcome Prompt 5-16

Uploading a Spoken Name 5-18

Advanced Error Handling 5-18

Using the On Exception Goto Step 5-19

Using Default Scripts 5-19

About Script Interruption 5-22

Using Different Media in your Scripts 5-24

About Media 5-25

Media-Less Calls 5-25

Media Neutrality 5-26

Media Steps 5-26

Name To User Step 5-27
v
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Recording Step 5-27

Explicit Confirmation Step 5-27

Implicit Confirmation Step 5-28

Simple Recognition Step 5-28

Using a Voice Browser in Your Scripts 5-28

Understanding VoiceXML 5-29

Voice Browser Architecture 5-30

Voice Browser Development Tools 5-32

A Script for Incrementing the Current Date 5-34

A Script Example Showing Timeout or Retry Logic 5-35

C H A P T E R 6 The Basic Cisco Unified CCX Script 6-1

The Example Cisco Unified CCX Basic Script Template 6-2

The Start Step (Creating a Script) 6-2

Script Variables for icd.aef 6-3

The Accept Step 6-5

The Play Prompt Step 6-6

The Select Resource Step 6-7

The Connected Output Branch 6-10

The Queued Output Branch 6-10

The Label Step 6-10

The Play Prompt Step 6-11

The Delay Step 6-12

The Goto Step 6-14

The End Step 6-14

C H A P T E R 7 Designing a Basic Script 7-1

An Example Basic Script 7-2
vi
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The Start Step (Creating a Script) 7-4

SNU Script Template Variables 7-4

The Accept Step 7-7

The Play Prompt Step 7-8

The Label Step (GetUser) 7-11

The Name To User Step 7-11

The Successful Output Branch 7-14

The Get User Info Step 7-16

The If Step 7-17

The Label Step (GetPin) 7-23

The Timeout Output Branch 7-24

The Unsuccessful Output Branch 7-25

The Get Digit String Step 7-25

Configuring the Get Digit String Step 7-26

The Successful Output Branch 7-28

The Timeout Output Branch 7-28

The True Output Branch 7-30

The False Output Branch 7-31

The Unsuccessful Output Branch 7-31

The Authenticate User Step 7-32

The Success Output Branch 7-33

The Unsuccessful Output Branch 7-35

The True Output Branch 7-36

The False Output Branch 7-36

The Recording Step 7-37

The Successful Output Branch 7-39

The Unsuccessful Output Branch 7-39

The Menu Step 7-40

The Key 1 Output Branch 7-42
vii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The Key 2 Output Branch 7-44

The True Output Branch 7-45

The False Output Branch 7-45

The Timeout and Unsuccessful Output Branches 7-46

The Closing Steps of the SNU.aef Script 7-47

The Set Contact Info Step 7-48

The Set Step 7-49

.The Play Prompt Step 7-49

The Terminate Step 7-49

.The End Step 7-49

C H A P T E R 8 Working with Multiple Contacts 8-1

An Example Script Template with Multiple Contacts 8-2

The Start Step (Creating a Script) 8-3

Script Variables for broadcast.aef 8-4

The Annotate Step 8-6

The Accept Step 8-7

The Get Contact Info Step 8-8

The Recording Step 8-8

The Successful Output Branch 8-10

The Unsuccessful Output Branch 8-10

The Play Prompt Step 8-11

The Terminate Step 8-11

The End Step 8-11

The Play Prompt Step 8-11

The Set numbersToCall Step 8-12

The Call Subflow Step 8-13

The Set numCalls Step 8-15
viii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The Label Step (Call Loop) 8-15

The If Step 8-15

If True Output Branch 8-16

If False Output Branch 8-17

The Set Steps 8-17

The First Set Step 8-17

The Second Set Step 8-18

The Play Prompt Step 8-19

The Call Hold Step 8-20

The Place Call Step 8-21

The Successful Output Branch 8-24

The On Exception Goto Step 8-24

The Set Contact Info Step 8-24

The Play Prompt Step 8-25

The Terminate Step 8-25

The Set Contact Info Set 8-25

The Label Step (LABEL0) 8-25

The On Exception Goto Step (Clear Exception) 8-25

The Call Unhold Step 8-26

The Play Prompt Step 8-26

The Other Output Branches 8-26

The Increment Step (i) 8-27

The Goto Step (Call Loop) 8-27

The Terminate Step 8-27

The Set Contact Info Step 8-27

The End Step 8-28

C H A P T E R 9 Designing a Web-Enabled Script 9-1

An Example Web-Enabled Script Template 9-1
ix
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Creating Server Script Web Pages 9-3

Creating a Static Web Page 9-3

Creating a Dynamic Web Page 9-4

Creating the hello.aef Script 9-5

The Start Step 9-5

Web-enabled Script Variables 9-6

The Get Http Contact Info Step 9-8

The Create File Document Step 9-10

The Keyword Transform Document Step 9-11

The Send Http Response Step 9-14

The End Step 9-16

Managing the hello.aef Script 9-16

Uploading the hello.aef Script 9-17

Creating the Application for hello.aef Script 9-17

Creating the HTTP Trigger 9-17

Testing the script 9-18

C H A P T E R 10 Designing a Web-Enabled Client Script 10-1

Example Web-Enabled Client Script Template 10-2

Analyzing the Data Source 10-3

Creating the getQuoteClient.aef Script 10-4

The Start Step (Creating a Script) 10-5

Defining the Client Script Variables 10-5

The Accept Step 10-6

The Create URL Document Step 10-7

The Create XML Document Step 10-8

The Get XML Document Data Step 10-10

The Create Generated Prompt Step 10-12

Create Container Prompt Step 10-15
x
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The Play Prompt Step 10-17

The Terminate Step 10-18

The End Step 10-18

C H A P T E R 11 Designing a Database Script 11-1

An Example Database Script Template 11-2

The Start Step (Creating a Script) 11-3

Database Script Variables 11-3

The Accept Step 11-5

The Play Prompt Step 11-5

The DB Read Step 11-6

The Successful Output Branch 11-8

The Connection Not Available Output Branch 11-9

The SQL Error Output Branch 11-9

The Label Step (Physician Loop) 11-9

The DB Get Step 11-9

The Successful Output Branch 11-11

The Play Prompt Step 11-12

The Goto Step (Physician Loop) 11-13

The No Data Output Branch 11-13

The DB Write Step 11-13

The DB Release Step 11-16

The Terminate Step 11-16

The End Step 11-17

The SQL Error Output Branch 11-17

The End Step 11-17

C H A P T E R 12 Designing a Cisco Unified IP IVR Script 12-1

The Sample AutoAttendant (aa.aef) Script Template 12-2
xi
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The Start Step (Creating a Script) 12-5

The aa.aef Script Variables 12-6

The Getting the Contact Information and Setting Up the Prompts 12-10

Accept 12-10

Get Contact Info 12-11

The First Create Conditional Prompt Step 12-12

The Second Create Conditional Prompt Step 12-13

The First Create Container Prompt Step 12-14

The Third Create Conditional Prompt Step 12-16

The Play Prompt Step 12-16

The Label Step (MainMenu) 12-18

Determining if the System is ASR Enabled 12-19

If ASR 12-19

The True Output Branch 12-20

The False Output Branch 12-20

The Switch Step 12-21

Creating and Setting an Error Message Prompt 12-22

The Second Create Container Prompt Step 12-23

The Set Step 12-23

Recognizing Input 12-24

The DialByExtn Output Branch of the Simple Recognition Step 12-27

The Label Step 12-28

The Create Container Prompt Step 12-28

The Set Step 12-29

The Get Digit String Step 12-29

The Successful Output Branch (of Get Digit String) 12-30

Transferring the Call if Recognition Is Successful 12-32

The True Recognition Branch 12-32

Setting the Retry Message 12-32
xii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Configuring the Number of Retries 12-33

The Retry Branch 12-33

The False Recognition Branch 12-34

Confirming the Caller Input 12-35

Localizing the Prompt Language 12-36

Completing the Input Confirmation 12-38

The Caller Does Not Give Confirmation 12-39

Configuring the Retries 12-39

The Caller With Retries Gives Confirmation 12-40

The Play Prompt Step 12-40

The Increment Step 12-40

The Caller Does Not Give Confirmation 12-41

The Extension is Confirmed as Correct 12-41

Transferring the Call 12-41

Successfully Transferring the Call 12-42

The Set Contact Info Step 12-43

The End Step 12-43

Receiving a Busy Signal 12-43

Registering an Invalid Transfer Extension 12-44

Unsuccessfully Transferring the Call 12-44

The If Step 12-45

The True Output Branch 12-45

The False Output Branch 12-46

The DialByName Output Branch of the Simple Recognition Step 12-46

The Label Step 12-47

The Create Container Prompt Step 12-48

The Set Step 12-48

The Name To User Step 12-48

The Successfully Receiving Caller Input 12-51

The Get User Info Step 12-53
xiii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The If Step 12-54

The Implicit Confirmation Step 12-54

The No Output Branch of the Simple Recognition Step 12-55

Get User Info Step 12-57

The First Create Generated Prompt Step 12-57

The Second Create Generated Prompt Step 12-58

The First Create Conditional Prompt Step 12-59

The If Step 12-60

True Branch—Create Language Prompt 12-60

False Branch—Set Prompt 12-61

The Create Container Prompt Step 12-61

The Set Step 12-62

The Explicit Confirmation Step 12-62

The If Step 12-65

The True Output Branch 12-65

The False Output Branch 12-66

The Yes Output Branch 12-66

The Label Step 12-68

The First If Step 12-68

The Call Redirect Step 12-69

The Successful Output Branch 12-69

The Busy Output Branch 12-70

The Invalid Output Branch 12-71

The Unsuccessful Output Branch 12-71

The Second If Step 12-72

The Operator Output Branch of the Simple Recognition Step 12-73

The Label Step (Xfer Operator) 12-74

The Call Redirect Step 12-75

The Successful Output Branch 12-75

The Busy Output Branch 12-76
xiv
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The Invalid Output Branch 12-76

The Unsuccessful Output Branch 12-77

The If Step 12-77

The True Output Branch 12-78

The False Output Branch 12-78

The Concluding Steps of the Script 12-78

The Play Prompt Step 12-79

The Call Redirect Step 12-80

The If Step 12-81

The Play Prompt Step 12-81

The Terminate Step 12-81

The End Step 12-81

C H A P T E R 13 Designing Contact-Neutral Scripts 13-1

An Example Contact Neutral (Phone or HTTP) Script Template 13-2

The Start Step (Creating a Script) 13-3

Contact-Neutral Script Variables 13-4

The Accept Step 13-7

The Get Contact Info Step 13-7

The Switch Step 13-8

The HttpContact Output Branch of the Switch Step 13-10

The Get Http Contact Info Step 13-11

The Place Call Step 13-11

The Successful Output Branch 13-13

The Other Output Branches 13-17

The CallContact Branch of the Switch Step 13-19

The Get Trigger Info Step 13-20

The Default Branch of the Switch Step 13-22

The End Step 13-22
xv
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
C H A P T E R 14 Designing a Script with Text-To-Speech (TTS) 14-1

An Example Text-To-Speech (TTS) Script 14-2

The Start Step (Creating a Script) 14-3

TTS Script Variables 14-3

The Accept Step 14-4

The Set Contact Info Step 14-4

The First Create TTS Prompt Step 14-5

The Play Prompt Step 14-7

The Create File Document Step 14-8

The Second Create TTS Prompt Step 14-9

The Annotate Step 14-10

The Menu Step 14-11

The Terminate Step 14-15

The End Step 14-15

C H A P T E R 15 Designing Cisco Unified CCX VoiceXML Applications 15-1

Understanding the Terminology 15-2

A Prerequisite and a Recommendation 15-3

Updating CRS 3.x VoiceXML Applications 15-3

Converting Documents from VoiceXML 1.0 to VoiceXML 2.0 15-3

Converting VoiceXML CRS 3.x Scripts to CRS 4.x Scripts 15-4

Converting VoiceXML CRS 3.x or 4.x Scripts to CRS 5.x
Scripts 15-5

Designing Cisco Unified CCX VoiceXML Applications 15-6

Creating VoiceXML Documents 15-6

Related Documentation 15-7

A Sample VoiceXML Document 15-8

Using Document Type Definitions 15-9
xvi
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Using SRGS Grammar Expressions 15-10

Using Speech Recognition Input 15-10

Using DTMF Input 15-11

Using DTMF for Menu Navigation 15-12

Receiving Digit String Input 15-13

Using DTMF Grammar 15-14

Using Text to Speech Output 15-15

Understanding Provider Fallback for TTS 15-15

Understanding Where TTS Prompts are Played 15-16

Understanding Gender Fallback for MRCP TTS 15-17

Using The CRTP Protocol 15-18

Using the Voice Browser Cache 15-18

Creating Cisco Unified CCX Scripts that Run VoiceXML
Documents 15-20

Related Documentation 15-20

A Sample Voicebrower.aef Script 15-20

Creating a Script that Runs a VoiceXML Document 15-22

Step 1: The Start Step (Creating a Script) 15-22

Step 2: Create Two Voicebrowser Script Variables 15-23

Step 2: Enter the Start Step 15-23

Step 3: Enter the Accept Step 15-24

Step 4: Enter the Create URL Document Step 15-24

Step 5: Enter the Voice Browser Step 15-25

Step 6: Enter the Terminate Step 15-28

Step 7: Enter The End Step 15-28

Specifying TTS Providers in a Cisco Unified CCX Script 15-28

Designing International Cisco Unified CCX VoiceXML
Applications 15-29

Cisco Unified CCX VoiceXML Application Troubleshooting Tips 15-32
xvii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
C H A P T E R 16 Designing Scripts for Cisco Unified IP IVR 16-1

The Service Control Interface 16-1

Call Variables 16-3

Using Call Variables 16-3

Using Expanded Call Variables 16-3

Using Error Variables 16-4

Using the Parameter Separator 16-4

Configuring Encoding and Decoding Types 16-5

ICM Script Types 16-7

Initial Scripts 16-8

Default Scripts 16-8

VRU Scripts 16-9

Sample VRU Script Templates 16-10

Basic Queuing (BasicQ.aef) 16-10

Visible Queuing (VisibleQ.aef) 16-11

Collect Digits (CollectDigits.aef) 16-12

C H A P T E R 17 Designing Cisco Unified CCX Scripts 17-1

A Sample Cisco Unified CCX Script Template 17-2

The Start Step (Creating a Script) 17-2

Cisco Unified CCX Script Variables 17-3

The Accept Step 17-6

The Get Contact Info Step 17-6

The Get Session Info Step 17-6

The If Steps 17-7

The First If Step 17-9

The Second If Step 17-9

The Third If Step 17-9

The Fourth If Step 17-10
xviii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
The Play Prompt Step 17-11

The Get Digit String Step 17-11

The Session Steps 17-14

Choosing a Language 17-21

Recording a Name 17-24

The Select Resource Step 17-26

The Connected Output Branch 17-28

The Queued Output Branch 17-30

Using Default Scripts 17-32

Variables for a Default Cisco Unified CCX Script 17-32

Writing a Default Script 17-34

C H A P T E R 18 Designing Cisco Unified Gateway Scripts 18-1

Scripting on a Cisco Unified Gateway System 18-2

Using Variables 18-3

Defining Local Cisco Unified CCX Script Variables 18-3

Using Cisco Pre-Defined Enterprise Call Variables 18-4

Using Enterprise Expanded Call Context (ECC) Variables 18-5

Defining ECC Variables in the Cisco Finesse
Administration 18-5

Defining ECC Variables in the Cisco Unified CCX Editor 18-5

Configuring ECC Variables in a Cisco Unified CCX Script 18-7

Defining ECC Variables for a Post Call Treatment Script 18-7

Using Variables Multiple Times 18-8

Example Cisco Unified Gateway Post-Routing Scripts 18-9

A Sample Cisco Unified CCX Script that Selects a CSQ 18-11

Script Variables Used in the PostRouteSelectCSQ.aef
Script 18-12

Script Flow for the PostRouteSelectCSQ.aef Script 18-13

A Sample Cisco Unified CCX Script that Selects an Agent 18-17
xix
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Script Variables Used in the PostRouteSelectAgent.aef
Script 18-18

Script Flow for the PostRouteSelectAgent.aef Script 18-19

A Sample Cisco Unified CCX Script that Selects a Route Point 18-24

Script Variables Used in the PostRouteSimple.aef Script 18-25

Script Flow for the PostRouteSimple.aef Script 18-26

A Summary Process for Defining Enterprise Variables 18-31

C H A P T E R 19 Designing a Generic Recognition Script 19-1

About the Generic Recognition Steps 19-1

N-Best Recognition and Multiple Interpretations 19-2

N-Best Recognition 19-2

Multiple Interpretations 19-3

The Script Flow for a Generic Recognition Script 19-3

An Example Grammar Used With Generic Recognition 19-4

An Example Script Algorithm Used With Generic Recognition 19-5

An Example Script, GenericRecoExample.aef 19-7

Script Variables Used in the Example Generic Recognition
Script 19-8

Getting a Collection of Results 19-9

Getting All the Information for All the Results 19-12

Getting Interpretations for Each Result and Prompting with
Each 19-13

C H A P T E R 20 Uninstallation of Unified CCX Editor 20-1

A P P E N D I X A A Sample VoiceXML Log File A-1

A Brief Description of a VoiceXML Log File A-1

Excerpts from the Sample VoiceXML Log File A-2
xx
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
Sample VoiceXML Log File Selection A-3

A P P E N D I X B VoiceXML Implementation for Cisco Voice Browser B-1

VoiceXML 2.0 Element Implementation B-2

VoiceXML Properties Implementation B-10

Standard Session Variables Implementation B-11

Built-in Type Implementation B-12

The <value> Data Format B-14

I N D E X
xxi
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Contents
xxii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface

The Cisco Unified Contact Center Express Scripting and Development Series
contains three volumes and provides information about how to use the Cisco
Unified Contact Center Express (Cisco Unified CCX) Editor to develop a wide
variety of interactive scripts:

 • Volume 1, Getting Started with Scripts (this book), provides an overview of
the Cisco Unified CCX and the Cisco Unified CCX Editor web interface.

 • Volume 2, Editor Step Reference, describes each individual step in the Cisco
Unified CCX Editor palettes.

 • Volume 3, Expression Language Reference, provides details on working with
the Cisco Unified CCX Expression Editor

The information in all three volumes is included in the Cisco Unified CCX Step
Editor online help. This means by searching in one location, the Cisco Unified
CCX Step Editor help, you should be able to find any information contained in all
three volumes.

This book is Volume 1 and it describes how to:

 • Install the Cisco Unified CCX Editor

 • Navigate the Cisco Unified CCX Editor interface

 • Make use of key features of the Cisco Unified CCX development
environment

 • Create scripts that perform a wide variety of tasks
i
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
Note For an overview of the Cisco Unified CCX, see the Cisco Unified Contact Center
Express Administration Guide, which includes information about configuring the
Cisco Unified CallManager, the Cisco Unified CCX Server, and other
subsystems of the Cisco Unified CCX Engine.

Audience
The Cisco Unified Contact Center Express Getting Started with Scripts, Release
11.0(1) is written for application developers who will use the Cisco Unified
CCX Editor to create and modify Cisco Unified CCX scripts. This guide targets
developers who have the IP telephony knowledge required to create useful
applications and who also have some background in programming or scripting.
While readers of this guide do not need experience or training with Java, such
training is useful to fully utilize the capabilities of the Cisco Unified CCX system.

Organization
This guide contains the following chapters.

Chapter Title Description

Chapter 1 Installing and Starting the
Cisco Unified CCX Editor

Describes how to install and start the
Cisco Unified CCX Editor on your
computer.

Chapter 2 How To Use the Cisco
Unified CCX Editor

Provides a high-level overview of the
Cisco Unified CCX Editor and its
components.

Chapter 3 Using Expressions and the
Expression Editor

Describes how to use the Expression
Editor.

Chapter 4 Localizing Cisco Unified
CCX Scripts

Describes how to localize your Cisco
Unified CCX scripts to use prompts
in the language your customers use.
ii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
Chapter 5 Advanced Scripting
Techniques

Describes advanced features of the
Cisco Unified CCX development
environment.

Chapter 6 Designing a Basic Script Uses the sample script SNU.aef to
demonstrate how to use Cisco
Unified CCX Editor steps to design a
basic script.

Chapter 7 The Basic Cisco Unified
CCX Script

Uses the sample script icd.aef to
demonstrate how to use Cisco
Unified CCX Editor steps to provide
an Cisco Unified CCX solution to
queue calls and connect them to
available resources.

Chapter 8 Working with Multiple
Contacts

Uses the sample script broadcast.aef
to demonstrate how to use Cisco
Unified CCX Editor steps to design
scripts that handle multiple contacts
within the same script.

This chapter also provides a good
example of handling outbound calls
and using subflows.

Chapter 9 Designing a Web-Enabled
Script

Demonstrates how to use Cisco
Unified CCX Editor steps to create
scripts that take advantage of web
server applications.

Chapter 10 Designing a Web-Enabled
Client Script

Demonstrates how to use Cisco
Unified CCX Editor steps to create a
web-enabled client script.

Chapter 11 Designing a Database
Script

Demonstrates how to use Cisco
Unified CCX Editor steps to design a
simple script that automatically
provides callers with access to
information in a database.

Chapter Title Description
iii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
Chapter 12 Designing a Cisco Unified
IP IVR Script

Uses the sample script aa.aef to
demonstrate how to use Cisco
Unified CCX Editor steps to design a
basic IVR script.

This chapter also provides examples
demonstrating how to design a
multi-lingual and/or media-neutral
script.

Chapter 13 Designing
Contact-Neutral Scripts

Demonstrates how to use Cisco
Unified CCX Editor steps to create a
contact-neutral script that accepts
either a phone call or an HTTP
request as the triggering contact.

Chapter 14 Designing a Script with
Text-To-Speech (TTS)

Uses the sample script
TTSsample.aef to demonstrate how
to use Cisco Unified CCX Editor
steps to design a script that takes
advantage of TTS capability.

Chapter 15 Designing Cisco Unified
CCX VoiceXML
Applications

Contains information about Cisco
Unified CCX support for VoiceXML
standards and other information
useful in developing applications that
take advantage of
VoiceXML-enabled web pages.

Chapter 16 Designing Scripts for
Cisco Unified IP IVR

Demonstrates how to use Cisco
Unified CCX Editor steps in the
Cisco Unified ICME palette to
design VRU scripts for use with
Cisco Unified IP IVR.

Chapter Title Description
iv
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
Related Documentation
See the following documents for further information about Cisco Unified CCX
applications and products:

 • Cisco Unified Contact Center Express Scripting and Development Series:
Volume 2, Editor Step Reference

 • Cisco Unfied Contact Center Express Scripting and Development Series:
Volume 3, Expression Language Reference

 • Cisco Unified Contact Center Express Administration Guide

Chapter 17 Designing Cisco Unified
CCX Scripts

Demonstrates how to use Cisco
Unified CCX Editor steps in the
ACD palette to design scripts for use
with Cisco Unified CCX.

This chapter also demonstrates how
to use Session steps for session
management and how to use a default
script.

Chapter 18 Designing Cisco Unified
Gateway Scripts

Describes how to design Cisco
Unified CCX scripts to interact with
Cisco Unified ICME scripts in an
Cisco Unified CCX system
integrated with a Cisco Unified
ICME system through the Cisco
Unified Gateway.

Chapter 19 Uninstallation of Unified
CCX Editor

Describes the steps to uninstall the
Cisco Unified CCX Editor.

Appendix A VoiceXML
Implementation for Cisco
Voice Browser

Provides VoiceXML information for
implementing the Voice Browser
feature of the Cisco Unified CCX
Engine.

Appendix B A Sample VoiceXML Log
File

A sample voiceXML log file with
SS_VB debug turned on.

Chapter Title Description
v
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
 • Cisco Unified Contact Center Express Installation and Upgrade Guide

 • Cisco Unified Contact Center Express Servicing and Troubleshooting Guide

 • Cisco Unified Communications Manager Administration Guide

 • Cisco Unified Communications Manager Extended Services Administrator
Guide

 • Cisco Unified Communications Manager System Guide

 • Cisco Unified Contact Center Express Design Guide

Glossary
For the complete list of terms used in Cisco Unified CCX and Cisco Unified IP
IVR, see

http://www.cisco.com/en/US/products/sw/custcosw/ps1846/prod_technical_refe
rence_list.html
vi
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
Conventions
This manual uses the following conventions.

Convention Description

boldface font Boldface font is used to indicate commands, such as user
entries, keys, buttons, and folder and submenu names. For
example:

 • Choose Edit > Find.

 • Click Finish.

italic font Italic font is used to indicate the following:

 • To introduce a new term. Example: A skill group is a
collection of agents who share similar skills.

 • For emphasis. Example:
Do not use the numerical naming convention.

 • An argument for which you must supply values.
Example:
IF (condition, true-value, false-value)

 • A book title. Example:
See the Cisco Unified Contact Center Express
Installation Guide.

window font Window font, such as Courier, is used for the following:

 • Text as it appears in code or information that the system
displays. Example:
<html><title>Cisco Systems,Inc.
</title></html>

 • File names. Example: tserver.properties.

 • Directory paths. Example:
C:\Program Files\Adobe

string Nonquoted sets of characters (strings) appear in regular font.
Do not use quotation marks around a string or the string will
include the quotation marks.

[] Optional elements appear in square brackets.
vii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
Obtaining Documentation, Obtaining Support,
and Security Guidelines

For information on obtaining documentation, obtaining support, security
guidelines, and also recommended aliases and general Cisco documents, see the
monthly What’s New in Cisco Product Documentation, which also lists all new
and revised Cisco technical documentation, at:

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html

Documentation Feedback
You can provide comments about this document by sending email to the following
address:

ccbu_docfeedback@cisco.com

We appreciate your comments.

{ x | y | z } Alternative keywords are grouped in braces and separated by
vertical bars.

[x | y | z] Optional alternative keywords are grouped in brackets and
separated by vertical bars.

< > Angle brackets are used to indicate the following:

 • For arguments where the context does not allow italic,
such as ASCII output.

 • A character string that the user enters but that does not
appear on the window such as a password.

^ The key labeled Control is represented in screen displays by
the symbol ^. For example, the screen instruction to hold
down the Control key while you press the D key appears as
^D.

Convention Description
viii
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

http://www.cisco.com/en/US/docs/general/whatsnew/whatsnew.html
ccbu_docfeedback@cisco.com

Preface
ix
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Preface
x
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 1

Installing and Starting the Cisco
Unified CCX Editor

The Cisco Unified CCX Editor is a visual programming environment for creating,
modifying, validating, and debugging telephony and multimedia application
scripts in a Cisco Unified CCX system.

On installing the Cisco Unified CCX Editor:

 • Using a web browser, you can download and install the Cisco Unified CCX
Editor on any computer (not in the Cisco Unified CCX cluster) that can
access the Cisco Unified CCX Administration web page.

This chapter includes the following topics:

 • Starting the Cisco Unified CCX Editor, page 1-1

 • Prerequisites for a Separate Installation, page 1-3

 • Downloading the Cisco Unified CCX Editor for a Separate Installation,
page 1-3

 • Installing the Cisco Unified CCX Editor, page 1-4

Starting the Cisco Unified CCX Editor
To start the Cisco Unified CCX Editor, do the following:
1-1
rted with Scripts, Release 11.0(1)

Chapter 1 Installing and Starting the Cisco Unified CCX Editor
Starting the Cisco Unified CCX Editor
Procedure

Step 1 Select Start > Programs > Cisco Unified CCX Administration > Cisco
Unified CCX Editor.

The Editor Login dialog box appears.

Step 2 Enter a valid Name, Password, and IP address or host name of a node in the Cisco
Unified CCX cluster and click Logon.

The Name and Password value for the Cisco Unified CCX Editor must be the
same as your Cisco Unified CCX Administration Name and Password value.

Note • Only users with Administrative rights to the machine on which the Cisco
Unified CCX Editor is installed are able to launch the Cisco Unified CCX
Editor. Non-administrator users are not able to launch the Editor. This is true
for Windows XP, Windows 7 32-bit Ultimate, and Windows 7 64-bit systems.

 • After you download and launch the Cisco Unified CCX Editor for the first
time, you can select the Log On Anonymously button to run the Cisco
Unified CCX Editor without specifying a Name and Password. However, in
Anonymous mode, you cannot save scripts to the Repository.

The Cisco Unified CCX Server information can be any IP address or hostname of
a valid node in the Cisco Unified CCX cluster. For a local Cisco Unified CCX
Editor running in a Cisco Unified CCX cluster, this field is automatically
pre-filled with the local host IP address. For a remote Cisco Unified CCX Editor,
you must manually enter the Cisco Unified CCX Server ID.

Caution You must supply a Cisco Unified CCX Server IP address the first time you launch
the Cisco Unified CCX Editor so that the Cisco Unified CCX Editor can
download additional information from the Cisco Unified CCX Cluster that it
needs to become fully functional. In subsequent launches, the Cisco Unified CCX
Editor uses the IP address to properly authenticate the user and download updated
configuration information. If no IP address is supplied, or if the Cisco Unified
CCX Editor is unable to connect to the cluster, the Cisco Unified CCX Editor
starts up with the last known IP address and configuration.

First, a window displays the logon progress; then the Cisco Unified CCX Editor
window appears.
1-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 1 Installing and Starting the Cisco Unified CCX Editor
Prerequisites for a Separate Installation
Prerequisites for a Separate Installation
To install the Cisco Unified CCX Editor independently of a Cisco Unified CCX
server, you need to install one of the following operating systems:

 • Windows XP Professional

 • Windows 7 32-bit Ultimate

 • Windows 7 64-bit

Note You must use Internet Explorer version 9.x or later as your web browser for the
Cisco Unified CCX family of products.

Downloading the Cisco Unified CCX Editor for a
Separate Installation

To download the Cisco Unified CCX Editor from the Cisco Unified CCX
Administration web interface onto a computer not included in the Cisco Unified
CCX cluster, do the following:

Procedure

Step 1 From the Cisco Unified CCX Administration menu bar, choose Tools > Plug-ins.

The Plug-ins web page appears.

Note For instructions on accessing the Cisco Unified CCX Administration web
interface, see the Cisco Unified Contact Center Express Administration Guide.

Step 2 Click the Cisco Unified CCX Editor hyperlink.

The Download Cisco Unified CCX Editor web page appears.

Step 3 Click Download and execute the Cisco Unified CCX Editor installer.

Depending on your browser and its configuration, either a File Download dialog
box or a Save As dialog box appears.
1-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 1 Installing and Starting the Cisco Unified CCX Editor
Installing the Cisco Unified CCX Editor
Step 4 Using either the File Download dialog box or the Save As dialog box, choose a
directory in which to store the executable file that contains the Cisco Unified
CCX Editor.

Step 5 Click Save.

The Cisco Unified CCX Editor executable file begins downloading.

When the file has completely downloaded, you are ready to install the Cisco
Unified CCX Editor.

Follow the procedure in the “Installing the Cisco Unified CCX Editor” section on
page 1-4.

Installing the Cisco Unified CCX Editor
To install the Cisco Unified CCX Editor on your computer, do the following:

Procedure

Step 1 In the directory where you stored the downloaded Cisco Unified CCX Editor
executable file, double-click Cisco Unified CCX Editor.exe.

The default directory for Windows XP is C:\Program Files\wfavvid_1001 and for,
Windows 7 is C:\Program Files (x86)\wfavvid_1001.

The InstallAnywhere Wizard appears and begins extracting files for the
installation. (This process may take a few minutes.)

Step 2 At the Welcome prompt, click Next.

The Software License Agreements dialog box appears.

Step 3 Read the software license agreements, then click Yes.

The Choose Destination Location dialog box appears.

Step 4 Perform one of the following actions:

 • Click Next to accept the default directory option, C:\Program
Files\wfavvid_1001 for Windows XP and C:\Program Files
(x86)\wfavvid_1001 for Windows 7.

The Select Components dialog box appears.
1-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 1 Installing and Starting the Cisco Unified CCX Editor
Installing the Cisco Unified CCX Editor
 • Perform the following procedure to choose a different destination:

 – Click Browse.

The Choose Folder dialog box appears.

 – Browse to the desired location, and then click OK.

The Choose Folder dialog box closes, and the destination appears in the
Choose Destination Location dialog box.

 – Click Next.

The Select Components dialog box appears.

Step 5 In the Select Components dialog box, make sure that Cisco Unified CCX Editor
check box (the only option) is checked, and click Next.

The Select Program Folder dialog box appears.

Step 6 In the Select Program Folder dialog box, accept the default location to add
program icons to the program folder, or take one of the following actions:

 • Type the name of the new folder.

 • From the list of folders, choose the folder in which you want to store the
program icons.

Click Next.

The Start Copying Files dialog box appears.

Step 7 In the Start Copying Files dialog box, take one of the following actions:

 • To change any of your previous choices, click Back, make the desired
changes, and then return to the Start Copying Files dialog box and click
Finish.

 • If you accept all your choices, click Finish.

The InstallAnywhere Wizard closes, and the Cisco Unified CCX Editor is
installed at the indicated destination.

Step 8 Restart the system.

Step 9 Start up Cisco Unified CCX Editor by doing the following:

a. Select Start > Programs > Cisco Unified CCX Administration > Cisco
Unified CCX Editor.

The Editor Login dialog box appears.
1-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 1 Installing and Starting the Cisco Unified CCX Editor
Installing the Cisco Unified CCX Editor
b. Enter a valid Name, Password, and Cisco Unified CCX Server ID for a Cisco
Unified CCX cluster and click Logon.

The Name and Password value for the Cisco Unified CCX Editor is the same
your Cisco Unified CCX Administration Name and Password value.

Note You must start the Cisco Unified CCX Editor and Logon immediately
after installation, while the system where it is installed can still reach the
Cisco Unified CCX cluster from which it was downloaded. This step is
necessary so that you can specify the IP address of the Cisco Unified CCX
Server so that the Cisco Unified CCX Editor can download additional
required information from the Cisco Unified CCX cluster.

When you logon for the first time, you also must logon as a named user
with a password. You should not attempt to logon anonymously for the
first logon.
1-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Star
C H A P T E R 2

How To Use the Cisco Unified CCX
Editor

The Cisco Unified CCX Editor (referred to in this documentation as the “Cisco
Unified CCX Editor”) is a visual programming environment for creating
telephony and multimedia application scripts. You can use the Cisco Unified
CCX Editor on any computer that has access to the Cisco Unified CCX server.

This introduction to the Cisco Unified CCX Editor contains the following topics:

 • About the Cisco Unified CCX Editor, page 2-2

 • An Example Cisco Unified CCX Editor Window, page 2-2

 • About the Cisco Unified CCX Editor Status Bar, page 2-5

 • Menu Bar Function Descriptions, page 2-7

 • Tool Bar Function Descriptions, page 2-16

 • About the Cisco Unified CCX Editor Step Palettes, page 2-18

 • How to Create and Customize a Cisco Unified CCX Editor Script, page 2-25

 • Defining, Using, and Updating Script Variables, page 2-31

 • Validating and Debugging Your Script, page 2-48

 • How To Handle Basic Script Errors, page 2-53

 • How and Why To Use the CRTP Protocol, page 2-56

 • The Script Templates Installed with the Cisco Unified CCX Editor, page 2-63

 • The Cisco Unified CCX Edition Script Web Repository, page 2-69
2-1
ted with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor
Within the Cisco Unified CCX Editor, you can also use the Cisco Unified CCX
Expression Editor to enter or modify expressions in a Cisco Unified CCX script.
For instructions on how to use the Cisco Unified CCX Expression Editor, see
Using Expressions and the Expression Editor.

About the Cisco Unified CCX Editor
The Cisco Cisco Unified CCX Editor enables you to develop a wide variety of
interactive scripts.

The Cisco Unified CCX Editor simplifies script development by providing blocks
of contact-processing logic in easy-to-use Java-based steps. Each step has its own
unique capabilities, from simple increment to generating and playing out prompts,
obtaining user input, queueing calls, or performing complex database operations.

Although the steps are written in Java, you do not need to understand Java
programming to build a Cisco Unified CCX script. You can assemble a script by
dragging step icons from a palette on the left pane of the workspace to the design
area on the right pane of the workspace.

The Cisco Unified CCX Editor supplies the code required to connect the steps;
you provide the variable definitions and other parameters. You can validate and
debug the completed script directly in the Cisco Unified CCX Editor.

Note • The support for Remote Monitoring feature has been ended from Unified
CCX 11.0(1) release onward. While upgrading to Unified CCX 11.0, if the
Remote Monitoring feature was enabled, it will not function as before after
the upgrade is complete.

 • If there was any custom script created earlier with the RMON steps, the script
will ignore the RMON related steps and continue with the next steps of the
script after the upgrade is complete.

An Example Cisco Unified CCX Editor Window
This section includes the following topics:

 • Cisco Unified CCX Editor Window with a Sample Script, page 2-4
2-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
An Example Cisco Unified CCX Editor Window
 • About the Cisco Unified CCX Editor Status Bar, page 2-5

 • Menu Bar Function Descriptions, page 2-7

 • Tool Bar Function Descriptions, page 2-16

See also:

 • About the Cisco Unified CCX Editor Step Palettes, page 2-18

 • How to Create and Customize a Cisco Unified CCX Editor Script, page 2-25

 • Defining, Using, and Updating Script Variables, page 2-31

 • Validating and Debugging Your Script, page 2-48
2-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
An Example Cisco Unified CCX Editor Window
Cisco Unified CCX Editor Window with a Sample Script

Figure 2-1 Cisco Unified CCX Editor Window
2-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Status Bar
The preceding example is of a Cisco Unified CCX Editor window with an
example Cisco Unified CCX script opened in it. The following table describes the
four panes of the Cisco Unified CCX Editor window.

1 Palette pane Use the Palette pane to choose the steps you need to create
your script.

2 Design pane Use the Design pane to create your script.

3 Message pane Use the Message pane to view messages when you are
validating or debugging a script.

4 Variable pane Use the Variable pane to create, modify, and view variables
for your script.

About the Cisco Unified CCX Editor Status Bar
Figure 2-2 is an example of the Cisco Unified CCX Editor status bar.

Figure 2-2 Cisco Unified CCX Editor Status Bar

 • Step number: The first section displays the step number currently selected
(step/connection) out of how many steps defined in the script. Step numbers
correspond to the order in which they were added to the script and as such do
not increment necessarily when you scroll down the list of steps in the script.

 • Line number: The second section displays the line number of the currently
selected step or connection out of how many lines are currently displayed in
the script. Expanding a step will increase the total number of lines being
displayed.

 • Script status: The third section displays the script status. The snapshot above
shows nothing as the script was not modified.
2-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Status Bar
Script Status
Image Indicates

The script has been modified and needs to be saved.

The script is being debugged.

Script debugging is temporarily paused.

 • Cluster status: The fourth section displays the cluster status. The text
displayed is the name of the cluster to which the Editor is connected or
Unknown if the Editor was started without information about a cluster.

Cluster
Status Image Indicates

The Editor is connected to a cluster allowing it to debug scripts.

The Editor is not connected to a cluster because all its engines
are down so no debugging is possible.

The Editor was started without information about a cluster.

 • User name: The fifth section displays information about the logged in user.
The text displayed is the name of the user or Anonymous when the user logs
into the Editor anonymously.

User Status Indicates
The Editor user is logged in by name.

The Editor user is logged in anonymously.
2-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
 • Available memory: The sixth section displays a progress bar with the total
available memory for the Editor and the amount of memory currently in use.

This is meant as a gauge for the user to identify when the Editor will have an
out-of-memory condition because either too many scripts are opened or
because the script being edited is too big. The progress bar changes to red
when there is about 10 MB of memory left before reaching the
out-of-memory condition.

 • Button for freeing memory: The final section is a button that can be used or
not to free up memory not yet recollected by the Java VM. You do not need
to use this button since the Java Virtual Memory (JVM) automatically frees
up memory when it can be freed.

See also:

 • Menu Bar Function Descriptions, page 2-7

 • Tool Bar Function Descriptions, page 2-16

Menu Bar Function Descriptions
This section describes how to use the menu bar options in the Cisco Unified
CCX Editor window:

 • The File Menu, page 2-8

 • The Edit Menu, page 2-9

 • The Tools Menu, page 2-10

 • The Debug Menu, page 2-10

 • The Window Menu, page 2-11

 • The Settings Menu, page 2-11

 • The Help Menu, page 2-15
2-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
The File Menu
Use File menu options to perform a variety of tasks with files.

Table 2-1 File Menu Options

Option Description

New Opens the script template window from which you select a
template and click OK. Then creates a new script based on the
selected template and places a Start step and End step (and
other steps, depending on the template, in the Design pane.

(The Start step is the first step of every new script and the End
step is the concluding step in a script.)

Open Displays a standard Open window that allows you to choose
and open an existing script (.aef) file.

Note The default location for user scripts are:
C:\ProgramFiles\wfavvid_1001\Scripts\User\Default
for Windows XP and
C:\ProgramFiles(x86)\wfavvid_1001\Scripts\User
\Default for Windows 7.

When connected to a cluster, this option allows you to
browse all scripts uploaded to the cluster's script
repository and load one directly from there.

Use the Open option to access and modify an existing user
script.

Note Never use File > Open to load a Cisco Unified CCX
Cisco-supplied system script. Doing so will only work
on servers and not remote editors and overwriting that
file corrupts the installation making the script not
loadable, as the system responds with a license
violation if a system script is modified. The only course
of action after having corrupted an installation is to use
the recover option of the Cisco Unified CCX installer to
get the original system script re-installed properly.

Close Closes the current script file.
2-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
The Edit Menu
Use Edit menu options to perform various editing tasks.

Table 2-2 Edit Menu Options

Option Description

Undo Undoes last action.

Redo Redoes last action.

Cut Cuts selected items.

Copy Copies selected items.

Paste Pastes selected items.

Delete Deletes selected items.

Find Displays a window you can use to search for specific text.

Find Label Displays a window you can use to search for a specific label.

Find Next Searches for another occurrence of text entered in the Find
window.

Expand All Displays all branches in the steps in the Design pane.

Save Saves the current script file.

Save As Opens a standard Save As window that you can use to save your
current script by entering a filename with an .aef extension.

Print Prints the current file.

Properties Provides two tabs:

 • General—Describes the type, location, and size of the
opened file.

 • Summary—Provides fields you can use to enter descriptive
information about the opened file.

Table 2-1 File Menu Options (continued)

Option Description
2-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
The Tools Menu
The only Tools menu option is Validate.

Use the Validate menu option to check that your script sequence and your step
properties usage conform to the general syntax that the Cisco Unified
CCX Engine requires.

The Debug Menu
Use the Debug menu options to test your completed script on a local or remote
Cisco Unified CCX Engine.

Table 2-3 Debug Menu Options

Option Description

Start/Continue Runs the current script in debug mode.

Break Stops the script to allow you to view or change the
current values of variables and step properties before
resuming execution.

End Ends the current script.

Step Over Executes one step.

Evaluate Use the Evalute option to evaluate an expression in the
current context of execution during the debug run.

You may press the Evaluate button at any time during
active/ reactive debugging. This will open a window
similar to the Expression Editor. specify the expression
to be evaluated in the Value tab. The expression may also
contain any variables used in the script.

When you slect the Evaluate option, the expression is
evaluated using the current value for the variables as they
stand, (till the current point of execution) and the result
is displayed in the Result tab.
2-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
The Window Menu
Use the Window menu options to control how multiple files appear in the Design
pane.

Table 2-4 Window Menu Options

Option Description

Cascade Displays files as stacked windows.

Tile Horizontally Displays files as equal windows tiled horizontally.

Tile Vertically Displays files as equal windows tiled vertically.

The Settings Menu
Use the Settings menu options to customize the Cisco Unified CCX Editor and to
define expanded call-context variables.

Insert/Remove
Breakpoint

Inserts a breakpoint at the currently selected step. This
insertion causes the script to halt whenever it runs in
debug mode, but it does not affect the run-time version
of the script.

Enable/Disable
Breakpoint

Toggles the selected breakpoint on or off.

Clear All
Breakpoints

Removes all breakpoints from the script.

Reactive Script Prompts for the name and timeout setting of the
event-triggered script to be debugged.

Pending Response Displays a list of all reactive scripts that have been
registered but not yet started. (This allows you to see
what reactive debugging requests are still pending.)

Table 2-3 Debug Menu Options (continued)

Option Description
2-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
Table 2-5 Settings Menu — Editor Options

Editor Options Description

View tab Formatting
Options

Allow you to format Cisco Unified CCX script
Annotations, Labels, Names, Descriptions, and
Connections according to your color choice,
italics, bolding, and or underlining.
2-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
General
options
tab

Confirm
conversion at
Open

Whenever you open a Cisco Unified CCX script
created in a lower version of the Cisco Unified
CCX Editor than the one currently open, the
script is automatically converted to the current
Cisco Unified CCX version and opens
successfully.

Selecting this option enables the display of a
confirmation message of that conversion.

Auto-maximize
frame at Open

Selecting this option means that the Cisco
Unified CCX Editor will always open in a
maximized (full) window.

Recently used
file list

Enables you to select the number of most
recently opened Editor files that you want listed
in the File menu display.

Double-click to
open customizers

Enables the display of the customizer window
for any step when you double click on it.

Otherwise, you need to right click on the desired
step and then select the Properties option from
the pop-up menu list.

Table 2-5 Settings Menu — Editor Options (continued)

Editor Options Description
2-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
Palettes
tab

Palette selection
boxes and
buttons

Allow you to customize which steps appear in
the Cisco Unified CCX Editor palettes.

Beginning with CRS 4.0, the CRS Editor no
longer enforces CRS licensing; instead, the
Cisco CRS Engine enforces licensing at
runtime. This means that you can add any step
to any script regardless of what licenses you
have purchased. However, if a script contains
unlicensed steps, the Cisco CRS Engine will
reject the script at runtime with a license
violation.

The Synchronize License button can let you
hide steps that you have not purchased. The
Synchronize License button is available to
communicate with the Cisco Unified CCX
cluster and automatically show or hide palette
steps according to the currently installed
licenses.

If you request license synchronization when the
Cisco Unified CCX Editor cannot access the
latest license on the cluster or when the Cisco
Unified CCX server is down, then the Cisco
Unified CCX Editor will synchronize the
licensed Cisco Unified CCX Editor palettes
with the ones listed in the local license on your
machine, if it exists.

Note The Cisco Unified CCX editor has to
synchronize the license on the user's
local machine with its license on the
server at least once in order for it to copy
that license from the server and store it
on the user's local disk.

Table 2-5 Settings Menu — Editor Options (continued)

Editor Options Description
2-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Menu Bar Function Descriptions
Table 2-6 Settings Menu — Expanded Call Variables

Menu Selection Description

Expanded Call
Variables

Enables you to define the expanded call variables used by
the Get Enterprise Call Info and Set Enterprise Call Info
steps.

Note If you are using Cisco Unified IP IVR, you must
define expanded call variables before using them in
the Enterprise Call Info steps.

The Help Menu
The only Help menu option is Help.

Use the Help menu option to search the contents of the Help file.
2-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Tool Bar Function Descriptions
Tool Bar Function Descriptions
The Cisco Unified CCX Editor tool bar provides icons you click to choose some
of the same Cisco Unified CCX Editor options that you access from the menu bar.
Depending on the work you are doing in a script, some of these icons are greyed
out, not allowing those specific options.

Figure 2-3 Cisco Unified CCX Editor Toolbar

Table 2-7 Cisco Unified CCX Editor Toolbar Tool Functions

Tool Description

Creates a new script.

Opens a script.

Saves a script.

Prints selected file.

Cuts selected item.

Copies selected item.

Pastes selected item.

Undoes previous command.

Redoes previous command.
2-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Tool Bar Function Descriptions
Starts running the script.

Note Only use this option for scripts that do not need
to be triggered by an external event, such as an
inbound call or an inbound HTTP request. (This
is referred to as normal debugging.)

Pauses the debugging process.

Stops debugging process.

Executes the next step, only.

Note

 • This allows you to execute one step at a time during
a debugging session in order to verify the results.

 • If the next step is a CallSubflow step, the subflow
invoked will run to completion and the debugging
will then stop at the next step after the CallSubflow
step.

Inserts/removes a breakpoint at the currently selected
step. This instructs the Cisco Unified CCX Editor to stop
debugging just before executing this step.

A hand and diamond icon displays in front of steps set
with a breakpoint if the breakpoint is enabled.

If the breakpoint is disabled, then only a diamond icon
displays.

If the currently selected step already has a breakpoint set,
then this icon changes to a different one showing an
arrow coming out indicating the breakpoint can be
removed.

Table 2-7 Cisco Unified CCX Editor Toolbar Tool Functions (continued)

Tool Description
2-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Step Palettes
About the Cisco Unified CCX Editor Step Palettes
The Palette pane of the Cisco Unified CCX Editor contains all the steps available
for developing scripts. The steps are organized into general categories in a tree
hierarchy.

Figure 2-4 Cisco Unified CCX Editor Palette Pane

This section contains the following topics:

 • The Editor Palettes Available in Each Cisco Unified CCX Product, page 2-19

 • The Steps in Each Cisco Unified CCX Editor Palette

Enables/disables a breakpoint on a step.

Click the diamond icon to enable a breakpoint.

Click the hand with the diamond icon to disable a
breakpoint.

Clears all breakpoints in debugging process

Table 2-7 Cisco Unified CCX Editor Toolbar Tool Functions (continued)

Tool Description
2-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Step Palettes
 • How To Use the Cisco Unified CCX Editor Palettes, page 2-24

 • How to Create and Customize a Cisco Unified CCX Editor Script, page 2-25

The Editor Palettes Available in Each Cisco Unified CCX
Product

Table 2-8 lists the Cisco Unified CCX Editor step palettes available for each
license option.

Note All the palettes listed in the following table are displayed in the Cisco Unified
CCX Editor by default. However, the Cisco Unified CCX Engine enforces
licensing at run time; if a script uses a step for which your system is not licensed,
the Cisco Unified CCX Engine prevents the script from being loaded.

Table 2-8 Step Palette Availability with Unified CCX License Options

Cisco
Unified IP
IVR

Cisco
Unified
CCX
Standard

Cisco
Unified
CCX
Enhanced

Cisco
Unified
CCX
Premium

General1 X X X X
Session X X X X
Contact X X X X
Call Contact X X X X
Email
Contact

X X

HTTP
Contact

X X

Media 2 X X X X
User X X X X
Prompt3 X X X X
Grammar X X X X
2-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Step Palettes
Doc X X X X
DB X X
ACD X4 X5 X
ICM X
Java6 X X X

1. The ‘Get Reporting Statistic’ step is only available with the Cisco Unified CCX
packages.

2. The ‘Voice Browser’ step is only available with the Cisco Unified IP IVR or Cisco
Unified CCX Premium packages.

3. The ‘Create TTS Prompt’ step is only available with the Cisco Unified IP IVR or
Cisco Unified CCX Premium packages.

4. The ‘Set Priority,’ and ‘CreateCSQSpokenNamePromptStep’ steps are not
available with Cisco Unified CCX Standard

5. The ‘Set Priority,’ and ‘CreateCSQSpokenNamePromptStep’ steps are only
available with Cisco Unified CCX Enhanced or Cisco Unified CCX Premium.

6. When the step in the Java palette is enabled, the Java functionality of the
expression language is also enabled.

Table 2-8 Step Palette Availability with Unified CCX License Options (continued)

Cisco
Unified IP
IVR

Cisco
Unified
CCX
Standard

Cisco
Unified
CCX
Enhanced

Cisco
Unified
CCX
Premium
2-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Step Palettes
The Steps in Each Cisco Unified CCX Editor Palette
Table 2-9 lists the steps in each Cisco Unified CCX Editor palette.

Table 2-9 The Cisco Unified CCX Editor Palettes

Palette Steps
General

Session

Contact
2-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Step Palettes
Call Contact

Email Contact

HTTP Contact

Media

Table 2-9 The Cisco Unified CCX Editor Palettes (continued)

Palette Steps
2-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Step Palettes
User

Prompt

Grammar

Document

Database

Table 2-9 The Cisco Unified CCX Editor Palettes (continued)

Palette Steps
2-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
About the Cisco Unified CCX Editor Step Palettes
Note For complete descriptions of the steps in every Cisco Unified CCX Editor palette,
see the Cisco Unified Contact Center Express Scripting and Development Series:
Volume 2, Editor Step Reference Guide.

How To Use the Cisco Unified CCX Editor Palettes
 • To display the contents of a palette:

Click the plus sign (+) to the left of the palette icon in the Palette pane tree.

 • To create your script:
Drag the steps you want from the Palette pane and drop them, in their desired
order, into the Design pane.

ACD

ICM

Java

Table 2-9 The Cisco Unified CCX Editor Palettes (continued)

Palette Steps
2-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How to Create and Customize a Cisco Unified CCX Editor Script
Each step performs a specific function and creates a portion of the underlying
programming. You can customize all of the steps once you have placed them
in the Design pane.

Your cursor displays the international prohibited sign until you move a step
into a location that the Cisco Unified CCX Editor allows. In addition, the step
or branch under which the step would be inserted is also highlighted.

Here are some tips about dragging steps:

 • Before you drag a step to the Design pane, close any open customizer
window(s). (If you try to drag a step to the Design pane when a customizer
window is open, the Design pane does not accept the step.)

 • While dragging a step, move the cursor close to any edge of the script window
to scroll the script in that direction in order to drop the step in the desired
location.

 • While dragging a step, the collapsed steps do not immediately expand. To
expand a collapsed step, move the cursor over the collapsed step for two
seconds; the step or connection then expands.

Note Custom steps are not supported in Cisco Unified CCX.

How to Create and Customize a Cisco Unified
CCX Editor Script

This section contains the following topics:

 • Creating a Script, page 2-25

 • Customizing a Step, page 2-28

Creating a Script
 • To begin a new script, select the blank script button in the Cisco Unified

CCX Editor tool bar. The blank script template opens in the Design pane with
the Start and End steps providing you with the starting and end points of your
script.
2-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How to Create and Customize a Cisco Unified CCX Editor Script
 • To begin a new script, click the new script button in the Cisco Unified
CCX Editor tool bar. A blank script opens in the Design pane with the Start
step providing you with the starting point of your script.

 • To add a step to your script, drag the step icon from the Palette pane and drop
it onto the step it will follow in the Design pane. Place the steps in logical
order for the script you are building.

 • To change the order of a step in the script, drag the individual step icon from
its old location to its new location.

 • To delete a step, select the step icon and press the Delete key.

 • To expand the script under a step, click the plus sign to the left of the step
icon.

 • To contract the script under a step, click the minus sign to the left of the step
icon.
2-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How to Create and Customize a Cisco Unified CCX Editor Script
Figure 2-5 shows an example of how a script displays in the Cisco Unified CCX
Editor Design pane.

Figure 2-5 Script Example in the Design Pane

Many steps have output branches under which you add steps to provide desired
script logic based on the exit condition of the step.

For example, in Figure 2-5, the Place Call step shown has six output branches:

 • Successful

 • NoAnswer
2-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How to Create and Customize a Cisco Unified CCX Editor Script
 • Busy

 • Invalid

 • NoResource

 • Unsuccessful

Output branches often contain steps and other output branches. In Figure 2-5, the
Successful output branch contains three steps below it.

At run time, each script follows a hierarchical sequence, as indicated by the
vertical lines connecting steps.

In Figure 2-5:

 • If the script reaches the NoAnswer or Busy output branch of the Place Call
step, it will fall through to the End step.

 • If the script reaches the Invalid, NoResource, or Unsuccessful branch of the
Place Call step, it will fall through to the next step in the flow, which—in this
example—is the Terminate step.

Customizing a Step
You can customize all of the steps in the Cisco Unified CCX Editor by opening
windows called customizer windows. A customizer window contains fields you
can configure to meet the needs of your script. The configuration fields on the
customizer windows are called properties.

To display the customizer window for a Cisco Unified CCX Editor step, do the
following.

Step 1 In the tool bar, select the blank script button.

The Start icon and End icons appear in the Design pane.

Step 2 In the Editor palette, select Contact > Accept and drag the Accept icon from the
palette into the Design pane under the Start icon.

Step 3 Right-click the Accept icon.

The Properties popup menu appears.
2-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How to Create and Customize a Cisco Unified CCX Editor Script
Figure 2-6 Properties Popup Menu—Menu Step

Step 4 Select Properties.

The customizer window of the Accept step appears.

Figure 2-7 Menu Customizer Window

Use the customizer window of each step to configure the properties of that step.

Customizer windows have text fields and or selection fields that you use to
configure properties. They might have multiple tabs.

Each customizer window contains four buttons:

 • OK—Applies the changes and closes the customizer window.

 • Apply—Applies the changes without closing the customizer window.
2-29
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How to Create and Customize a Cisco Unified CCX Editor Script
 • Cancel—Closes the customizer window without applying any changes.

 • Help—Displays context-sensitive help for this step.

Customizer windows might also have additional buttons that you can use to
modify and display various properties within a step.

In addition, customizer windows typically display three tabs with icons at the top
left corner of the window.

Table 2-10 Step Editor Customizer Window Tabs

Tab Icon Description
Top Tab The step’s icon, allowing you to customize the

specific properties of the selected step, if any.

This icon always corresponds to the icon
associated with the current step. The example step
icon illustrated here is that of the Get Session step.

Middle Tab The Label icon, allowing you to assign a label to
the step.

Bottom Tab The Annotate icon, allowing you to enter
comments regarding the step.

Note The following are the exceptions to the previous tab convention:

 • The Label step, which displays only two tabs (Label and Annotate); and the
Annotate step, which displays only two tabs (Annotate and Label). This is
because these steps are actually doing nothing else then providing a label or
an annotation which can now be done by all other steps.

 • The OnExceptionGoto and the Goto steps also display only two tabs: their
properties tab and the annotate tab. They do not display a label tab because
these two steps are used as branching steps.
2-30
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Defining, Using, and Updating Script Variables
Any step in your script can use variables once you define them in the Variable
pane of the Cisco Unified CCX Editor window. A script variables store data while
a script executes and the value of the variable can change during script execution.

This section includes the following topics:

 • How to Reorganize the Display of Script Variables in the Editor, page 2-32

 • How To Define Local Script Variables in the Cisco Unified CCX Editor,
page 2-32

 • How To Map a Script Variable to a Subscript Variable, page 2-34

 • Using Enterprise Expanded Call Context (ECC) Variables, page 2-35

 • How To Define ECC Variables in the Cisco Unified CCX Editor, page 2-35

 • The Types of Local Variables Available in the Cisco Unified CCX Editor,
page 2-37

 • How and Why To Export Variables, page 2-43

 • How and When To Configure the Encoding and Decoding of Variable Types,
page 2-44

 • Using Multiple Values in a Variable, page 2-47
2-31
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
How to Reorganize the Display of Script Variables in the
Editor

By clicking one of the headers in the Cisco Unified CCX Editor Variable pane,
you can reorganize a script’s variable list display according to the header.

How To Define Local Script Variables in the Cisco Unified
CCX Editor

This section describes how to define a local script variable, a variable created in
a script and specific only to that script.

Note In addition to defining local script variables, you can also define expanded call
variables for use with the Enterprise Call Info steps. See How To Define ECC
Variables in the Cisco Unified CCX Editor, page 2-35 for how to do this.

To define a new local script variable, click the New Variable icon at the top
left corner of the Variable pane of the Cisco Unified CCX Editor window.

The New Variable dialog box appears.

Figure 2-8 New Variable Dialog Box
2-32
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
After you use the New Variable dialog box to define your variables, the variables
appear in the Cisco Unified CCX Script Editor Variable pane.

You can select a listed variable and use the Modify or Delete icons
in the toolbar of the Variable pane to make any necessary changes.

The table below describes the fields in the New and Edit Variable dialog boxes.

Table 2-11 New and Edit Variable Properties

Property Description

Type (Drop-down list.) Type of variable you want to declare. This is
either a friendly data type or a fully qualified Java class name (for
example, java.util.ArrayList).

Note For a list of available Cisco Unified CCX variable types,
see Table 2-12

Name Name of the variable you want to declare.

Value (Expression.) Data you initially assign to a variable. The type of
data you enter must match the data type you declared in the Type
field.

Data can consist of valid expressions of the same type and can
include final variables (if the variable for which the value is
defined is not marked final).

The Cisco Unified CCX Editor evaluates initial values for
variables before the first step in the script is executed. For
example, an expression such as new Date() would be evaluated
at the time the script executes and results in a data object
representing the current date.

Note The same expression can be written as D[now] for
simplicity.

Final (Checkbox.) If enabled, marks the variable as one that cannot
have its value changed. Such a variable is known as a constant and
can be used to define other non-final variable initial values.

The keyword final can also be prefixed to the data type for the
same result, to make a variable final of type integer, as in the
following example:
final int
2-33
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
How To Map a Script Variable to a Subscript Variable
You can also map variables you define for your script to variables you define in a
subflow. A subflow can use and manipulate a variable, then return the data that is
stored in the variable to the primary script.

Scripts cannot share variables with other scripts, except in the case of default
scripts, in which the primary script automatically transfers the values of its
variables to a default script. (See Using Default Scripts, page 5-19.)

You can also map a local variable to a Web cookie, an environment variable, and
HTTP header, a keyword, or a Cisco Unified CCX application parameter. See the
description of the Keyword Transform Document step for how to map a variable
to a keyword. See the description of the of the Set Http Contact Info step for how
to map a Web cookie, and see the description of the Get Http Contact Info step for
how to map an environment variable, an HTTP header, and a Cisco Unified CCX
application parameter.

Note For complete details on using variables in scripts, see the Cisco Unified CCX
Scripting and Development Series: Volume 3, Expression Language Reference.

Parameter (Checkbox.) If enabled, sets the value for this parameter in the
Cisco Unified CCX Administration web interface when you
provision applications that use this script.

Array (Checkbox.) If enabled, defines the variable as an array (seen by,
or entered by, the ending [] on the variable type).

Dimensions (Checkbox.) If enabled, allows you to use the drop-down list to
define the dimensions of an array variable:

 • If set at 0, then the variable is not defined as an array.

 • If set to 1, it defines the variable as an array of dimension 1;
if set to 2, an array of dimension 2, and so on.

Note You can also simply type ending brackets ([]) to the
variable type to indicate to the Cisco Unified CCX Editor
that an array is being created.

Table 2-11 New and Edit Variable Properties (continued)

Property Description
2-34
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Using Enterprise Expanded Call Context (ECC) Variables
Enterprise Expanded Call Context (ECC) data fields are used by all applications
in the Cisco Unified CCX Cluster. There can be as many as 200 user-defined
fields defined in the Field List (index numbers 0-199) of expanded call variables.
These field values do not appear in the ContactCallDetail records as there are no
fields reserved for them.

The Cisco Unified CCX system, and the Cisco Finesse Desktop can pass ECC
variables to each other.

Cisco Unified CCX has some pre-defined ECC variables. For a list of the Cisco
Unified CCX system default ECC variables, see Cisco Unified Contact Center
Express Scripting and Development Series: Volume 2, Editor Step Reference
Guide.

The Cisco Unified CCX Editor Set and Get Call Info steps are specifically
designed to use enterprise call variables. For how to use ECC variables with these
steps, see the individual step descriptions.

How To Define ECC Variables in the Cisco Unified CCX
Editor

Note Every Enterprise ECC variable must be separately defined on all parts of the
system that sends and receives the variable data: the Cisco Unified CCX Editor in
Cisco Unified CCX, and the Cisco Finesse Desktop. This procedure deals only
with the Cisco Unified CCX Editor. For further information, see Designing Cisco
Unified Gateway Scripts, page 18-1.

To define an ECC variable in the Cisco Unified CCX Editor, do the following.

Step 1 From the Cisco Unified CCX Editor menu bar, choose Settings > Expanded Call
Variables.

The Expanded Call Variables window appears.
2-35
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Figure 2-9 Expanded Call Variables Window

Step 2 In the tool bar, click the Add New Variable icon.

The Edit Expanded Call Variable dialog box appears.

Figure 2-10 Edit Expanded Call Variable Dialog Box

Step 3 In the Name text field, enter the ECC variable name as defined in the Cisco
Unified ICME configuration (or the Cisco Finesse Administration using Cisco
Unified CCX).

Note All user-defined ECC variable names should begin with "user."

Step 4 In the Type drop-down menu, choose the type of expanded call variable (scalar or
array).

Step 5 In the Description text field, enter a description of the variable.

Step 6 Click OK.
2-36
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
The Edit Expanded Call Variable dialog box closes, and the variable name, type,
and description appear under their respective columns in the Cisco Unified ICME
Expanded Call Variables window (or the Cisco Finesse Administration using
Cisco Unified CCX).

Step 7 Click the dialog box’s Close (X) button.

The Expanded Call Variables window closes, and the ECC variable is now
available to your script. It will be listed in the Enterprise Call Info step’s
drop-down list as ---name--, where name is the value you entered in the Variable
Name field.

The Types of Local Variables Available in the Cisco Unified
CCX Editor

Table 2-12 describes the types of local variables available in the Cisco Unified
CCX Editor.

Note This table provide brief descriptions and examples of each of the built-in variable
types available to Cisco Unified CCX. For complete details on using each
variable, see Cisco Unified CCX Scripting and Development Series: Volume 3,
Expression Language Reference and the Cisco Unified Contact Center Express
Scripting and Development Series: Volume 2, Editor Step Reference Guide.
2-37
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Table 2-12 Available Cisco Unified CCX Variable Types

Variable
Name Description

Byte A Byte variable represents an integer value with a value range
from -128 to +127.

Examples:

 • (byte)23

 • (byte)-45

Contact A contact variable represents an internal contact created as a
result of an external event, such as an incoming call, e-mail
message or HTTP request. It can also represent an outbound
contact, such as an outbound call or an outbound email. A
variable of this type references the resources related to the contact
and lets you indicate which contacts a step should act upon.

You cannot manually enter a contact as a variable value. Contact
variables result only from the Create eMail step (from the eMail
palette), the Place Call step (Call Contact palette), and/or the Get
Trigger Info step (Contact palette).

Short A Short variable represents an integer value with a value range of
-32768 to +32767.

Examples:

 • (short)3456

 • (short)7239

User A User variable represents a configured Cisco Unified
CallManager User. A user variable can be returned by steps such
as Name To User, Get User, or Select Resource step, and is used
in other steps to extract information from the variable.
2-38
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Session A Session variable tracks contacts across the system. As the
contact moves from one place to another, information can be
tagged along and retrieved by a script. A Session variable can be
thought of as a “shopping cart” in a web application.

You cannot manually give a Session variable a value. Session
variables can only be returned from the Get Contact Info step
(Contact palette) and/or the Get Session step (Session palette).

Prompt A Prompt variable contains information about what to play to a
caller when a call is passed to a Media step. It can reference audio
files in the prompt repository or on disk, concatenation of
multiple prompts, or more complicated types of prompts

Examples:

 • P[] or SP[]—An empty prompt. (No prompt gets played
back.)

 • P[AA\AAWelcome.wav]—A user-defined prompt located in
the User Prompts directory.

Grammar The Grammar variable represents different options that can be
selected by a caller using a Media input step (such as the Menu
step). A grammar variable can represent grammars uploaded to
the grammar repository or created using some of the existing
steps.

Examples:

 • G[], SG[]—An empty grammar. (No value gets recognized.)

 • G[grammar.grxml]—A user-defined grammar located in the
User Grammars directory.

Table 2-12 Available Cisco Unified CCX Variable Types (continued)

Variable
Name Description
2-39
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Language A Language variable is used to localize a particular resource in
the system. It can be associated with a contact to customize what
prompts and grammars should be retrieved from the repository
when required.

Examples:

 • L[en_US]

 • L[fr_CA]

Currency The Currency variable is used to identify a given currency, such
as the American Dollar (USD), and is useful when creating
generated currency prompts that need to be tailored based on a
given currency.

Examples:

 • C[USD]

 • C[CAD]

Iterator The Iterator variable corresponds to the Java java.util.Iterator
class.

boolean A Boolean variable can be either true or false, and is primarily
used by the If step in the General palette of the Cisco Unified
CCX Editor.

char A Character variable consists of characters, such as the letters in
an alphabet.

Examples:

 • ‘a’, ‘1’, ‘Z’

 • Any escape sequence: ‘\t’, ‘\r’, ‘\0’, ‘\n’, ‘\f’, ‘\\’, ‘\’

Table 2-12 Available Cisco Unified CCX Variable Types (continued)

Variable
Name Description
2-40
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Document A Document variable can be any type of document, such as a file,
a URL, or a recording.

Examples:

 • FILE[C:\Documents\mydoc.txt]

 • URL[http://evbuweb/mydoc.asp?number=23]

 • TEXT[Some text to be stored in document]

float A Float variable consists of decimal numbers.

Examples:

 • 3.14159

 • 2E-12

 • -100

int An Integer variable consists of whole numbers, from
-2147483648 to 2147483647, inclusive.

Examples:

 • 234556789

 • 0

 • -23

String A String variable consists of a set of Unicode characters, from
“\u0000” to “\uffff” inclusive.

Examples:

 • “Hello”, “C:\WINNT\win.ini”—Supports any escape
characters or Unicode characters.

 • u“\”This is a quoted string\””, u“\tHello”, u“\u2222\u0065”,
u“C:\\WINNT\\win.ini”—Supports he same escape
sequences or Unicode characters described for the Character
type.

Table 2-12 Available Cisco Unified CCX Variable Types (continued)

Variable
Name Description
2-41
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Date The Date variable contains date information.

Examples:

 • D[now]

 • D[12/13/52]

 • D[Dec 13, 1952]

Time The Time variable contains time information.

Examples:

 • T[now]

 • T[3:39 AM]

 • T[11:59:58 PM EST]

BigDecimal The BigDecimal variable consists of an arbitrary-precision
integer along with a scale, where the scale is the number of digits
to the right of the decimal point.

Examples (same as Float variable):

 • 3.14159 DB

 • 2E-12 DB

 • -100 DB

BigInteger The BigInteger variable represents arbitrary-precision integers.

Examples (same as Integer variable):

 • 234556789 IB

 • 0 IB

 • -23 IB

Table 2-12 Available Cisco Unified CCX Variable Types (continued)

Variable
Name Description
2-42
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
How and Why To Export Variables
You can declare variables as parameters by checking the Parameter check box in
the New or Edit Variables dialog box.

double The Double variable represents an expanded Float variable.

Examples:

 • 3.14159 D

 • 2E-12 D

 • -100 D

long The Long variable is an expanded Integer variable.

Examples (same as Integer variable):

 • 234556789 L

 • 0 L

 • -23 L

Customer Customer is organization’s customer when used with reference to
Context Service data, for instance the caller's data. Here
organization represents Cisco’s customer.

You cannot manually enter a customer as a variable value.
Customer can only be obtained using 'Lookup Customers' step.

POD Instances of the POD class represent a piece of data that presents
an activity between the Organization and its customer. POD is
referred to as an activity in the Finesse UI. Here, the Organization
represents Cisco’s customer.

You cannot manually enter a POD as a variable value. POD can
only be obtained using the Create POD and Retrieve POD steps.

Table 2-12 Available Cisco Unified CCX Variable Types (continued)

Variable
Name Description
2-43
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
This feature allows you to set the value for a parameter in the Cisco Unified CCX
Administration web interface. Because the value is initialized at configuration
time for the script that uses it, you can change the value without having to edit the
script in the Cisco Unified CCX Step Editor. Such a variable is called an exported
variable.

For example, when you create an application of type “Cisco Script Application,”
you can choose either a script or a default script. The system then refreshes the
web page and provides a list of the parameters with their default or current values.
You can modify the values in this list.

Note The Cisco Unified CCX Step Editor supports all variable types as parameters.

How and When To Configure the Encoding and Decoding of
Variable Types

When the Cisco Unified CCX system receives variables from the Cisco Unified
ICME Server, the variables do not have an associated type (such as Integer or
Float). To use these variables in the Cisco VRU or Cisco Unified CCX scripts, the
Cisco Unified CCX system first decodes them to one of the available types. When
the script sends variables back to the Cisco Unified ICME Server, the Cisco
Unified CCX system then encodes them into a form that is a string that the Cisco
Unified ICME Server can use, depending on the type of the local Cisco Unified
CCX script variable.
2-44
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
This type of encoding is used in all steps that support automatic conversion to and
from String. Among these steps are the Get and Set EnterpriseInfo, Set,
VoiceBrowser, and Keyword Transform Document steps.

The conversion also does not need to be specified by the script designer unless
there are multiple choices like in the case of Date and Time. In these cases you
can use the Expression Editor panel in the Step customizer window to enter the
correct values. The following two examples of the expression panel are from the
GetEnterpriseInfo step using the Expression Editor

Figure 2-11 Example Expression panel without a value

In the Expression Panel, you can either type an expression directly into the input
text field, or select from a list of choices, or click the Expression Editor (...)
button to open the Expression Editor and create a new expression. The following
example expression panel contains user input and a list of choices.

Figure 2-12 Example Expression panel with user input

The second drop down list that appears, provides encoding options whereas the
first text box is the area where the expression value is entered.

Table 2-13 lists many of the encoding types that the Cisco Unified CCX system
supports.

Note The Input format is the data decoded from the Cisco Unified ICME Server
variables to the Cisco Unified CCX script local variables. The Output format is
the data encoded from the Cisco Unified CCX script local variables to the Cisco
Unified ICME Server variables.
2-45
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Table 2-13 Encoding Types That Cisco Unified CCX Supports

Encoding Type Input Format Example Input Output Format

Integer—32-bit
signed integer

The Cisco Unified CCX Editor
supports three formats:

 • Decimal—a sequence of digits
without a leading 0. Digits can
range from 0 to 9.

 • Hexadecimal—in the form
0xDigits, where Digits can
range from 0 to 9, a to f, and A
to F.

 • Octal—in the form 0Digits,
where Digits can range from 0
to 7.

Decimal:

 • 25

 • -34

 • 900

Hexadecimal:

 • 0x1e

 • 0x8A5

 • 0x33b

Octal:

 • 033

 • 0177

Decimal digits from
0 to 9 with no
leading 0

Long—64-bit
signed integer.

Float—32-bit
floating number

[-]Digits.DigitsExponentTrailer

where:

 • Digits are digits from 0 to 9.

 • Exponent is an optional
exponent with a leading e or E.

 • Trailer is one of f, F, d, or D to
specify a float or a double. The
trailer is optional.

3.1415927f
6.02e23F
25
-4.2323E5f

Same as input

Double—64-bit
floating number

0.843
1.871E3d
.23e-123
-3.4e34

Same as input

Boolean To designate this
non-case-sensitive type:

 • True—Use 1, t, y, true, or yes.

 • False—Use 0, f, n, false, or no.

Yes
F
0
n

Either true or false

String Type requires no conversion. Hello world Same as input
2-46
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Defining, Using, and Updating Script Variables
Using Multiple Values in a Variable
You can send multiple values—or tokens—within one variable, so you can avoid
using many variables at the same time. For how to do this, see the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 2, Editor Step
Reference Guide.

Date Use the format mm/dd/yyyy where
mm is the month, dd is the day, and
yyyy is the year.

10/22/1999
3/30/2000

Same as input

Time Use the format Hh:MmTod

where Hh is the hour, Mm is the
minute, and Tod is am or pm. This
type is not case-sensitive.

12:20am
09:05PM

Same as input

Table 2-13 Encoding Types That Cisco Unified CCX Supports (continued)

Encoding Type Input Format Example Input Output Format
2-47
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Validating and Debugging Your Script
Validating and Debugging Your Script
Once you complete your script and are ready to validate it and debug it.

You can debug it in two ways depending on the type of script.

This section covers the following topics:

 • How to Validate Your Script, page 2-48

 • How to Debug Your Script, page 2-48

How to Validate Your Script
To validate your script, once you have finished it and with the script open, in the
Cisco Unified CCX Editor menu bar, select Tools > Validate:

 • If all steps have been properly customized and all execution paths terminate
with an End step, then you will get a Validation Ok message.

 • If there are errors, they are displayed in the Cisco Unified CCX Editor
message windows.

To get to the location of an error in the script, click on the error message in
the Cisco Unified CCX Editor message window.

How to Debug Your Script
This section includes the following topics:

 • Using BreakPoints, page 2-48

 • Using Reactive and Active Debugging, page 2-49

 • Using Non-Reactive Debugging, page 2-52

Using BreakPoints
When you debug a script, you can insert, delete, enable, and disable breakpoints
in the script by selecting those functions from the Cisco Unified CCX Editor
menu bar.
2-48
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Validating and Debugging Your Script
You can insert a breakpoint at a step to stop the debug process at that step.

You can continue the process by choosing one of the following two debug menu
options from the Cisco Unified CCX Editor menu bar:

 • Debug > Continue

 • Debug > Step Over

When you choose Debug > Step Over, the debug process proceeds one step
at a time, then halts. You must therefore continue to choose Debug > Step
Over, or press the F10 function key, until you reach the end of the script. You
can also remove the breakpoint by choosing Debug > Remove Breakpoint.

Using Reactive and Active Debugging

Use the Reactive Debugging procedure to debug scripts that depend on external
events for their execution. For example, the Cisco Unified CCX script aa.aef
depends on an external call event (an incoming call) to trigger its execution.

Use active debugging in the case where the script does not depend on any external
events for its execution.

When a script is debugged, the execution of the script happens on the Cisco
Unified CCX Engine.

You need to login to the Cisco Unified Editor for doing either type of debugging.
Both the Cisco Unified Editor and the Cisco Unified Engine need to be aware of
one another before beginning the debug session.

Using Reactive Debugging

This procedure is also the only way you can debug Voice Response Unit (VRU)
scripts, by registering for the script filename. When the call starts, the Cisco
Unified CCX Engine runs the associated scripts normally until the system reaches
the one for which you registered a reactive debugging session. The system starts
debugging the script at that point.

Note The Cisco Unified CCX Editor can save script information directly to the Script
Repository. However, before the Cisco Unified CCX Engine can use a script for
call processing, you must refresh the application that uses the script through the
Cisco Unified CCX Administration web interface. In addition, every time you edit
2-49
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Validating and Debugging Your Script
a script, you must refresh the version of the script on the Cisco Unified CCX
Engine.

To upload and refresh a script, you must use the Cisco Unified CCX
Administration Script Management web page. For more information, see the
Cisco Unified Contact Center Express Administration Guide.

To debug a reactive script, do the following.

Step 1 From the Cisco Unified CCX Editor menu bar, choose Debug > Reactive Script.

The Reactive Debugging Script dialog box appears.

Step 2 In the Script File Name text field, enter the expression of the script you want to
debug just as you entered in the Cisco Unified CCX Administration on the
Application Configuration web page, or use the drop-down menu to choose the
desired script.

You can specify a script as a string (for example: “aa.aef”) or a script object for
the subflow. The following is the format for specifying a Cisco Unified CCX
Editor script object in the dialog box.
2-50
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Validating and Debugging Your Script
Table 2-1 The Format for Specifying Script Objects in a Script

Format for Specifying a Script Of this type
SCRIPT[filename.aef]
For example: SCRIPT[myscript.aef]

User script in the script
repository

SSCRIPT[filename.aef]
For example: SSCRIPT[aa.aef]

System script

Note System scripts
should not be edited
by a user and are not
listed in the
drop-down menu.

SCRIPT[FILE[drive:\\directory
location\filename.aef]]
For example:
SCRIPT[FILE[C:\\Windows\aa.aef]]

User File script in the
specified location

SCRIPT[URL[http://UrlAddress/
filename.aef]]
For example:
SCRIPT[URL[http://localhost/aa.aef]]

User URL script at the
specified URL

Step 1 From the Cisco Unified CCX Editor menu bar, choose Debug > Reactive Script.

The Reactive Debugging Script dialog box appears.

Step 2 In the Script File Name text field, enter the file name of the script you want to
debug or use the drop-down menu to choose the desired script.
2-51
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
Validating and Debugging Your Script
Note The script name must exactly match the one you supply when configuring the
script in the application configuration web page or in the VRU script
configuration page on the Cisco Unified CCX Administration web interface.

Step 3 In the Wait Time (Secs) text field, enter the amount of time you want the Cisco
Unified CCX Engine to wait for the result of a triggering event or to wait for a
Run VRU Script request to be received from Cisco Unified ICME software.

The Cisco Unified CCX Engine must be running, and the computer you are using
must have a connection to the Cisco Unified CCX server.

Step 4 Click OK.

How the event is invoked depends on the type of event required. For example, for
the Cisco Unified IP IVR (Interactive Voice Response) script aa.aef, the system
makes a call to the required number and the script window appears in the Design
pane of the Cisco Unified CCX Editor.

Step 5 Choose Debug > Continue to allow the system to continue debugging, or
Debug > Step Over to debug one step at a time.

Step 6 Correct any errors flagged by the system prompt in the Cisco Unified CCX Editor.

Using Non-Reactive Debugging

You can develop scripts and debug them when connected to the Cisco Unified
CCX server and once the script is working, you can upload it and create an
application for using it.

Use the following procedure to debug scripts that do not require external events
for their execution. This procedure is also useful for debugging script segments
or subflows.

Tip You can create a script that first uses the Place Call step to place an outbound call,
and then continues the script using that outbound call. This procedure makes it
easy to debug a script that is triggered by calls, without the complexity of
uploading the script to the script Repository every time you want to debug and test
it. All Media and Call Control steps need to use the call object that the Place Call
step returns instead of the default “-- Triggering Contact --”.
2-52
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Handle Basic Script Errors
Note If you are using subflows, the debug process does not enter and debug the
subflows. The debug process executes the subflow without providing debug
controls while executing it. (This process is exactly like stepping over the Call
Subflow step.)

To debug a non-reactive script, do the following.

Step 1 With an existing or new script open in the Cisco Unified CCX Editor Design pane,
choose Debug > Start from the Cisco Unified CCX Editor menu bar.

The Cisco Unified CCX Editor debugs the script and flags any errors.

Step 2 In the Cisco Unified CCX Editor, correct any errors flagged by system prompts.

Step 3 Continue to use the Debug command until you have cleared all error flags
(messages).

How To Handle Basic Script Errors
The Cisco Unified CCX Editor allows you to provide scripts with a variety of
ways to handle errors.

This section describes the two basic ways that scripts can handle errors:

 • Using the “Continue on Prompt Errors” Option, page 2-53

 • Using Error Output Branches, page 2-55

Note For information about advanced error handling, see Advanced Error Handling,
page 5-18.

Using the “Continue on Prompt Errors” Option
The Continue on Prompt Errors option allows the script to continue to execute
when the script receives invalid input (for example, Invalid Audio Format or File
Not Found).
2-53
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Handle Basic Script Errors
This section covers the following topics:

 • Enabling the ”Continue On Prompt Errors“ Option, page 2-54

 • Script Execution When Enabling the ”Continue On Prompt Errors“ Option,
page 2-55

 • Script Execution When Disabling the ”Continue On Prompt Errors“ Option,
page 2-55

Enabling the ”Continue On Prompt Errors“ Option

To enable this option, select “Continue on Prompt Errors” in the customizer
windows of steps in the Media palette. (The figure below shows this option on the
Prompt tab of the Get Digit String customizer window.)

Figure 2-13 Continue on Prompt Errors Option—Prompt Tab of the Get Digit String
Customizer Window
2-54
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Handle Basic Script Errors
Script Execution When Enabling the ”Continue On Prompt Errors“ Option

When enabled, the step continues with the next prompt in the list of prompts to be
played back, or, if it is the last step in the list, it waits for caller input.

When you enable Continue on Prompt Errors, you instruct the script to ignore
prompt errors and continue as if the playback of a particular prompt was
successful.

For example, in a sequence of prompts “1 + 2 + 3:”

 • If prompt #1 fails, the step continues with prompt #2.

 • If prompt #3 fails, the step continues, waiting for caller input as if prompt #3
had been properly played back.

Script Execution When Disabling the ”Continue On Prompt Errors“ Option
When you disable Continue on Prompt Errors, the media steps generate an
exception, which can then be handled in the script.

Prompt exceptions are as follows:

 • PromptException

 • UndefinedPromptGenerator

 • TTSPromptProviderException

 • UndefinedPrompt Exception

 • InvalidPromptArgumentException

 • UnsupportedPromptExpression

Using Error Output Branches
Use Error output branches to provide instructions on what to do when typical
errors occur.

Figure 2-14 shows error output branches under a Call Redirect step in a script.
2-55
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How and Why To Use the CRTP Protocol
Figure 2-14 Error Output Branches—Call Redirect Step

In this example, the Call Redirect step includes logic for both an invalid extension
and an out-of-service extension.

Note The script provides error branches only for expected error conditions, not for
system errors.

How and Why To Use the CRTP Protocol
You can use Cisco Unified CCX repositories to store and manage documents,
prompts, grammars and scripts.

To fetch data in a Cisco Unified CCX repository for a Cisco Unified CCX script
or a for VoiceXML document, you need to specify a Unifiorm Resource Identifier
(URI) using the the Cisco Repository Transfer Protocol (CRTP). This is a protocol
used only by the Cisco Unified CCX system and allows access to the resources in
the various Cisco Unified CCX repositories without having to specify on which
server they physically reside.

This is a Cisco proprietary protocol, and so no "non-Cisco" user agents are
expected to recognize it. If you are in a script or a VoiceXML document and you
must pass a CRTP URI to a non-Cisco user agent, first convert the URI, while it
is in the Cisco Unified CCX system, to its HTTP protocol equivalent. You should
do the conversion immediately before (and not sooner than) the resource is needed
to be fetched, as the conversion depends on the context at the time of the fetch.

A URI (Universal Resource Identifier) is an Internet protocol element, defined by
a W3 standard, consisting of a short string of characters that contain a name or
address that can be used to reference a resource.

Examples of different types of URIs are:
2-56
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How and Why To Use the CRTP Protocol
 • URL for specifying addresses on the web.
For example: http://www.ietf.org/rfc/rfc2396.txt.

 • Mailto for enabling e-mails to be sent from a Web page.
For example: mailto:John.Doe@example.com

 • FTP (File Transfer Protocol) for sending files over the web.
For example: ftp://ftp.is.co.za/rfc/rfc1808.txt

 • Telnet for remotely logging into a computer.
For example: telnet://192.0.2.16:80/

A CRTP URI can be used in most places that an HTTP URL can be used within
the Cisco Unified CCX system.

The CRTP protocol is similar to HTTP. However, in place of the Hostname and
port number, the CRTP protocol contains a repository identifier and a language
specifier.

CRTP URI Protocol Syntax
The CRTP protocol references files uploaded in the Cisco Unified CCX
repositories. In the syntax:

 • Angle brackets indicate appropriate content to be specified in place of the
syntax example word.

 • Square brackets indicate an argument is optional:

The syntax for specifying the CRTP URI protocol is as follows:
crtp:/<repository>[/<languages>]/<path>[?<params>][#<ref>]

where:
2-57
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How and Why To Use the CRTP Protocol
Command
Argument Specifies
<repositor> The name of the Cisco Unified CCX repository from which you

want to get a resource. The current Cisco Unified CCX
repositories are of two types:

 • System repositories only contain resources that are preloaded
and used by the system. They cannot be modified. The system
repositories are:

 – SPrompts
 – SGrammars
 – SDocuments
 – SScripts

 • User repositories are not preloaded and can be modified by
the user. The user repositories are:

 – Prompts
 – Grammars
 – Documents
 – Scripts

Note In CRS 4.0, you cannot access scripts with the CRTP
protocol.
2-58
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How and Why To Use the CRTP Protocol
<languages
>

Optional. A priority ordered list of languages, each separated by
a “,” (comma).

Languages specified here have priority over the system default
locale language. If no languages are specified here, then the
system configured default language is used for the search.

Each accepted language is defined as a locale string composed of
a 2-letter ISO 639 code representing the locale's language. For
example, “en” is for English.

If you specify a language region or country after the language,
then you need to add a dash (“-”) after the locale, and follow it
with the 2-letter ISO 3166 code representing the locale's region or
country. For example “en-US” for English in the United States.

In the CRTP specification, you must replace any underscore “_”
used in a Cisco Unified CCX repository name with a dash (“-”).
This is defined by the RFC 1766 standard.

Optionally, following the region specification is another dash and
variant code, if there is such. For example: “en-US-NY” for New
York English.

The list of languages must be prefixed with the string "lang," For
example: "lang,en-US,en-GB"

Command
Argument Specifies
2-59
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How and Why To Use the CRTP Protocol
<path> Any valid path to a file within a Cisco Unified CCX repository as
defined in the Cisco Unified CCX Expression Editor syntax.

Enter a path just like you would specify a subdirectory in a URL
in HTML.

Note In an HTTP URL and in a CRTP URL, a path does not
include the computer disk drive.

For example: if the file “grammar.grxml” exists in the User
grammar repository under a folder named myApp, the CRTP URI
would be as follows:

crtp:/grammar/myApp/grammar.grxml

Note In Cisco Unified CCX 4.0, Only the script repository does
not support directories. All other repositories do support
directories.

<params> Two optional query parameters:

 • accept
Specifies the data at the end of the path when it is other than
a file.

Format: [?]accept=query

Where

? specifies the start of the query part of the URL.

query specifies a value of mime type or a comma
separated mime list.

Mime (Multipurpose Internet Mail Extensions) is a standard
for multi-part, multimedia (non-textual data, such as graphics
and audio) electronic mail messages and World Wide Web
hypertext documents on the Internet.

Command
Argument Specifies
2-60
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How and Why To Use the CRTP Protocol
Example CRTP URI Specifications
The following are example CRTP protocol URIs:

 • crtp:/Prompts/AA/Welcome

 • crtp:/SPrompts/lang,en-US,fr-FR-EURO/gen/number/one.wav

 • crtp:/Documents/lang,en-GB/VXML/main_menu.vxml

 • index
Returns the grammar specified in the index of a compound
grammar. The index is 0 based. A compound grammar is
similar to an array of grammars indexed from 0 to n.

Format: &Index=x[,n]

where:

& separates the index string from the rest of the query
string preceding the ampersand.

x is an index entry number. There can be more than one.

n is the last index entry number. Multiple index entries
are separated by commas and are used to recursively
access a grammar in a compound grammar.

You can dereference (access the indexed grammar in) a
recursive compound grammar (a compound grammar defined
within another compound grammar) by supplying multiple
indexes, each separated by commas. For example:
&index=0,2,1

<ref> Optional. An anchor reference, beginning with the pound sign (#),
linking to a section within a file.

Command
Argument Specifies
2-61
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How and Why To Use the CRTP Protocol
 • crtp:/SGrammars/lang,en-US-NY/AA/main_menu.tgl?accept=application/srgs
+xml,text/uri-list&index=0,2,1

In the last, most complex example:

 – The main_menu.tgl system grammar file is referenced in the AA
directory, located by searching the language context defined by the
language named “en-US-NY.”

 – The grammar requested in the main_menu.tgl system grammar file is a
SRGS and XML grammar or a text grammar from a URI-list of
sub-grammars.

 – The uri-list of sub-grammars in this case is a compound grammar that
contains compound grammars.

 – The requested grammar is accessed from the list of compound grammars
through the index pointers, starting with #0.

 – Index #0 indicates the first grammar in the compound grammar at the
first level. Index #2 indicates the third grammar in the compound
grammar in the second level, pointed to by index #0 in the first level.
Index #1 is the second grammar in the compound grammar in the third
level, pointed to by index #2 in the second level.
2-62
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
How To Use Cisco Unified CCX Script Templates
You can access Cisco Unified CCX script templates from both the Cisco Unified
CCX server and from the Cisco.com web site. This section covers the following
topics:

 • The Script Templates Installed with the Cisco Unified CCX Editor, page 2-63

 • The Cisco Unified CCX Edition Script Web Repository, page 2-69

 • Obtaining Technical Assistance, page 2-70

The Script Templates Installed with the Cisco Unified CCX
Editor

Your Cisco Cisco Unified CCX system includes script templates stored as .aef
files. These scripts have been built using Cisco Cisco Unified CCX Editor steps,
including prerecorded prompts. You can use these scripts to create applications
without performing any script development, or you can use these scripts as
models for your own customized scripts.

Note The included script templates are bundled with the Cisco Unified CCX system
solely as samples, and are not supported by Cisco Systems.

This section includes the following topics:

 • How do I find the script templates installed with the Cisco Unified CCX
Editor?, page 2-64

 • Default Script Template Descriptions, page 2-65

 • How to Create Your Own Script Template, page 2-67

 • How to Create Your Own Script Template Directory, page 2-68

 • Where Sample Prompts for Your Scripts Are Stored, page 2-68
2-63
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
How do I find the script templates installed with the Cisco Unified CCX
Editor?

The script templates are listed in the Cisco Unified CCX Templates window
displayed when you select File > New from the Cisco Unified CCX Editor.

To access the script templates on your system:

Step 1 Open the Cisco Unified CCX Editor. Select Start > Programs > Cisco Unified
CCX Developer > Cisco Unified CCX Editor and at the prompt, log on.

Step 2 In the Cisco Unified CCX Editor menu bar, select File > New. The Templates
dialog box displays.

Step 3 In the Templates dialog box, select the script template that you want to open in
the Cisco Unified CCX Editor, and click OK.

When you have finished editing your new script, select File > Save as and save
the script with the file name of your choosing. The file extension is automatically
named .aef.
2-64
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
Default Script Template Descriptions

The following tables describe the Cisco Unified CCX script templates
automatically included with your Cisco Unified CCX system.

Note Every Cisco Unified CCX product includes every Cisco Unified CCX Editor step
and all the Cisco Unified CCX script templates. However, you can only run those
scripts for the product for which you are licensed.

Table 2-14 Context Service Script Templates

 Script Template Description
ContextService Steps Demo Contains all the steps available in Context

Service. Use this Script template to perform
Context Service operations.

ContextService Steps ICD Allows the Script to perform Context Service
operations, such as Lookup Customers, Create
POD, and Update POD, through ICD call.

Table 2-15 General Script Template

 Script Template Description
Blank Script Contains only the Start and End tag. Use this script

template to create your script if the other templates
are inappropriate for your needs. Clicking the New
Script button in the toolbar, opens the blank
script template.
2-65
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
Table 2-16 IP IVR Script Templates

 Script Templates Description

Auto Attendant Allows a caller to call an agent by entering an
extension number or the first few characters of an
associated username. If ASR is enabled, the caller
might simply speak the extension or the user
name. Previously named “:aa.aef.”

Spoken Name Upload Enables Cisco Unified CallManager users to call
in, authenticate their identities, and replace their
spoken names with newly recorded
announcements on their telephones. Previously
named “snu.aef.”

Table 2-17 Queuing Script Templates

Sample Script Templates Description

Simple Queuing This basic Cisco Unified CCX script establishes a
simple call queue and routes callers to a group of
agents as the agents become available. Previously
named “icd.aef.”

Table 2-18 VRU Script Templates

Sample Script Templates Description

Basic Queuing Greets a caller and puts the call on hold while
waiting for an available agent. Previously named
“BasicQ.aef.”

Collect Digits Acquires an account number (or other numbers)
from a caller. Previously named
“CollectDigits.aef.”

Visible Queuing Greets a caller, provides feedback about the
estimated time until the caller will be connected,
and puts the call on hold while waiting for an
available agent. Previously named “VisibleQ.aef.”
2-66
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
Table 2-19 Sample Voice Browser Script Templates

Sample Script Template Description

Outbound Voice Browser Gets a phone number to call from a
VoiceXML-enabled web site, places the call,
and responds in various ways depending on
how the call is answered or not answered.
Previously named
“OutboundVoiceBrowser.aef.”

Voice Browser Uses ASR functionality to allow a caller to
access information from VoiceXML-enabled
web sites. Previously named
“VoiceBrowser.aef.”

How to Create Your Own Script Template
To create you own script template, do the following.

Step 1 Open your script in the Cisco Unified CCX Editor.

Step 2 From the menu bar, choose File > Save As.

Step 3 In the Save Script As dialog box, browse to the directory where you installed the
Cisco Unified CCX Editor.

Step 4 From the directory list, select the Scripts main directory.

Step 5 From the Scripts directory list, select the Templates subdirectory.

Step 6 From the Templates subdirectory, select the directory where you want to save the
file.

Step 7 Click Save.

When you choose File > New again, the template dialog box includes the file you
saved in the template directory. You can create a new script using the file as a
script template.
2-67
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
How to Create Your Own Script Template Directory

To create you own script template directory, do the following.

Step 1 Open in the Cisco Unified CCX Editor a script that you want to be in a new script
template directory.

It is possible to save a user-defined template with the same name as a
system-defined template. The user-defined template will take priority in such a
case and be opened instead of the system-defined template.

User-defined templates are only accessible when the editor is connected to a
cluster.

Note You must have a script file opened in order to create a new template subdirectory.

Step 2 From the menu bar, choose File > Save As.

Step 3 In the Save Script As dialog box, browse to the directory where you installed the
Cisco Unified CCX Editor.

Step 4 From the directory list, select the Scripts main directory.

Step 5 From the Scripts directory list, select the Templates subdirectory.

Step 6 Click the Create New Folder button (next to the directory selection box).

Step 7 In the Save as dialog box, enter the folder name.

Open the new folder in the Save as dialog box to save your opened template file
and click Save.

When you choose File > New again, the template dialog box includes the file you
saved in the template directory. You can create a new script using the file as a
script template.

Where Sample Prompts for Your Scripts Are Stored

Prior to Cisco CRS release 4.0(1), during installation, there were prompts that
were installed in the prompts\User folder. These prompts were intended to be used
by some of the system sample scripts (for example, aa.aef and basicQ.aef).
2-68
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
With Cisco CRS release 4.0(1) and after, these prompts are now installed in the
prompt\system folders as System prompts.

If a system is upgraded from 3.x to 4.x, the system will migrate all of the prompts
in the prompts\user folder. However, if a 3.x script is used on a 4.x system without
going through the upgrade process, you must manually upload them using CRS
Administration’s Prompt Management web page and ensure that they are in the
appropriate location.

If a 3.x script is used on a 4.5 system, you must manually upload the script using
the CRS Administration’s Prompt Management web page and ensure that it is in
the appropriate location.

The Cisco Unified CCX Edition Script Web Repository
This collection of scripts are tested examples of product functionality and
common business scenarios developed by Cisco experts for easy download and
use by Cisco Unified CCX users.

In addition to the scripts that are already provided as examples, Cisco wants to
hear from Cisco representatives in the field, partners and customers. If you have
a helpful script that you use often please submit it for inclusion in the Cisco
Unified CCX script repository. This repository is designed to be a dynamic
resource for all Cisco Unified CCX users to take advantage of as well as to help
it grow — adding to its usefulness as a resource.

This section includes the following topics:

 • The Cisco Unified CCX Script Web Repository Location, page 2-69

 • How do I add my favorite Cisco Unified CCX script to the Web repository?,
page 2-70

The Cisco Unified CCX Script Web Repository Location

The Cisco Unified CCX script Web repository is located on Cisco.com in a .zip
file at
http://www.cisco.com/en/US/products/sw/custcosw/ps1846/products_implement
ation_design_guides_list.html. Before using the scripts please take time to review
the Script Repository Read Me file, which describes the structure and intended
use or uses of the accompanying scripts. Also, each script comes with a read me
2-69
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

http://www.cisco.com/en/US/products/sw/custcosw/ps1846/products_implementation_design_guides_list.html
http://www.cisco.com/en/US/products/sw/custcosw/ps1846/products_implementation_design_guides_list.html

Chapter 2 How To Use the Cisco Unified CCX Editor
How To Use Cisco Unified CCX Script Templates
document which provides an introduction and details regarding the script. These
are important to review to be sure the script meets your specific needs before
implementing it.

Note The Cisco Unified CCX script repository will be updated on an as-needed basis
with new scripts as they are received and approved. To receive these new scripts
it will be necessary to re-download the repository. A notification will be sent to
the field as the Cisco Unified CCX script repository is updated.

How do I add my favorite Cisco Unified CCX script to the Web repository?

If you have a script that you find particularly useful and would like to share it with
the Cisco Unified CCX user community feel free to submit it for consideration to
be added to the script repository. To submit a script, complete the Cisco Unified
CCX Script Submission Template at the script repository web site and e-mail to
Cisco Unified CCX-script-repository@external.cisco.com.

Obtaining Technical Assistance
Technical assistance is not available for the sample scripts. They are intended to
be samples that can be easily modified to suit a particular need, as well as provide
a visual "how to" for Cisco Unified CCX Application developers.

Should you require assistance in the development of your own script, there are
several avenues available to you. First, you might solicit aid from the Cisco
Unified CCX support mailer alias, ask-icd-ivr-support@external.cisco.com.

If the issue is with your Cisco Unified CCX system as a whole (that is:
Subsystems out of service, Cisco Unified CCX installation issues, and so on) and
you have a valid support contract, please open a TAC case by calling
800-553-2447. For faster assistance, please open a case on the web at
http://tools.cisco.com/ServiceRequestTool/create/launch.do by clicking the
"Create a new TAC Service Request" link.
2-70
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

ask-icd-ivr-support@external.cisco.com
http://tools.cisco.com/ServiceRequestTool/create/launch.do

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 3

Using Expressions and the
Expression Editor

This chapter covers the following topics:

 • How to Access the Cisco Unified CCX Expression Editor, page 3-1

 • How to Use the Expression Editor, page 3-2

 • About the Expression Editor Toolbar, page 3-4

 • About the Expression Editor Syntax Buttons, page 3-9

 • About Expression and Java Licensing, page 3-9

For an explanation of each toolbar on each Expression Editor tab, see Using
Expressions and the Expression Editor, page 3-1.

How to Access the Cisco Unified CCX Expression
Editor

Whenever you see this 3-dot button in a Cisco Unified CCX Editor step
properties window, you can click on it to open the Expression Editor to edit the
value of the field to the left of the button. The following figure shows the
Expression Editor button in the Set step properties window.
3-1
rted with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
How to Use the Expression Editor
How to Use the Expression Editor
Use the Expression Editor to enter or modify expressions in a Cisco Unified CCX
script.

This section includes the following topics:

 • How To Enter Expressions in the Expression Editor, page 3-2

 • About the Expression Editor Toolbar, page 3-4

 • About the Expression Editor Syntax Buttons, page 3-9

 • About Expression and Java Licensing, page 3-9

How To Enter Expressions in the Expression Editor
Expressions are useful if you do not know an exact value at design time and
instead need to enter a formula that can be evaluated at run time.
3-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
How to Use the Expression Editor
Note The resulting type of expression must match the expected input type or types
(which you check at design time).

In the Expression Editor window, you can enter or edit an expression in the Value
input text box and you can use the All Variables selection box to get quick access
to a variable you have previously defined in the script to paste it into the
expression.

When you choose a variable from the All Variables selection box, the variable
name appears in the Value input text box.

After you enter the expression, click OK and the Expression Editor closes.
3-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
Figure 3-1 Example Expression Editor Window with the “All Variables” Selection
box Open

About the Expression Editor Toolbar
Below the Expression Editor Value input text box and buttons is a versatile
toolbar.

Note The toolbar changes to suit the type of data or feature you select in the toolbar tabs
at the bottom of the Expression Editor window.
3-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
This section includes the following topics:

 • Toolbar Tabs, page 3-5

 • A Pop-Up Menu, page 3-7

 • Showing or Hiding the Expression Editor Toolbar, page 3-8

Toolbar Tabs
By clicking on the appropriate tab below the toolbar, the toolbar changes to
include the tools useful for editing the selected type of data indicated by the
selected tab. For example, in Figure 3-2, the Character toolbar is selected and so
tools appropriate for editing or entering character data are displayed.

The toolbar scripting tools (or aids) include:

 • Variables: A selection box listing all the variables of the toolbar type selected
(for example, character) currently contained in the open script.

 • Constructors. A selection list of the public Java constructors available for
creating and initializing new objects of the selected data type.

 • Methods. A selection list of public Java methods for all the operations you
can perform on the selected data type. A method has four basic parts:

 – The method name

 – The type of object the method returns

 – A list of parameters

 – The body of the method

 • Attributes. A selection list of all the public Java attributes available for the
selected data type. These are the things that differentiate one object from
another in the selected data type. For example, color or size.

 • Constants and Keywords. In some cases, constants and keywords for the
selected data type or object are included.

 • Syntax button. Buttons for quickly entering data of the selected type with the
correct syntax. The question marks on the buttons indicate command
parameters which you need to supply.

 • Easy access to Prompts, grammars, documents, and scripts stored inside
the Cisco Unified CCX repository.
3-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
When you click a button or select an item from a list, the Cisco Unified CCX
Editor inserts the selected expression text at the cursor position in the text input
field.

For example, if you are creating an expression that accesses the current time, on
the Time tab, click the now button, and the Cisco Unified CCX Editor will insert
the Java code that retrieves the current time when the script runs.

Note The Java tab contains a selection list of the constructors, methods, attributes, and
syntax buttons of the selected Java object within the open script. Therefore, the
contents of this tab will vary.

The Java tab allows you to enter a class name of your own in order to have its set
of constructors, methods or attributes listed in the selection boxes. This enables
an easy lookup of what is available so you can paste it into the expression directly.
The Java toolbar is populated with the constructors, methods or attributes of the
class you enter. A selection box drop-down arrow is disabled if the class entered
is invalid or does not have any constructors, methods or attributes.
3-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
Figure 3-2 Example Expression Editor Window with the Language Toolbar Selected

A Pop-Up Menu
Right click in the Expression Editor window to access the pop-up menu. This
enables you to accesses editing functions such as Undo, Cut, and Paste. See
Figure 3-3.

The popup menu also provides two special functions:

 • One allows you to parse an expression immediately in order to pinpoint errors

 • The other allows you to automatically reduce the expression to a smaller and
yet equivalent expression (for example 3 + 2 would be reduced to 5).
3-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
About the Expression Editor Toolbar
Showing or Hiding the Expression Editor Toolbar
To show or hide the Expression Toolbar, click on the arrow buttons on the bottom
left of the Expression Editor text window. This alternately removes or displays the
tabbed toolbar.

Figure 3-3 Expression Editor Window without the Toolbar but with the Pop-up Menu

3-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
About the Expression Editor Syntax Buttons
About the Expression Editor Syntax Buttons
The toolbar syntax buttons indicate the different ways you can operate on a data
type. This syntax is the same as the Java language syntax plus additional syntax
aids for handling prompts and documents.

About Expression and Java Licensing
Beginning with Cisco CRS 4.x, expressions are validated against installed
licenses to make sure that they do not violate license agreements. This validation
is performed by the Cisco CRS Engine whenever a script is loaded or whenever a
prompt template or grammar template is accessed and evaluated.

For script expressions containing TTS or Java features to work during runtime,
you must have either a Cisco Unified IP IVR, a Cisco Unified CCX Enhanced, or
a Cisco Unified CCX Premium license.

Note In Cisco Unified CCX Standard, you can enter only simple expressions unless you
also have a Java license. You automatically have a Java license with the other four
Cisco Unified CCX products.

An example of a TTS feature is a TTS prompt complex literal. A Java feature is
a complex expression block, a Java-like statement, method, constructor
invocation expression, or a field access expression.

Any license violation will be recorded in the logs and prevent the scripts from
being loaded in memory.
3-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 3 Using Expressions and the Expression Editor
About Expression and Java Licensing
3-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting S
C H A P T E R 4

Localizing Cisco Unified CCX
Scripts

You can localize your Cisco Unified CCX scripts to use prompts in the language
your customers use.

This chapter covers the following topics:

 • Installing Language Groups, page 4-1

 • When Do You Need a Language Group?, page 4-2

 • Changing a Cisco Unified CCX Installed Language, page 4-4

 • Language Restrictions, page 4-4

 • Creating a Custom Country-Specific Language, page 4-4

 • Using VXML to Implement a Language Not Available in Cisco Unified CCX,
page 4-5

Installing Language Groups
When you install a Cisco Unified CCX application, you are prompted to install
the language used for prompts. Since the same language can vary from place to
place, you first select a language group and then the country where the language
is spoken. The default language group and country is US English.
4-1
tarted with Scripts, Release 11.0(1)

Chapter 4 Localizing Cisco Unified CCX Scripts
When Do You Need a Language Group?
The language groups that you can install at installation time consist of a set of
system prompts. These prompts are used internally by some script steps and by
the Cisco Unified CCX prompt generator rules that decide how to combine
prompt input to form a number (for example, a social security number or a
telephone number) or to spell out a string.

However, you are not restricted to using only the languages available with Cisco
Unified CCX 4.0. Prompts and rules are accessible to your Cisco Unified CCX
scripts either in the language that you install or in the language that you provide
in your own prompts through the Cisco Unified CCX Administration Prompt
Management or by using VXML.

When Do You Need a Language Group?
The language group (also called “pack”) is needed in the following three
situations:

 • In only two types of steps: The Media steps and the Create Generated prompt
step require a language group. The other Cisco Unified CCX script steps are
not affected by the language you are running or have installed.

The Play prompt, the Extended Play prompt, the Voice Browser step, and the
Recording step, these four script features are not affected by the language
group since they do not need data from the language group.

Note If you are not going to use the Media steps or the Create Generated
prompt step, then you do not need a language group and you can
upload your own prompts into the scripts in your own language rather
than installing a language group at installation time.

 • For system default treatment prompts when there is an error in your script:
For example, if there is a script error, the system might play in the language
corresponding to the call: “We are currently experiencing system difficulties,
please call back later.”

When you configure an application in the Cisco Unified CCX Administration
web page, you have the ability to configure your own script to act as a default
treatment script. But if your default treatment script has an error, then the
system falls back on the system default treatment script.
4-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 4 Localizing Cisco Unified CCX Scripts
When Do You Need a Language Group?
Store your default treatment prompt with the name unrecov_error in the user
repository under the language you wish.

Note All calls defined with that language for all applications will use the
system error prompt you created for the system default treatment.

 • For system retry prompts when there is a user-input error: During a retry
attempt, some system prompts are played back. For example, if you entered
invalid digits or are timed out, the prompt will tell you that and ask you to
retry. The Cisco Unified CCX script steps get these prompts from the
installed language group. If you do not have a language group installed, then
the script plays the prompt in US English.

You can circumvent this behavior in an application by configuring those steps
to not do the system retry but rather do a retry that you yourself create. That
is one way you can customize your application to work without a language
group.

For example, take the Get Digit string where you want to collect a social
security number. If you configure the Get Digit string to do a retry, for
example to do two attempts and after two attempts fail, when it fails, the
application will prompt you with whatever prompt you create to re-enter your
social security number.

To disable the default retry script, you can set the MAX retry in the script to
zero. In that case, the application will ask you the question only once, and if
it fails, it will go into an error right away and implement your own retry by
looping back to whatever prompt you have selected.

Note The Name to User step is the one step that does not have the capability
of circumventing the default retry behavior. That step requires a
language group.
4-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 4 Localizing Cisco Unified CCX Scripts
Changing a Cisco Unified CCX Installed Language
Changing a Cisco Unified CCX Installed
Language

Once you have installed Cisco Unified CCX, the only way you can install another
Cisco Unified CCX language available in the Cisco Unified CCX installable
language packs, is to reinstall Cisco Unified CCX.

Language Restrictions
If you use VXML, you can provision additional language grammars by using the
grammar management facility. This can be found at Applications > Grammar
Management in the Cisco Unified CCX Applications Administration window.
But:

 • If you are using ASR-enabled Cisco Unified CCX scripts, you are restricted
to the languages available and installed for the installed ASR vendor(s) and
for which Cisco Unified CCX has localized grammars.

 • If you are using TTS-enabled scripts, you are restricted to the languages
available and installed for the installed TTS vendor(s).

Creating a Custom Country-Specific Language
If you want to create a custom country-specific language, at installation time, in
the Language Installation window, select not only the Language Group but also
the Group Default for that language. If you install a language as a Group Default,
you can take advantage of that base to build your own customized language for
system prompts. For example, say you speak New Zealand English, but it is not
available as a selection. In that case, you would select English as the Language
Group and you might select the United Kingdom as the Group Default.

If there is an error in your customized script prompt, the script falls back on the
group default language. If the group default language is not installed, the script
falls back on the group parent language. If that is not available, then the script
falls back on US English.
4-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 4 Localizing Cisco Unified CCX Scripts
Using VXML to Implement a Language Not Available in Cisco Unified CCX
Using VXML to Implement a Language Not
Available in Cisco Unified CCX

MRCP (Media Resource Control Protocol) is an application-level protocol that
enables client devices requiring audio/video stream processing to control media
service resources like Speech Synthesizers (TTS), Speech Recognizers (ASR),
Signal Generators, Signal Detectors, Fax Servers, and so on over a network.

To implement an MRCP ASR and TTS-enabled script for a language outside the
set available with Cisco Unified CCX (but within the set available from an MRCP
vendor) using VXML, you must do the following:

Step 1 Install and configure the appropriate MRCP ASR and/or TTS language pack(s).
See your MRCP vendor documentation for ASR/TTS language pack
installation/configuration instructions.

Step 2 If your VXML script uses prompts, then you need to record suitable G711 u-Law
encoded prompts and store them on a server that is accessible to the running
VXML script. Only G711 prompts are supported by MRCP.

Note When generating a wav file prompt specifically for Nuance, you must
take into account where the prompt is to be played. If the prompt is to be
played by the Nuance Speech Server, then the wav file needs a “Sphere”
(SPeech HEader REsources) header. If it is to be played by the Cisco
Unified CCX server, it needs a normal “RIFF” (Resource Interchange File
Format) header. Nuance provides a tool to convert wav files from “RIFF”
to “Sphere” header files. ScanSoft uses "RIFF" headers.

Step 3 Provide a VXML script, referencing the recorded prompts (if used) and using any
necessary built-in grammars provided by the vendor or script-writer provided
grammars which are specified either in the VXML script or a location specified
by the "src" attribute of the grammar element.

Step 4 Provide localized prompts for default event handlers and system-level errors.
Cisco Unified CCX does not completely implement the notion of
platform-specific audio, as defined by World Wide Web Consortium (W3C), see
http://www.w3.org/, since system prompts are played instead. A default script is
4-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 4 Localizing Cisco Unified CCX Scripts
Using VXML to Implement a Language Not Available in Cisco Unified CCX
provided with Cisco Unified CCX which you can associate with the script's
trigger to localize default event handlers (See When Do You Need a Language
Group?, page 4-2).
4-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
C H A P T E R 5

Advanced Scripting Techniques

This chapter describes advanced techniques you can use when designing custom
scripts in the Cisco Unified CCX Step Editor.

This section contains the following topics:

 • Managing Contacts in Your Scripts, page 5-1

 • Managing Sessions in Your Scripts, page 5-3

 • Using Grammars in Your Scripts, page 5-4

 • Using Prompts in your Scripts, page 5-11

 • Advanced Error Handling, page 5-18

 • About Script Interruption, page 5-22

 • Using Different Media in your Scripts, page 5-24

 • Using a Voice Browser in Your Scripts, page 5-28

Managing Contacts in Your Scripts
The key element in a Cisco Unified CCX script is a contact, which represents one
form of connection with a remote customer. A contact can be a telephone call, an
e-mail message, or an HTTP request.

Scripts use contacts to track connections through the system. The contact is
established when the connection is made. The contact lasts until the connection is
terminated, as when the script transfers or disconnects a telephone call, responds
to an HTTP request, or sends an e-mail message.
5-1
arted with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Managing Contacts in Your Scripts
The script performs actions on contacts through one or more of the following
types of channels:

 • CTI port

 • CMT dialog channel

 • HTTP control channel

 • Cisco Unified ICME channel

 • MRCP dialog channel

 • E-mail control channel

 • Cisco Unified CCX channel

You can write scripts to use generic contacts, which are independent of the contact
type. This allows you to create subflows that are independent of the way in which
the call has originated (without regard, for example, to whether the call originated
as an inbound or outbound call).

You can configure each step that acts on contacts to accept the implicit contact (by
choosing the “-- Triggering Contact --” default) or to use a variable that can hold
the handle to this contact. With the Get Trigger Info step of the Contact palette,
the script can receive a handle to the implicit contact and save it as a Contact
variable that the script can use later in steps or subflows.

You can use also use the Set Contact Info step of the Contact palette to mark the
contact as Handled, which is important for reporting purposes.

Note If you do not use the Set Contact Info step to mark contacts as Handled, real-time
and historical reports may not show that the contact was successfully handled.

Using the functionality of the concept of a contact, you can design contact-neutral
scripts that can contain small logic sections that can be independent of the type of
contact.

Because you can keep a handle to a contact inside the script, you can design a
script that manages more than one of these contacts at the same time. A single
script can now be triggered in one way, create outbound calls, and then play
prompts on each call individually. This feature offers a new range of possibilities.
For an example of a script that handles multiple contacts, see Working with
Multiple Contacts.
5-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Managing Sessions in Your Scripts
Managing Sessions in Your Scripts
A session provides script designers with an easy way to associate information
with a customer (caller) as the call moves through the system (similar to an
in-memory database or a shopping cart on the web).

The script automatically associates a call contact with a session object when the
contact is received (inbound) or initiated (outbound). You can also create sessions
manually, using the Get Session step of the Session palette; this feature may be
useful when you want to use sessions for HTTP or e-mail contacts.

Customer information stored in a session object can persist for a specified length
of time after the contact ends and be made available to a subsequent contact. This
feature can save customers the need to re-enter information such as credit card
account digits.

You can store any type of information in these session objects, and retrieve the
information with the Set Session Info and Get Session Info steps of the Session
palette.

Note A session is maintained on a single Cisco Unified CCX server only; for example,
information entered on Cisco Unified CCX Server #1 will not be available if the
call arrives at or is transferred to Cisco Unified CCX Server #2.

Using Mapping Identifiers
A Cisco Unified CCX script uses one or more mapping identifiers to identify
sessions. These mapping identifiers allow a script to tag a given session with
customer-specific information that the script then retrieves on a subsequent call
or HTTP request. You can use any kind of information that can be received by the
script as a mapping identifier.

For example, suppose a caller places a call and enters information, including an
account number that the system uses as a mapping identifier. If the caller places
a second call relatively soon after the first call, and re-enters the account number,
the script retrieves the earlier session that contains all the previously entered
information.

In this case, the script re-assigns the original session object to the call to replace
the one that was created when the caller placed the second call.
5-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Grammars in Your Scripts
A session for which a mapping identifier has been added by a script will typically
persist in memory for 30 minutes after the contact has ended. You can configure
this value in the System Parameters section of the Cisco Unified CCX
Applications Administration web interface.

Tip If you need to lessen session impact on the memory consumption of the Cisco
Unified CCX server, lessen the length of time that sessions persist in memory.

Using Session Objects
Session palette steps can be useful in many situations. Some examples:

 • The script transfers a call contact back to a Cisco Unified IP IVR application,
or redirects the call contact from one application to another application on the
same Cisco Unified CCX server—This feature makes information about the
original caller available to the script.

 • You want general information to be accessible by multiple scripts
independently of contacts or customers—If you create and identify a session
with a hard-coded mapping identifier, all scripts can access this session and
access or alter information kept there.

Note The created session, if not associated with a contact, is subject to
deletion after the system default session timeout. However, each time
the Get Session step retrieves the session, the timeout is reset.

 • You want to access real-time information using the real-time reporting
client—This feature lets you see all sessions in the system and their
associated values.

For an example that shows the use of Session palette steps, see Chapter 15,
“Designing Cisco Unified CCX Scripts.” For an example that shows the use of
Session palette steps, see Chapter 17, “Designing Cisco Unified CCX Scripts.”

Using Grammars in Your Scripts
This section includes the following topics:
5-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Grammars in Your Scripts
 • About Grammars, page 5-5

 • File Grammar Formats, page 5-7

 • Automatic Conversion, page 5-8

 • Passing Grammars to Steps, page 5-9

 • Grammar Template, page 5-9

 • Compound Grammar, page 5-10

 • Compound Grammar Indexing, page 5-10

About Grammars
In a Cisco Unified IP IVR script, you use grammars to specify a set of all possible
spoken phrases and/or DTMF digits that the system can recognize and act upon
during run time.

The Cisco Unified CCX Engine uses two types of grammars:

 • System grammars—Used internally by Cisco modules and Cisco sample
scripts.

Note System grammars are provided by Cisco. Cisco makes no guarantees
about the continued availability of system grammars in future releases.

 • User grammars—Configured by the user, and manageable by the
administrator by means of the Cisco Unified CCX Applications
Administration web interface.

The system retrieves grammars from the Grammar Repository, which you
configure from the System Parameters configuration web page of the Cisco
Unified CCX Administration web interface.

The Cisco Unified CCX Script Editor contains a Grammar palette with the
following three steps:

 • Create Language Grammar step—Chooses a set of grammars based on the
language context of the call.

 • Create Menu Grammar step—Creates spoken word and/or DTMF menus.
5-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Grammars in Your Scripts
 • Upload Grammar step—Stores grammars in the Grammar repository, where
they are made accessible to all Cisco Unified CCX servers in the cluster.

For more information on using these steps, see the Cisco Unified Contact Center
Express Scripting and Development Series: Volume 2, Editor Step Reference
Guide.

Grammar Search Algorithm
The script locates grammars by means of a standard language search algorithm
based on the language context of the call.

For example, assuming a language context of {L[fr_FR_Judy], L[en_GB]}, a
search will return the first grammar defined for the following directories:

 • ...\fr_FR_Judy

 • ...\fr_FR

 • ...\fr

 • ...\en_GB

 • ...\en

 • ...\default

This type of algorithm allows you to place grammars that are common to all
languages in the “default” directory, or grammars that are common to all French
languages in the “fr” directory. You can override these common grammars by
placing a grammar with the same filename under a different directory, such as
“fr_FR”.

Cisco Cisco Unified CCX supports the following file extensions:

 • .grxml—for MRCP grammars

Note The Nuance Grammar language format extension, .gsl, is no longer
supported.

 • .digit—for digit grammars

 • .jrx—for regex grammars used by the DTMF voice browser only

 • .tgl—for template grammars
5-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Grammars in Your Scripts
Note For more information on grammars algorithms and files, see the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 3, Expression
Language Reference Guide.

If you do not provide an extension, the script locates the grammar file based on
the media type of the call when referenced as a user grammar in a Cisco Unified
CCX script:

 • All the supported extensions listed above.

 • The type of media supported by the call; if MRCP ASR is supported, the
search starts with .grxml. Otherwise, the search starts with .digit.

File Grammar Formats
Cisco Cisco Unified CCX supports the following file grammar formats:

 • The SRGS File Grammar Format, page 5-7

 • The Digit File Grammar Format, page 5-7

Cisco Unified CCX no longer supports The GSL File Grammar Format
(deprecated), page 5-8

The SRGS File Grammar Format
For an example of SRGS grammar format, see “Using the SRGS Grammar
Format” in the Cisco Unified Contact Center Express Scripting and Development
Series: Volume 2, Editor Step Reference Guide.

The Digit File Grammar Format

The Digit file grammar format (“.digit”) is based on Java Properties File, in which
a key is defined as “dtmf-x”, where “x” is from the set “0123456789*#ABCD”
and its value is the corresponding tag to be returned when a key is pressed or
recognized.

You can use an optional entry defined as “word=true” to specify that the word
representation of each DTMF digit should be automatically included during a
recognition; for example:
5-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Grammars in Your Scripts
word=true
dtmf-star=bye
dtmf-4=4

For an example of Digit File grammar format, see “Using the Digit File Grammar
Format” in the Cisco Unified Contact Center Express Scripting and Development
Series: Volume 2, Editor Step Reference Guide.

The GSL File Grammar Format (deprecated)
The GSL file grammar format (“.gsl”) supports full Nuance Grammar
Specification Language format.

You must define the grammar with a single main rule (prefixed with “.”).

You must have a slot named “tag” if you use the grammar as a main grammar in
a recognition; for example:
.Main [

hi {<tag hi>}
dtmf-star {<tag bye>}
dtmf-4 {<tag 4>}
joy {<tag lg>}

]

Automatic Conversion
The script uses grammars independently from the following types of supported
media:

 • Cisco Media Termination (CMT)—DTMF digits

 • Automatic Speech Recognition (ASR)—Speech

The script automatically converts grammars from one type to the other, based on
the media type of the call.

If the call uses a CMT Dialog channel and you have specified a SRGS (.grxml)
grammar, the script automatically analyzes the grammar and extracts all defined
digits to create a corresponding digit grammar.
5-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Grammars in Your Scripts
If the call uses an ASR Dialog channel and you have specified a digit grammar,
the script automatically converts the grammar to a corresponding SRGS (.grxml)
grammar. If the grammar is marked with “word=true”, the script includes the
spoken representation of the digit, in the current language of the call, in the SRGS
grammar.

Passing Grammars to Steps
You can pass grammars to the following steps in a script:

 • Simple Recognition step—Use the Simple Recognition step customizer
window to specify all tags in the grammar. A tag is a grammar element.

 • Explicit Confirmation step—Use the Explicit Confirmation step customizer
window to associate the tags with the value “yes” to represent a successful
confirmation, or “no” for a negative confirmation.

Note Tags for grammars are case-sensitive.

Grammar Template
Cisco Unified CCX 4.0 and after adds support for a new type of grammar
file to the user and system grammars already available. This file has the
filename extension.tgl and can be referenced in a script just like other
grammar files.

In addition, not related to the expression, Cisco Unified CCX 4.0 and after
adds support for one new grammar file extension:.grxml. Files ending
with this extension are expected to be text files written as SRGS (Speech
Recognition Grammar Specification) grammars. Effective with Cisco
Unified CCX 3.0, when referencing a user or system prompt, the extension
of the file was optional and a search among valid extensions was
performed to locate a file in the grammar repository. Effective with Cisco
Unified CCX 4.0, the search order is:.grxml,.gsl,.digit and .tgl.
5-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Grammars in Your Scripts
When a user or system grammar with the.tgl extension is located, it is
loaded as a text file and parsed, and the result is a grammar object. The
expression specified in the text file does not have access to script
variables. However, if defined using a complex block expression, the
block can be parameterized like a method declaration, allowing for scripts
to customize the evaluation of the expression. This is similar in concept to
the prompt template file described in About Prompt Templates, page 5-14.

Compound Grammar
A compound grammar combines multiple grammars together. All
grammars combined together are activated at the same time when a
recognition or an acquisition is performed. Priority is always given to the
grammar that comes to the right of another. So if an additional grammar is
combined with a first one and it defines the same choices, it will be the one
taking precedence in the recognition. Compound grammars may have
some special treatment based on the media chosen. For Cisco Media
Termination (CMT) media termination, all Dual Tone Multi-Frequencies
(DTMFs) are combined together to form a single grammar to be used when
acquiring DTMF digits from a caller.

For example, the grammar expression:

G[G1] || G[G2] || GG[Hello|dtmf-2]

represents a compound grammar that activates the grammars G[G1],
G[G2] and GG[Hello|dtmf-2] together with priority to
GG[Hello|dtmf-2]over G[G1]and G[G2], and priority to G[G2] over
G[G1].

Compound Grammar Indexing
It is possible to index a compound grammar like an array in order to
reference a single grammar contained in the compound grammar. This is
done using the [] operator as when indexing an array, whether the
5-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
compound grammar is represented with the || operator (see Compound
Grammar, page 5-10) or the grammar is from the grammar repository that
results in a compound grammar.

If the supplied index is out of bounds, a parse time or an evaluation time
ExpressionArrayIndexOutOfBoundsException might be thrown
as a result. If the grammar being indexed does not represent a compound
grammar, then an ExpressionClassCastException is thrown.

Examples of compound grammar indexing expressions that all result in
grammar expressions are shown in Table 5-1.

Table 5-1 Compound Grammar Indexing Examples

1 G[grammar.tgl][1]

2 (G[grammar1.digit] || G[grammar2.grxml])[0]

3 ((DG[dtmf-1|word=true] || G[grammar.tgl) ||
GG[hello|dtmf-3])[0][1]

Using Prompts in your Scripts
This topic covers the following topics:

 • About Prompts, page 5-11

 • Prompt Types You Can Create, page 5-13

 • The Prompt Search Algorithm, page 5-13

 • About Prompt Templates, page 5-14

 • How To Create or Customize a Prompt, page 5-15
5-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
About Prompts
The Cisco Unified CCX Editor uses the following two kinds of prompts:

 • System prompts—Used internally by Cisco modules and Cisco sample
scripts.

Note System prompts are used internally by the system. Cisco makes no
guarantees about the continued availability of any system prompt in
future releases.

 • User prompts—Defined by the user, and manageable by the administrator by
means of the Prompt Management configuration web page of the Cisco
Unified CCX Administration web interface.

Note For complete details on creating complex prompts in scripts, see the
Cisco Unified Contact Center Express Scripting and Development Series: Volume
3, Expression Language Reference Guide.

All Media and Prompt steps support prompts specified in the following three
ways:

 • String expression—User-defined prompts located in the User Prompts
directory of the Cisco Unified CCX Administration web interface.

 • Document expression—Recorded audio streams.

Document objects are returned by the Recording step (Media palette), Get
User Info step (User palette), DB Get step (Database palette), the Create File
Document step and Create URL Document steps of the Document palette, or
any valid document expressions.

 • Prompt expression—Dynamically created at run time.

Note You must define all prompts played back and recorded with a RIFF
header of type WAVE and G711 u-law format.
5-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
The script retrieves both user and system prompts from the Prompt Repository.
You can manage these prompts from the Prompt Management Configuration web
page of the Cisco Unified CCX Administration web interface. (For more
information on configuring the Prompt Management Configuration web page, see
the Cisco Unified Contact Center Express Administration Guide.)

Prompt Types You Can Create
You can use the steps in the Prompt palette of the Cisco Unified CCX Script
Editor to create the following prompts:

 • Conditional Prompt—Creates one of two specified prompts, based on the
result of evaluating a specified Boolean expression

 • Container Prompt—Creates one of the three prompts:

 – Concatenated Prompt—Creates a prompt that combines multiple prompt
phrases into one prompt.

 – Escalating Prompt—Creates a prompt that plays back one prompt phrase
at a time, starting with the first in a series and moving to the next one on
each retry within a Media step.

 – Random Prompt—Creates a prompt that plays back one phrase from the
supplied list in a random order.

 • Generated Prompt—Generates a prompt using generators that act on
variables (currency, date, digit, string, and time).

 • Language Prompt—Selects a prompt from the set of prompts specified based
on the language context of the call at run time.

 • TTS Prompt—Creates a prompt based on the text from a string expression or
a document expression to be played back as speech, using the system default
TTS provider.

Note For scripts running with ASR, you cannot use multiple Play Prompt steps to
concatenate prompts together if you expect the prompts to be interrupted by
speech (that is, when barge-in is enabled), because speech cannot be buffered
(like DTMF) on the first step and then used on the last step for recognition. You
must prepare a grammar to be ready to perform the recognition if the prompts are
interrupted by a caller barge-in.
5-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
The Prompt Search Algorithm
Similar to the way it handles grammars, the script locates prompts by means of a
standard language search algorithm based on the language context of the call.

For example, assuming a language context of {L[fr_FR_Judy], L[en_GB]}, a
search returns the first prompt defined for the following directories:

 • ...\fr_FR_Judy

 • ...\fr_FR

 • ...\fr

 • ...\en_GB

 • ...\en

 • ...\default

Note If no extension is provided, the system searches for files with the
following extensions: .wav, .ssml, .tts, and .tpl (in that order).

This type of algorithm allows you to place prompts that are common to all
languages in the “default” directory, or place prompts that are common to all
French languages in the “fr” directory. You can override these common prompts
by placing a prompt with the same filename under a different directory, such as
“fr_FR”.

About Prompt Templates
A prompt template is a prompt represented as an expression and evaluated
at the time it is queued up for playback.

Cisco Unified CCX 4.0 and after adds support for a new type of prompt
file to the user and system prompts already available. This new file has the
filename extension.tpl and can be referenced in a script just like the
other.wav prompt files could.
5-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
In addition, not related to the expression, Cisco Unified CCX 4.0 and after
adds support for two new prompt file extensions:.tts and.ssml. Files
ending with these extensions are expected to be text files containing the
text to be rendered as audio using a configured TTS server.

For descriptions of the currently available prompt templates and the
various ways of entering prompts in scripts, see Cisco Unified CCX
Scripting and Development Series: Volume 3, Expression Language Reference.

How To Create or Customize a Prompt
Through Cisco Unified CCX Administration Media Configuration, you can
create and modify the prompts that your scripts use. You can also upload spoken
names for each person in the organization, so callers receive spoken names rather
than spelled-out names when the automated attendant is asking the caller to
confirm which party they want.

These topics describe how to customize these features:

• Recording the Welcome Prompt, page 5-15

• Configuring the Welcome Prompt, page 5-16

• Uploading a Spoken Name, page 5-18

Recording the Welcome Prompt

This section uses the Cisco AutoAttendant as an example situation where you
might want to record your own prompt.

The Cisco AutoAttendant comes with a prerecorded, generic welcome prompt.
You should record your own welcome prompt to customize your automated
attendant for the specific role that it is to fulfill for your organization.

You can use any sound recording software to record the welcome prompt if the
software can save the prompt in the required file format. You can record a
different welcome prompt for each instance of Cisco AutoAttendant that you
create.

This section describes how to record the welcome prompt by using Microsoft
Sound Recorder. Save the prompt as a .wav file in CCITT (u-law) 8-kHz, 8-bit,
mono format.
5-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
Mu-Law is the standard codec (compression/decompression) algorithm for pulse
code modulation (PCM) from the Consultative Committee for International
Telephone and Telegraph (CCITT).

You must have a microphone and speakers on your system to use the software.

Procedure

Step 1 Start the Sound Recorder software; for example, by choosing

Start>Programs>Accessories>Entertainment>Sound Recorder.

Step 2 Click the Record button and say your greeting into the microphone.

Step 3 When you finish the greeting, click the Stop button.

Step 4 To check your greeting:

a. Click the Rewind button (also called “Seek to Start”) or drag the slider back
to the beginning of the recording.

b. To play the recording, click the Play button. Rerecord your greeting until you
are satisfied.

Step 5 When you are satisfied with your greeting, save the recording:

a. Choose File> Save As.

b. To set the recording options, click Change. (You can also do this by choosing
Properties from the Sound Recorder File menu). Choose these options:

 • Name—Choose [untitled].

 • Format—Choose CCITT u-law.

 • Attributes—Choose 8.000 kHz, 8 Bit, Mono 7 kb/sec.

You can save these settings to reuse later by clicking Save As and entering a
name for the format.

c. To close the Sound Selection window, click OK.

d. Browse to the directory where you want to save the file, enter a file name, and
click Save. Use the .wav file extension.
5-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
Configuring the Welcome Prompt

Cisco AutoAttendant can only use welcome prompts that are stored on the Cisco
Unified CCX Engine. To configure your automated attendant to use a customized
welcome prompt, you must upload it to the server and configure the appropriate
Cisco AutoAttendant instance.

Tip To start Cisco Unified CCX Administration, open http://servername/AppAdmin
in your web browser, where servername is the DNS name or IP address of the
application server. Click Help for detailed information on using the interface.

Procedure

Step 1 From the Cisco Unified CCX Administration main menu, choose Applications
> Prompt Management.

The Prompt Management window displays.

Step 2 From the Language Directory drop-down menu, choose the specific language and
directory where the prompt should be uploaded.

Step 3 To add a new prompt

a. Click the Add a new prompt hyperlink.

The Prompt File Name dialog box displays.

b. To open the Choose file dialog box, click Browse.

c. Navigate to the source .wav file folder and double-click the .wav file that you
want to upload to the Cisco Unified CCX Engine.

d. Confirm your choice in the Destination File Name field by clicking in the
field.

e. To upload the .wav file, click Upload.

The system displays a message that the upload was successful.

f. Click the Return to Prompt Management hyperlink.

The window refreshes, and the file displays in the Prompt Management
window.
5-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Prompts in your Scripts
Step 4 To replace an existing prompt with a new .wav file

a. Click the arrow in the Upload column for the prompt that you want to modify.

The Choose file dialog box opens.

b. Enter the name of the .wav file that you want to use to replace the existing
prompt.

c. When you have provided the .wav file and prompt name information, click
Upload.

Uploading a Spoken Name

By default, the Cisco AutoAttendant spells out the names of parties when it asks
a caller to choose between more than one matching name or to confirm that the
user wants to connect to the party. You can upload spoken names to the system,
so your automated attendant plays spoken names rather than spelling them out.

To upload Cisco Spoken Names in your users’ voices, upload the corresponding
.wav files into the directory by performing the following steps:

Procedure

Step 1 Ask users to record their names in the manner that is described in the Recording
the Welcome Prompt, page 5-15, and to save their files as userId.wav, where
userId is their user name.

Step 2 Connect to Cisco Unified CCX Administration and click Tools > User
Management. The User Management window displays.

Step 3 From the menu on the left, click the Spoken Name Upload link.

The Spoken Name Prompt Upload window displays. In the User ID field, enter a
unique identifier of the user for which the spoken name is to be uploaded.

Step 4 In the Codec field, the codec chosen during installation for this Cisco Unified
CCX server is automatically displayed.

Step 5 In the Spoken Name (.wav) field, browse to the .wav file you wish to upload.
Click it and then click Open.

Step 6 From the Spoken Name Prompt Upload page, click Upload.
5-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Advanced Error Handling
Advanced Error Handling
The Cisco Unified CCX Script Editor allows you to provide scripts with two
advanced ways to handle errors.

The following sections describe these two advanced error handling techniques:

 • Using the On Exception Goto Step, page 5-19

 • Using Default Scripts, page 5-19

Using the On Exception Goto Step
The On Exception Goto step of the General palette of the Cisco Unified CCX
Editor sends the execution to a specified place in the script when an exception is
generated, which allows you to provide logic in the script for handling exceptions.

Note You must check the engine log file, present in [Cisco Unified CCX Install
Directory]/log/MIVR directory, corresponding to the time of exception to
recognize the specific exception that has occurred. For example:
com.cisco.wf.subsystem.obj.WFInvalidStateException.

By using the On Exception Goto step for a specific exception in a script, you can
register a new handler for a given exception or override a previously existing one.

The registration process is for the complete script, so it does not matter where the
exception occurs (before, during, or after the given step). Once the step executes,
the handler is registered until either a new one is re-registered or the exception is
cleared with the On Exception Clear step of the General palette.

If an exception results in a subflow, the script first consults the exception handlers
of the subflows. If none are defined for the given exception, the exception aborts
the subflow and the Cisco Unified CCX Engine looks for exception handlers in
the parent script and so on until either an exception handler is found or the script
aborts completely.

If no exception handlers are registered, the script aborts and error handling falls
back to the last level of error handling, which is the default script.
5-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Advanced Error Handling
Using Default Scripts
The default script is the last level of user-defined error handling before the system
kicks in and applies a default system treatment to all active contacts.

You can also configure a separate, default script when you provision a Cisco script
application. The system invokes this default script under the following
conditions:

 • When the main script aborts, either because of an uncaught exception or
because the Cisco Unified CCX server is unable to invoke the primary script
because it has not been properly validated.

Note The default script can access the exception reason for why the main script
aborted. You do this by using the GetTriggerInfo step to extract the
exception value into a script variable.

 • When an incoming call must be aborted because the Cisco Unified CCX
server has reached its limit for the number of simultaneous sessions for the
application.

 • When the Cisco Unified CCX Engine is currently out of available tasks to run
the script for an incoming call.

In each of these scenarios, the script marks all active contacts as aborting before
the default script is executed. The final state of these contacts will be ABORTED
even if they are transferred or redirected as a result of the execution of the default
script.

Note Remember that the purpose of the default script is to gracefully terminate the call
when the main script fails, not to have a fall back to provide the original services
intended by the primary script. This distinction is important because using system
resources to execute this default script may impair system performance. If the
primary script fails too often, then you should fix the primary script rather than
providing another script to attempt the same task.

The default script performs the following tasks:

 • Redirects the call to an operator or to another extension for further processing

 • Provides a customized error message to an HTTP request
5-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Advanced Error Handling
 • Plays back a graceful excuse to the caller for the system problems before
hanging up

You can transfer the state of the primary script to the default script before the
primary script starts. To do this, define variables in the default script with exactly
the same name and type as the variables in the main script. The variables in the
default script are then automatically populated with the last values that were held
by the corresponding variables in the primary script.

By doing so, you may, for example, be able to tell how many calls were active and
terminate all of them gracefully, or you may be able to gain access to information
about the caller and use it in your customized message.

Just as in the primary script, you can configure the default script at provisioning
time by defining variables as parameters.

For Cisco Unified ICME scripts, the default script executes if the Cisco Unified
ICME script issues a request for connecting to the default treatment. The default
script, however, can execute only once, so if it has already executed because of a
Cisco Unified ICME connect request to a default treatment, it will not be
re-executed if the default script fails.

The default script does not execute if the primary script ends normally, even if
contacts are still active. In this case, it is considered to be a design problem for
the primary script. In such a case, all active contacts not marked as handled abort,
and all active contacts marked as handled are simply terminated.

Note Remember that the default script provides only a final feedback to the contact
regarding the system problem and does not continue the service or restart the
service. You should therefore make the default script short and to the point.

The default treatments that the system applies if the contact is still active after the
system executes the default script (if any) are:

 • CallContact—Plays back the prompt, “We are currently experiencing system
problems, please call back later” as an announcement, followed by a fast busy
signal.

 • HTTP Contact—Returns an INTERNAL SERVER ERROR (code 500).

 • eMail Contact—There is no system default treatment for an e-mail contact.
5-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
About Script Interruption
About Script Interruption
Script interruption is a feature that allows external events to interrupt the current
processing of a script in order to return to another part of the script or stop the
execution of the script.

Script interruption is typically used in the following situations:

 • The script plays in an ACD environment in which it provides features such as
service-on-hold or music-on-hold to a caller waiting in a queue for the system
to transfer the call to an available agent.

 • The script needs to be notified that one of its contacts has been remotely
terminated, as when, for example, the caller hangs up.

 • You are using the Cisco Unified CCX Script Editor to debug a script and the
Cisco Unified CCX Script Editor makes a request to end the debugging
session in the middle of that script.

Note In every case, any event that triggers the need to interrupt the script can occur at
any time while the script executes other steps. In previous Cisco Unified CCX
releases, script interruption could happen only for some of these events and only
in some of the steps.

By default, scripts are automatically interruptible before any step is executed.
Should any external event (such as those described above) interrupt the script, it
will continue processing based on the proper handling for the particular event
before it begins to execute the next step.

If you want two consecutive steps to execute without the possibility of
interruption, you must move these two steps to a subflow where you can disable
interruptions completely while the script processes that subflow.

Some steps contain an “interruptible” option, which allows you to indicate
whether or not the script can interrupt the step from within when an external event
occurs.

Note For Media steps, the old “interruptible” option that allowed a caller to stop the
playback of the prompts using either DTMF or voice, as in case of ASR calls, now
called “barge-in” calls.
5-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
About Script Interruption
The following paragraphs describe in more detail the external events that can
cause interruptions and the default processing associated with them:

 • A contact is remotely terminated.

When a caller hangs up, the script will be interrupted (if possible) and a
ContactInactiveException will be generated. This exception can then be
caught with the OnExceptionGoto step of the General palette and properly
handled.

If a caller hangs up and you have not provided any exception handling logic,
the script immediately aborts.

When managing multiple contacts, the OnExceptionGoto step cannot
differentiate which contact was remotely terminated. Instead, it must specify
a Label to which it can loop through all known contact variables and use the
Get Contact Info step of the Contact palette to search for an Active flag

 • A debugging session is terminated.

When you click the End button on the toolbar of the Cisco Unified
CCX Editor, the script is interrupted and aborts without the possibility of
catching or handling this case.

 • A Cisco Unified CCX agent becomes available.

This event occurs only if the script has previously executed a Select Resource
step from the ACD palette. When an agent becomes available, the script is
interrupted and control is returned to the Select Resource step, exiting
through either the Selected or Connected branches depending on the
configuration.

 • A Cisco Unified ICME agent becomes available.

The script is automatically interrupted without the possibility of catching or
handling this case.

If an interrupting event happens when the script is not currently interruptible, the
script is automatically interrupted whenever it becomes interruptible again. For
example, although a script is not interruptible when it is running a subflow
marked to disable interruptions, it will process the interruption as soon as the
subflow terminates and control is returned to the parent (if that primary script is
interruptible).
5-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Different Media in your Scripts
As another example, although a script is not interruptible while waiting for the
results of a database fetch, it will process the interruption as soon as the results
return and before the script executes the next step (unless the interruptible option
has been disabled).

Figure 5-1 shows the Disable Interruptions option in the General tab of the Call
Subflow customizer window.

Figure 5-1 Disable Interruptions Option—Call Subflow Step (General Tab)

Using Different Media in your Scripts
This section covers the following topics:

 • About Media, page 5-25

 • Media-Less Calls, page 5-25

 • Media Neutrality, page 5-26

 • Media Steps, page 5-26
5-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Different Media in your Scripts
About Media
You can configure the type of media that you want to associate with each trigger.
The following three media types are available:

 • Cisco Media Termination (CMT)

 • MRCP Automatic Speech Recognition (ASR)

 • None (for calls without media)

All calls you configure to use media are counted toward the number of licensed
IVR ports.

All calls you configure to use ASR are counted toward the number of licensed
ASR ports.

To allow for better provisioning, you can configure more CTI ports than the
number of licensed IVR ports and more ASR channels than the number of
licensed ASR ports.

At run time, the system will automatically reject a call received that requires
media if accepting it would exceed the number of licensed Cisco Unified IP IVR
ports.

The system will also automatically reject a call that requires ASR if accepting it
would exceed the number of licensed ASR ports. In this case, the system will not
fall back to the secondary dialog group if an ASR channel was available in the
primary dialog group.

Media-Less Calls
You use a media-less call when you expect no media interactions with the caller
(interactions such as prompting, getting DTMF digits, or speech recognition).

Examples of applications that require no media are e.911 redirect and simple
queuing.

Note You can generate Music on Hold to a caller for a media-less call, because this
function is not controlled by the Cisco Unified CCX Engine. This type of call uses
fewer CPU resources on the Cisco Unified CCX server than other types of calls,
which may allow you to increase the capacity of the Cisco Unified CCX Engine.
5-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Different Media in your Scripts
Media Neutrality
All Media palette steps of the Cisco Unified CCX Editor are designed to work on
both types of media (DTMF and ASR), with the exception of the Voice Browser
step, which can work only with ASR.

You can query the Get Contact Info step of the Contact palette to check if ASR is
supported for a given call, and you can create conditional prompts to play
different prompts (if required) based on the result of the query.

The system automatically converts grammars from one format to the other based
on the current media type of a call.

Note For scripts running with ASR, you cannot use multiple Play Prompt steps to
concatenate prompts together if you expect the prompts to be interrupted by
speech (that is, when barge-in is enabled), because speech cannot be buffered
(like DTMF) on the first step and then used on the last step for recognition. You
must prepare a grammar to be ready to perform the recognition if the prompts are
interrupted by a caller barge-in.

Media Steps
The following sections describe some of the steps that take advantage of the
media capabilities of the Cisco Unified CCX Editor:

 • Name To User Step, page 5-27

 • Recording Step, page 5-27

 • Explicit Confirmation Step, page 5-27

 • Implicit Confirmation Step, page 5-28

 • Simple Recognition Step, page 5-28
5-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using Different Media in your Scripts
Name To User Step

The Name To User step is a modified version of the Name To Address step in
previous releases.

The step now returns a User object that you can later query with the Get User Info
step to retrieve the user’s extension, e-mail address, and spoken name.

If you request the operator option, the Name To User step returns control through
a new Operator output branch.

The system can match only user names that are defined with characters from the
English alphabet (unless the step is used with an ASR channel).

Recording Step

The Recording step allows you to record an audio segment from the caller and
return it as a Document object that can, for example, be uploaded as a spoken
name, saved to disk or to a database, or e-mailed.

The system defines all recordings as Document objects with a RIFF header of type
WAVE and encoded using G711 u-law format.

Explicit Confirmation Step

The Explicit Confirmation step provides a simple building block for confirming
a question, and is a limited version of a Menu or Simple Recognition step.

You define the Explicit Confirmation step with a default grammar that accepts the
following input:

 • CMT—1 for yes and 2 for no

 • ASR—typical yes/no grammar in proper language

You can also override the default grammar with a user-defined grammar.

See Using Grammars in Your Scripts, page 5-4 for more information on defining
and using grammars.
5-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using a Voice Browser in Your Scripts
Implicit Confirmation Step

You typically use the Implicit Confirmation step in speech-enabled applications
in order to provide the caller with a way to confirm an action without having to
ask a question.

The script plays back a prompt explaining the action to be taken and then waits a
configured number of seconds for any input from the caller.

If the caller presses any DTMF digits or speaks before the end of the prompt or
the configured timeout, the confirmation is considered to have failed.

An implicit confirmation executed over a CMT dialog channel will ignore speech;
only DTMF digits pressed by the caller will fail the confirmation.

Simple Recognition Step

The Simple Recognition step is an extension to the original Menu step that allows
the designer to pass any user-defined grammar to be used for matching user input.

The Simple Recognition step works over CMT. Only DTMF digits can be
matched against the specified grammar.

Using a Voice Browser in Your Scripts
The Voice Browser feature allows you to design voice-enabled applications using
standard VoiceXML . The Voice Browser currently supports VoiceXML 2.0
elements.

This section includes the following topics:

 • Understanding VoiceXML, page 5-29

 • Voice Browser Architecture, page 5-30

 • Voice Browser Development Tools, page 5-32

For more information on developing voice-enabled applications, see Chapter 15,
“Designing Cisco Unified CCX VoiceXML Applications.”

For more information on using the Voice Browser step in the Cisco Unified
CCX Editor, see the Cisco Unified CCX Scripting and Development Series:
Volume 2, Editor Step Reference.
5-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using a Voice Browser in Your Scripts
For more information on developing voice-enabled applications, see Designing
Cisco Unified CCX VoiceXML Applications.

Understanding VoiceXML
VoiceXML is designed for creating audio dialogs that feature synthesized speech,
digitized audio, recognition of spoken and DTMF key input, recording of spoken
input, telephony, and mixed-initiative conversations.

The main goal of VoiceXML is to bring the full power of web development and
content delivery to voice response applications, and to free the authors of such
applications from low-level programming and resource management. VoiceXML
enables integration of voice services with data services that use the familiar
client-server paradigm. A voice service is viewed as a sequence of interaction
dialogs between a user and an implementation platform.

Document servers, which may be external to the implementation platform,
provide the dialogs. Document servers maintain overall service logic, perform
database and legacy system operations, and produce dialogs. A VoiceXML
document specifies each interaction dialog to be conducted by a VoiceXML
interpreter. User input affects dialog interpretation and is collected into requests
submitted to a document server. The document server may reply with another
VoiceXML document to continue the user session with other dialogs.

VoiceXML is a markup language that performs the following tasks:

 • Minimizes client/server interactions by specifying multiple interactions per
document

 • Shields application authors from low-level and platform-specific details

 • Separates user interaction code (in VoiceXML) from service logic (CGI
scripts)

 • Promotes service portability across implementation platforms; VoiceXML is
a common language for content providers, tool providers, and platform
providers

 • Provides an easy programming language to use for simple interactions, and
yet provides language features to support complex dialogs

The VoiceXML language describes the human-machine interaction provided by
voice response systems, which include the following:

 • Output of synthesized speech (Text-To-Speech, or TTS)
5-29
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using a Voice Browser in Your Scripts
 • Output of audio files

 • Recognition of spoken input

 • Recognition of DTMF input

 • Recording of spoken input

 • Provision of telephony features such as call transfer and disconnect

VoiceXML provides the means for collecting character and/or spoken input, for
assigning the input to document-defined request variables, and for making
decisions that affect the interpretation of documents written in the language. You
can use URLs to hyperlink a document to other documents.

Voice Browser Architecture
Voice Browser consists of the following three components:

 • Document server—Processes requests from the VoiceXML interpreter. The
server produces VoiceXML documents in reply.

 • VoiceXML Interpreter—Processes the document. The VoiceXML interpreter
executes the VoiceXML application, doing prompting and voice recognition
via the Cisco Unified CCX Engine. The VoiceXML interpreter processes the
input and may then branch or submit information to the document server
according to the application logic.

The Voice Browser interprets VoiceXML documents and performs the dialog
with the user. The web application model is a client server model. The role of
the Voice Browser is that of a web client, fetching documents from a web
server.

 • Implementation Platform—Detects and answers incoming calls and responds
to other telephony events. It is also responsible for prompting and receiving
user input. The VoiceXML interpreter controls the Cisco Unified CCX
implementation platform.
5-30
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using a Voice Browser in Your Scripts
Figure 5-2 shows the architecture for the Voice Browser system. See the steps
below the figure for an explanation of the process that the diagram illustrates.

Figure 5-2 Voice Browser Architecture

The following is an example of a VoiceXML process flow:

1. The user makes a call to a phone number.

2. The Cisco Unified CCX system answers the call and invokes the VoiceXML
interpreter to perform the dialog.

3. The VoiceXML interpreter makes a request “http://abc/HelpDesk.vxml”.

4. The document server receives the request. It processes, formats, and returns
the document.

5. The VoiceXML interpreter interprets the document.

6. The interpreter performs prompting and voice recognition through the Cisco
Unified CCX Engine.

7. Based on user input, the application continues. For example, it may loop back
to Step 3 to make another request with information gathered to the document
server.
5-31
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using a Voice Browser in Your Scripts
Voice Browser Development Tools
You can use VoiceXML and the following tools to develop voice applications:

 • Voice Browser

 • Web application server

 • VoiceXML development tool (optional)

The Voice Browser interprets the VoiceXML documents and executes dialogs
with the user. The role of the Voice Browser is as a web client, fetching documents
from a web server.

For information on configuring VoiceXML applications using the Voice Browser,
see the Cisco Unified Contact Center Express Administration Guide.

For information on the Cisco implementation of VoiceXML, see Appendix B,
“VoiceXML Implementation for Cisco Voice Browser.”

You can use any web application server for deploying VoiceXML applications
that use Voice Browser. In addition to acting as a document repository and server,
the web application server often supports server-side scripts for generating
dynamic documents. Some examples are J2EE (Java 2 Platform Enterprise
Edition) technologies such as servlets and JSP (Java Server Pages), .NET
technologies, and Perl scripts. The web application server often provides backend
integration, security and XML/XSLT presentation support.

Users already running a web server for HTML-based applications can leverage
the existing infrastructure to serve voice applications. This functionality also
means you can use a single model for developing HTML and voice applications.

Note You can also use the file system or anonymous FTP server as the document server.
Further, you can obtain documents, prompts and grammars from the repository by
specifying a CRTP URL. See How and Why To Use the CRTP Protocol,
page 2-56, for more details on using CRTP URLs.

In these cases you can deploy only static VoiceXML documents. This
functionality is useful for running simple applications with minimal setup and
system requirements.
5-32
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
Using a Voice Browser in Your Scripts
The Voice Browser does not require or provide any VoiceXML editor or
Integrated Development Environment (IDE). Since VoiceXML is a text-based
XML document, you can use numerous authoring tools, including simple text
editors, server scripting languages, and third-party VoiceXML editors.
5-33
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
A Script for Incrementing the Current Date
A Script for Incrementing the Current Date
The following example script, GetFutureDate.aef, (see Figure 5-3) shows you
how to increment the current date by x number of days. For example, you might
want to do this to calculate a due date.

Figure 5-3 Example GetFutureDate.aef Script
5-34
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
A Script Example Showing Timeout or Retry Logic
A Script Example Showing Timeout or Retry
Logic

You can create a Cisco Unified IP IVR script that hangs up after a certain period
of inactivity.

Figure 5-4 shows how you can include timeout or retry logic in your Cisco
Unified IP IVR scripts so that if the caller fails to reply after so many times or
after a certain amount of time, then the script releases the call. This causes the GW
port to go on hook and the Cisco Unified IP IVR port to be freed to handle another
call.

Remember that if the caller is still ther, then a “GOTO” back to the queue is
required to stop the caller from being disconnected.

Figure 5-4 Example AreYouThere.aef Script
5-35
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 5 Advanced Scripting Techniques
A Script Example Showing Timeout or Retry Logic
5-36
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Star
C H A P T E R 6

The Basic Cisco Unified CCX Script

Cisco Unified Contact Center Express provides contact center solutions for
automatic call distribution (ACD) and other call center requirements.

You can use the Cisco Unified CCX Editor to create any number of Cisco Unified
CCX scripts that provides a way to use Cisco Unified CCX to queue telephone
calls and connect them to available resources.

This chapter describes the design of such an Cisco Unified CCX script, icd.aef,
which is included as a script template with the Cisco Unified CCX Editor.

This section contains the following topics:

 • The Example Cisco Unified CCX Basic Script Template, page 6-2

 • The Start Step (Creating a Script), page 6-2

 • Script Variables for icd.aef, page 6-3

 • The Accept Step, page 6-5

 • The Play Prompt Step, page 6-6

 • The Select Resource Step, page 6-7

 • The End Step, page 6-14
6-1
ted with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Example Cisco Unified CCX Basic Script Template
The Example Cisco Unified CCX Basic Script
Template

The icd.aef script template accepts a call, plays a welcoming prompt, and then
either connects the caller to an available resource or queues the call until a
resource becomes available. While queued, the caller periodically hears a prompt
explaining that the call is still in the queue and still waiting for an available
resource. When the resource becomes available, the script connects the call.

Figure 6-1 shows the icd.aef script as it appears in the Design pane of the Cisco
Unified CCX Editor window.

Figure 6-1 icd.aef Script

The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Cisco Unified CCX Editor places a Start step in the
Design pane of the Cisco Unified CCX Editor window.
6-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
Script Variables for icd.aef
The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called icd.aef.

Script Variables for icd.aef
Begin the icd.aef script design process by using the Variable pane of the Cisco
Unified CCX Editor to define script variables.

Note For more information about defining variables, see the “Defining, Using, and
Updating Script Variables” section on page 2-31.

Figure 6-2 shows the variables of the icd.aef script as they appear in the Variable
pane of the Cisco Unified CCX Editor window.

Figure 6-2 Variable Pane of the icd.aef Script
6-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
Script Variables for icd.aef
Table 6-1 describes the variables used in the icd.aef script.

Table 6-1 Variables in the icd.aef Script

Variable Name
Variable
Type Value

Parameter
? Function

Note Select the Parameter checkbox for variables whose value the administrator will have the option
to change. For more information, see the Cisco Unified Contact Center Express Administration
Guide.

CSQ String "" Yes Stores Contact Service
Queue information
from which to find a
resource.

(For more information,
see The Select
Resource Step,
page 6-7.)

DelayWhileQueued Integer 30 Yes Stores the length of
time for the delay.

(For more information,
see The Delay Step,
page 6-12.)

QueuePrompt Prompt SP[ICD\ICDQueue.wav] Yes Stores the user prompt
that informs the caller
that the call is still in
queue.

(For more information,
see The Play Prompt
Step, page 6-11.)

SRS_TempResource
 SelectedVar2

User null No Identifies the selected
agent or resource
6-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Accept Step
The Accept Step
Continue the icd.aef script by dragging an Accept step from the Contact palette
(in the Palette pane) to the Design pane of the Cisco Unified CCX Editor window.

A script uses an Accept step to accept a contact. (A contact can be a telephone
call, an e-mail message, or an HTTP request. In the icd.aef script, the contact is a
call.)

The default Contact is “--Triggering Contact--”, which simply means that
whichever contact triggers the execution of the script is the triggering contact for
this step.

For more information on configuring the Accept step, see the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 1I, Script
Reference Guide.

WelcomePrompt Prompt SP[ICD\ICDWelcome.wa
v]

Yes Stores the user prompt
that welcomes the
caller.

(For more information,
see The Play Prompt
Step, page 6-6.)

resourceID String "" No Stores the Resource ID
of the chosen agent.

(For more information,
see The Select
Resource Step,
page 6-7.)

Table 6-1 Variables in the icd.aef Script (continued)

Variable Name
Variable
Type Value

Parameter
? Function
6-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Play Prompt Step
The Play Prompt Step
Continue the icd.aef script by dragging a Play Prompt step from the Media palette
to the Design pane.

Next, configure this Play Prompt step to play a welcoming prompt to the caller.

Note When developing scripts that prompt callers, remember to accommodate the
needs of hearing-impaired customers. To make your application fully accessible
to these callers, set up scripts to interact with devices such as a
Telecommunications Relay Service (TRS) or Telecommunications Device for the
Deaf (TTY/TDD).

Figure 6-3 shows the configured Prompt tab of the Play Prompt customizer
window.

Figure 6-3 Play Prompt Customizer Window—Configured Prompt Tab

Configure the Play Prompt step as follows:

 • General tab:

 – Contact—Triggering Contact

The step operates on the contact that triggers the execution of the script.

 – Interruptible—Yes

External events can interrupt the playing of the prompt. (At this point the
script has not yet queued the call, so this configuration has no effect.)
6-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Select Resource Step
 • Prompt tab:

 – Prompt—WelcomePrompt

WelcomePrompt is the prompt that the Play Prompt step plays back to
welcome the caller.

 – Barge in—Yes

The caller can interrupt the prompt playback.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence or waits for caller input.

 • Input tab:

 – Flush Input Buffer—No

The system does not erase previously entered input before capturing new
caller input.

The Select Resource Step
Continue the icd.aef script by dragging a Select Resource step from the ACD
palette to the Design pane.

Next, configure the Select Resource step to connect a call or to queue it to a
specific set of agents configured in the Cisco Unified CCX Administration web
interface.

Note For more information on configuring agents, see the Cisco Unified Contact
Center Express Administration Guide.
6-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Select Resource Step
Figure 6-4 shows the configured Select Resource customizer window.

Figure 6-4 Configured Select Resource Customizer Window

Configure the Select Resource customizer window as follows:

 • Contact—Triggering Contact

The call that triggered the contact is the one that the step connects to the
resource.

 • Routing Target Type—Contact Service Queue

Variable indicating the routing method. One of the following:

 – Contact Service Queue - Call will be routed to an available agent in the
specified CSQ.

 – Resource - Call will be routed to the specified agent. Select this option
for Agent Based Routing feature.

Note If you set this field to Resource, the CSQ Target field is renamed to
Resource Target. Resource Routing Target Type is only available for
Cisco Unified CCX Enhanced Edition. If you use Resource Routing
Target Type with Cisco Unified CCX Standard edition, Cisco Unified
CCX Engine will be unable to load the script.
6-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Select Resource Step
 • CSQ Target—CSQ

The CSQ variable stores Contact Service Queue information from which to
find a resource.

 • Connect—Yes

The step automatically connects the call to the available resource the instant
the resource becomes available.

Note If you choose the No option, the step chooses the resource, if
available, but does not yet connect the call. You can choose this
configuration if you want to add additional Cisco Unified CCX Editor
steps to the Selected output branch before using a Connect step to
connect the call to the resource. (If the resource is unavailable, the
step queues the call.)

 • Timeout—12

The value 12 seconds is the length of time before the step retrieves the contact
back into the queue.

 • Resource Selected—SRS_TempResourceSelectedVar2

The SRS_TempResourceSelectedVar2 user variable identifies the selected
agent or Resource.

The Select Resource step contains two output branches, Connected and Queued:

 • Connected—If a resource is available, the Connected output branch executes,
and the Select Resource step connects the call.

 • Queued—If a resource is not available, the Queued output branch executes,
and the call is placed in a queue.

The following sections describe the two output branches of the Select Resource
step:

 • The Connected Output Branch, page 6-10

 • The Queued Output Branch, page 6-10
6-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Select Resource Step
The Connected Output Branch
If the Select Resource step locates an available resource, the script executes the
Connected output branch, and Select Resource step connects the call to the
available resource according to the configured information in the Select Resource
customizer window.

The script falls through to the End step, which ends the script.

The Queued Output Branch
If the Select Resource step fails to locate an available resource, the script executes
the Queued output branch.

Configure the Queued output branch of the Select Resource step to set up a loop
that plays a prompt, waits for a certain length of time, and then plays the prompt
again, until a resource becomes available.

When the resource does become available, the Select Resource step connects the
call, and then continues to the End step, which ends the script.

The queue loop contains the following steps:

 • The Label Step, page 6-10

 • The Play Prompt Step, page 6-11

 • The Delay Step, page 6-12

 • The Goto Step, page 6-14

The Label Step

Begin to build the Queued output branch of the Select Resource step by dragging
a Label step from the General palette into the Design pane and dropping it into the
Queued icon under the Select Resource step.

Next, configure the Label step (which is the beginning of the loop) to provide a
target for the subsequent Goto step.

Note For more information about configuring the Label step, see the Cisco Unified
Contact Center Express Editor Step Reference Guide.
6-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Select Resource Step
Figure 6-5 shows the configured Label customizer window.

Figure 6-5 Configured Label Customizer Window

Configure the Label customizer window by entering the name queueLoop in the
Enter Label Name text field, and then clicking OK.

Next configure the subsequent Goto step to send the script to the Label with this
name.

The Play Prompt Step

Continue building the Queued output branch of the Select Resource step by
dragging a Play Prompt step from the Media palette in the Design pane and
dropping it into the Queued icon under the Select Resource step.

Next, configure the Play Prompt step to play back a prompt informing the caller
that the call is still in queue and awaiting an available resource.
6-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Select Resource Step
Figure 6-6 shows the configured Prompt tab of the Play Prompt customizer
window.

Figure 6-6 Play Prompt Customizer Window—Configured Prompt Tab

Configure this Play Prompt customizer window with the same properties as in the
first Play Prompt step of the icd.aef script (see The Play Prompt Step, page 6-6),
with one exception:

 • Prompt tab

 – Prompt—QueuePrompt

QueuePrompt is the prompt variable that stores the .wav file that
informs the caller that the call is still in queue.

Because you enable the Interruptible option, a newly available resource interrupts
the Play Prompt step and the Select Resource step connects the call.

The Delay Step

Continue building the Queued output branch of the Select Resource step by
dragging a Delay step from the General palette into the Design pane and dropping
it into the Queued icon under the Select Resource step.

Next, configure the Delay step to set the length of time, in seconds, before the
subsequent Goto step sends the call back to the beginning of the queue loop.
6-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The Select Resource Step
Figure 6-7 shows the configured Delay customizer window.

Figure 6-7 Configured Delay Customizer Window

Configure the Delay step as follows:

 • Delay time—DelayWhileQueued

This variable stores the length of time for the delay.

 • Interruptible—Yes

An available resource interrupts the Delay step and the Select Resource step
connects the call.

The caller hears nothing while the Delay step is waiting for the specified amount
of time to elapse.

Tip If the administrator has configured a Music On Hold server in Cisco Unified
CallManager, you can place a Call Hold step just before the Delay step and a Call
Unhold step just after the Delay step to play music to the caller while on hold.
(You use the Call Unhold step to retrieve the call so that the script plays
QueuePrompt before placing the call on hold again.) This option does not
increase the CPU usage of the Cisco Unified CCX server, because the music
streaming is performed by the Music On Hold server and not by the Cisco Unified
CCX server. You can also replace the Delay step with a Play Prompt step that
plays a prompt recorded with the same amount of music as required by the
original Delay step. However, this option increases CPU usage because the Cisco
Unified CCX server streams this recorded music prompt to all callers in queue.
6-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 6 The Basic Cisco Unified CCX Script
The End Step
The Goto Step
End the Queued output branch of the Select Resource step by dragging a Goto step
from the General palette into the Design pane and dropping it into the Queued
icon under the Select Resource step.

Next, configure the Goto step to provide the name of the Label step to which the
script returns to begin the queue loop again.

Figure 6-8 shows the configured Goto customizer window.

Figure 6-8 Configured Goto Customizer Window

Configure the Goto customizer window by choosing queueLoop from the Select
a Label drop-down menu. This variable is the name you assigned in the previous
Label step to indicate the beginning of the queue loop.

The End Step
Use the End step at the end of a script to complete processing and free all allocated
resources.

This step has no properties and does not require a customizer.
6-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
C H A P T E R 7

Designing a Basic Script

You can use the Cisco Unified CCX Editor to create a number of basic scripts.

This chapter describes the steps used to create a Spoken Name Upload (SNU)
script, SNU.aef, which is included as a script template with the Cisco Unified
CCX Editor.

This section contains the following topics:

 • An Example Basic Script, page 7-2

 • The Start Step (Creating a Script), page 7-4

 • SNU Script Template Variables, page 7-4

 • The Accept Step, page 7-7

 • The Accept Step, page 7-7

 • The Play Prompt Step, page 7-8

 • The Label Step (GetUser), page 7-11

 • The Name To User Step, page 7-11

 • The Get Digit String Step, page 7-25

 • The Authenticate User Step, page 7-32

 • The Recording Step, page 7-37

 • The Menu Step, page 7-40

 • The Closing Steps of the SNU.aef Script, page 7-47
7-1
arted with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
An Example Basic Script
An Example Basic Script
The SNU.aef script template allows users to record their names over the phone so
that the script can play back their spoken names to prospective callers.

This script contains good examples of the use of steps in the Contact, Prompt, and
User palettes. It also demonstrates the use of the If and Set steps from the General
palette.

Figure 7-1 shows how the SNU.aef script template appears in the Design pane of
the Cisco Unified CCX Editor window.
7-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
An Example Basic Script
Figure 7-1 SNU.aef Script Overview in the Design Pane

The SNU.aef script performs the following tasks:

1. Accepts the call and plays a welcoming prompt.

2. Retrieves attributes for the triggering contact.
7-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Start Step (Creating a Script)
3. Prompts the caller to enter a name, using either Dual Tone Multi-Frequency
(DTMF) digits or speech.

4. Compares the caller input to names in a directory.

5. If a match is found, prompts the caller to enter a Personal Identification
Number (PIN).

6. Authenticates the user using the PIN.

7. Records the name of the caller.

8. Allows the caller to confirm the recording, or to try again.

9. Plays a final prompt to say good-bye to the caller, and then terminates the
call.

Note In designing scripts, remember that any step that requires caller input can fail to
receive an acceptable response, which is why even a simple script often requires
a number of steps and output branches to handle errors and failures.

The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called snu.aef.

SNU Script Template Variables
Begin the SNU.aef script design process by using the Variable pane of the Cisco
Unified CCX Editor to define script variables.
7-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
SNU Script Template Variables
Note For more information about defining variables, see the “Defining, Using, and
Updating Script Variables” section on page 2-31.

Figure 7-2 shows the variables of the SNU.aef script template as they appear in
the Variable pane of the Cisco Unified CCX Editor window.

Figure 7-2 Variables Listed in the Variable Pane
7-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
SNU Script Template Variables
Table 7-1 describes the variables used in the SNU.aef script template.

Table 7-1 Variable Descriptions

Variable Name Variable Type Value Function

currentRecording Document null Stores a recorded name.

(See The Get User Info Step, page 7-16.)

finalPrompt Prompt — Prompt played back to the caller at the
conclusion of the call. The value is
dynamically assigned by various steps in the
script.

(See The Timeout Output Branch, page 7-24,
and The Unsuccessful Output Branch,
page 7-31.)

fullName String "" Stores the full name of the user. Used by the
Create Generated Prompt step.

(See The If Step, page 7-17.)

pin String "" Stores PIN digits entered by the user in the
Get Digit String step. Used by the
Authenticate User step to authenticate user.

(See The Get Digit String Step, page 7-25 and
The Authenticate User Step, page 7-32.)

recording Document null Stores the audio file recorded by the caller.

(See The Recording Step, page 7-37.)

spelledPrompt Prompt — Stores the name of the user, as created by the
Create Container Prompt step.

(See The If Step, page 7-17 and The Get Digit
String Step, page 7-25.)

triesAuthentication Integer 0 Stores the number of times authentication has
been attempted.

(See The Unsuccessful Output Branch,
page 7-35.)
7-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Accept Step
The Accept Step
Continue the SNU.aef script by dragging an Accept step from the Contact palette
into the Design pane of the Cisco Unified CCX Editor window.

triesGetDigit Integer 0 Stores the number of times the script has
attempted to get PIN digits.

(See The True Output Branch, page 7-30.)

triesMaxAuthentication Integer 3 Stores the maximum number of attempts the
script will make to authenticate the caller.

(See The Unsuccessful Output Branch,
page 7-35.)

triesMaxGetDigit Integer 3 Stores the maximum number of retries the
script attempts to get PIN digits.

(See The True Output Branch, page 7-30.)

triesMaxRecord Integer 3 Stores the maximum number of attempts the
script will make to record the name of the
caller.

(See The Key 2 Output Branch, page 7-44.)

triesRecord Integer 0 Stores the number of times that recording has
been attempted.

(See The Key 2 Output Branch, page 7-44.)

user User null Stores the values associated with this
particular user. First assigned a value by the
Name To User step, and used by various other
steps.

(See The Name To User Step, page 7-11, and
The Authenticate User Step, page 7-32.)

Table 7-1 Variable Descriptions (continued)

Variable Name Variable Type Value Function
7-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Play Prompt Step
A script uses an Accept step to accept a contact. (A contact can be a telephone
call, an e-mail message, or an HTTP request. In the SNU.aef script, the contact is
a call.)

Figure 7-3 shows the customizer window for the Accept step.

Figure 7-3 Accept Customizer Window

To use the Accept customizer window to configure the Accept step, select a
Contact from the drop-down list and click OK.

The Accept customizer window closes, and the name of the Contact variable
appears next to the Accept step icon in the Design pane of the Cisco Unified
CCX Editor.

The default Contact is “--Triggering Contact--”, which simply means that
whichever contact triggers the execution of the script is the triggering contact for
this step.

The Play Prompt Step
Continue the SNU.aef script by dragging a Play Prompt step from the Media
palette to the Design pane.

Next, configure this Play Prompt step to play back to the caller the system prompt
SP[SNU\welcomeSpokenName.wav], which plays “Welcome to the Cisco
Spoken Name Upload Application.”

Figure 7-4 shows the configured Prompt tab of the Play Prompt customizer
window.
7-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Play Prompt Step
Figure 7-4 Play Prompt Customizer Window —Configured Prompt Tab

Note When developing scripts that prompt callers, remember to accommodate the
needs of hearing-impaired customers. To make your application fully accessible
to these callers, set up scripts to interact with devices such as a
Telecommunications Relay Service (TRS) or Telecommunications Device for the
Deaf (TTY/TDD).

Configure the Play Prompt step as follows:

 • General tab

 – Contact—Triggering Contact

The step operates on the contact that triggers the execution of the script.

 – Interruptible—No

External events cannot interrupt the playing of the prompt.

 • Prompt tab

 – Prompt—SP[SNU\welcomeSpokenName.wav]

SNU\welcomeSpokenName.wav is the prompt that the Play Prompt step
plays back to welcome the caller.

Because the .wav file that serves as the welcoming prompt already exists
as a system prompt, you do not need to define it as a variable; instead
enter the prompt directly by clicking the Expression Editor button
and entering the name in the text field of the dialog box that appears.
7-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Play Prompt Step
Figure 7-5 Prompt Address Dialog Box (accessed by Expression Editor button)

Note For more information about using the Expression Editor, see
Chapter 2, “How To Use the Cisco Unified CCX Editor.”.

 – Barge in—Yes

The caller can interrupt the prompt playback.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence or waits for caller input.

 • Input tab

 – Flush Input Buffer—Yes
7-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Label Step (GetUser)
The system erases previously entered input before capturing new caller
input.

Note For more information about configuring the Play Prompt step, see the Cisco
Unified Contact Center Express Scripting and Development Series: Volume 2,
Editor Step Reference Guide.

The Label Step (GetUser)
Continue the SNU.aef script by dragging a Label step from the General palette to
the Design pane.

Configure the Label step to provide a target for subsequent steps if it becomes
necessary to send the caller back for further attempts to successfully execute the
Name To User step.

Configure the Label customizer window by entering the name GetUser in the
Enter Label Name text field and then clicking OK.

Configure the subsequent Name To User step to send the script to the Label with
this name, if necessary.

Note For more information about configuring the Label step, see the Cisco Unified
Contact Center Express Editor Step Reference Guide.

The Name To User Step
Continue the SNU.aef script by dragging a Name To User step from the Media
palette to the Design pane.

Next, configure the Name To User step to prompt the caller to enter a name and
then compare the name received with a directory of names to find out if the name
given by the caller exists in the directory.

Configure the three tabs of the Name To User customizer window as follows:

 • General tab
7-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
 – Result User—user

The user variable stores the values associated with this particular user.
(The subsequent Get User Info step under the Successful output branch
uses the user variable to find out whether or not a current recording
exists for this name.)

 – Announce When Number of Matches Less Than—4

If the number of matches is less than 4, the script prompts the user to
choose the correct entry from the list of matches. If the number of
matches is greater than or equal to 4, the script prompts the user to enter
additional letters to reduce the number of matches.

Note This property applies only if the caller is inputting DTMF digits and
is not using an Automatic Speech Recognition (ASR) channel.

 – Operator—No

The caller does not have the choice to ask to speak to an operator, and
therefore the Operator output branch of the Name To User step does not
appear in the script.

 – Interruptible—No

No external event is allowed to interrupt the execution of the Name To
User step.

 • Prompt tab

 – Prompt—Default Prompt

The script plays back to the caller the default prompt included with the
Name To User step. The default prompt plays a prompt that starts “Spell
the last name followed by the first name. . . .” (You can also choose a
customized prompt or choose no prompt playback.)

 – Barge In—Yes

The caller is allowed to enter a name without having to listen to the entire
playback of the prompt.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence or simply waits for input from the caller.
7-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
 • Input tab

 – Input Length—10

The value 10 is the minimum number of digits required before the step
automatically checks for a user match. (This property applies only to
non-ASR channels.)

 – Terminating Key—#

The caller can press the “#” key to indicate completion of input.

 – Cancel Key—*

The caller can press the “*” key to start over. (The cancel key works only
until the number of maximum retries is reached.)

 – Maximum Retries—3

The step makes three attempts to receive valid input before executing the
Unsuccessful output branch.

 – Initial Timeout (in sec)—5

The system waits 5 seconds for initial input from the caller before
executing the Unsuccessful output branch.

 – Interdigit Timeout (in sec)—3

The system waits 3 seconds after receiving initial input from the caller
for the caller to enter the next digit, before executing the Unsuccessful
output branch. (This property does not apply for ASR channels.)

 – Flush Input Buffer—Yes

The system erases previously entered input before capturing new caller
input.

Note For more details on configuring the Name To User step, see the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 2, Editor Step
Reference Guide.

The Name To User step in this script has three output branches:

 • Successful—Executes when the step makes a successful match between the
name entered by the caller and a name in the directory.
7-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
 • Timeout—Executes when the step reaches the maximum number of retries
and the last attempt times out while waiting for input from the caller.

 • Unsuccessful—Executes when the step does not make a successful match
between the name entered by the caller and a name in the directory, or
because the last attempt failed because the caller pressed the cancel key.

Figure 7-6 Name To User Step Output Branches

The following sections describe the three output branches of the Name To User
step:

 • The Successful Output Branch, page 7-14

 • The Timeout Output Branch, page 7-24

 • The Unsuccessful Output Branch, page 7-25

The Successful Output Branch
If the Name To User step makes a successful match between the name entered by
the caller and a name in the user directory, the script executes the Successful
output branch of the Name To User step.

Figure 7-7 shows the Successful output branch of the Name to User step.
7-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
Figure 7-7 Name To User Step—Successful Output Branch

Configure the Successful output branch to authenticate the user and record a
spoken name.

The Successful output branch contains the following steps:

1. The Get User Info step

2. The If step

3. The Label step (GetPin)

4. The Get Digit String step

The first two steps of the Successful output branch collect the name of the caller,
which is used in the fourth step of the branch to address the caller by name.

The third step (the GetPin step) provides a target for the script in the event the step
reaches the timeout limit, so that the script can continue to attempt to receive the
PIN number (with the subsequent Get Digit String step) until the step reaches the
maximum number of retries.

The fourth and final step (the Get Digit String step) asks for the PIN number of
the caller, to make sure the caller has the authority to record this name.
7-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
This section that follows contains the following topics:

 • The Get User Info Step, page 7-16

 • The If Step, page 7-17

 • The Label Step (GetPin), page 7-23

Note Because of its multiple output branches, the Get Digit String step is discussed in
a separate section, The Get Digit String Step, page 7-25.

The Get User Info Step

Begin to build the Successful output branch of the Name To User step by dragging
a Get User Info step from the User palette and dropping it into the Successful icon
under the Name To User step in the Design pane.

Next, configure the Get User Info step to retrieve the information stored in the
user variable (associated with this contact by the previous Name To User step) to
be used by the If step to determine which branch of the If step to execute.

Figure 7-8 shows the configured Get User Info customizer window.

Figure 7-8 Configured Get User Info Customizer Window
7-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
Configure the Get User Info customizer window to retrieve the information stored
in the currentRecording variable, which is a Document variable that holds a
recorded name.

To configure the Get User Info customizer window, highlight the Spoken Name
attribute and click Set. Then, in the Get User dialog box that appears, choose the
currentRecording variable from the drop-down menu and click OK. The Get
User dialog box closes, and currentRecording appears next to the Spoken Name
attribute in the list box of the Get User Info customizer window.

Note For more information about configuring the Get User Info step, see the Cisco
Unified Contact Center Express Scripting and Development Series: Volume 2,
Editor Step Reference Guide.

The If Step

Because you cannot know in advance whether a recording of the spoken name of
any particular caller exists at the time of any particular call, use the If step to
provide script logic for each of the two possibilities: that a recording of the spoken
name exists, and that a recording of the spoken name does not exist.

Continue building the Successful output branch of the Name To User step by
dragging an If step from the General palette and dropping it into the Successful
icon under the Name To User step in the Design pane.

Configure the If step to evaluate the value of the currentRecording variable
(supplied by the previous Get User Info step).

Figure 7-9 shows the configured If customizer window.

Figure 7-9 Configured If Customizer Window
7-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
Note For more information about configuring the If step, see the Cisco Unified Contact
Center Express Scripting and Development Series: Volume 2, Editor Step
Reference Guide.

The If step evaluates the Boolean expression “currentRecording!= null”, which
means that the currentRecording variable is not null.

 • If the Boolean expression “currentRecording!= null” is true, the name of the
caller is available for use by the Get Digit String step. In this case, the True
output branch of the If step executes.

 • If the Boolean expression “currentRecording!= null” is false, the name of the
caller is not available for use by the Get Digit String step. In this case, the
False output branch of the If step executes.

The True Output Branch

If the If step locates a spoken recording of the name of the caller, the script
executes the True output branch.

Configure the True output branch of the If step to create a prompt that uses the
recording of the spoken name.

Use a Create Container Prompt step to create a concatenated prompt that includes
the currentRecording variable.

Figure 7-10 shows the configured Create Container Prompt customizer window.
7-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
Figure 7-10 First Configured Create Container Prompt Customizer Window

Configure the Create Container Prompt customizer window as follows:

 • Output Prompt—spelledPrompt

This prompt will contain the recorded name of the caller as stored in the
currentRecording variable.

 • Prompt Container Type—Concatenated Prompt

This step creates a concatenated prompt containing the prompts listed int he
Prompts list box.

 • Prompts—currentRecording

The currentRecording variable stores the recorded name of the caller.

 • Override Language—(blank)

Do not choose to override the language context of the call.
7-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
The False Output Branch

If the If step cannot locate a spoken recording of the name of the caller, the script
executes the False output branch.

Configure the False output branch of the If step to generate the name, using the
spelling generator of the Create Generated Prompt steps.

First, configure a Get User Info step to retrieve the information contained in the
firstName, fullName, and lastName variables, in order to make this information
available to the Create Generated Prompt steps.

Figure 7-11 shows the configured Get User Info customizer window.

Figure 7-11 Configured Get User Info Customizer Window
7-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
Figure 7-12 shows the first configured Create Generated Prompt customizer
window in the False branch.

Figure 7-12 Configured Create Generated Prompt Customizer Window— spelled
Prompt

Configure the Create Generated Prompt customizer window as follows:

 • Generator Type—fullname

This step uses the fullname generator type to properly concatenate the last
name and the first name of the user based on the country/language settings
associated with the call.

 • Constructor Type—(firstname,lastname)

This drop-down list contains the available constructors for a given generator.
In this case, the constructor specifies that two input parameters are required:
the first name followed by the last name.

 • Override Language—(blank)

Do not choose to override the language context of the call.
7-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
 • Output Prompt—spelledPrompt

This is the prompt that the script will play back to the caller, containing the
name of the caller as generated by this step.

Figure 7-13 shows the second configured Create Generated Prompt customizer
window in the False branch.

Figure 7-13 Configured Create Generated Prompt Customizer Window—tts Prompt

Configure the Create Generated Prompt customizer window for the TTS prompt
in a similar way to Figure 7-13.

Finally, insert a Set step to revert to the spelled prompt if TTS is not available.

Figure 7-14 shows the Set step customizer window in the False branch.
7-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
Figure 7-14 Set Name Customizer Window— namePrompt

Configure the Set customizer window as follows:

 • Variable—namePrompt

This is the name of the variable where the result of evaluating the given
expressions will be stored.

 • Assign—Use the Expression Editor to specify ttsPrompt ||| spelledPrompt

This prompt expression defines a prompt which will attempt to play the first
prompt (that is, ttsPrompt) and—if it fails—then the second prompt (that is,
spelledPrompt).

This provides a mechanism for the script to adapt itself to the system where
it is executed. If the system is configured with TTS, then the script will
attempt to use TTS to playback the name of the user. If TTS is not available
and attempting to play such a prompt would cause an error to occur, the
system falls back to the second prompt and plays that. (In this case, the
second prompt does not rely on TTS services.)

The Label Step (GetPin)

Continue building the Successful output branch of the Name To User step by
dragging a Label step from the General palette and dropping it into the Successful
icon under the Name To User step in the Design pane.

This Label step provides a target for a subsequent Goto step, in order to give
callers more attempts at successfully entering digits by using the Get Digit String
step that follows this label step.

Configure the Label customizer window by entering the name GetPin in the Enter
Label Name text field, and then clicking OK.
7-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Name To User Step
Note For more information about configuring the Label step, see the Cisco Unified
Contact Center Express Editor Step Reference Guide.

If the script reaches this Label step, the Get Digit String executes. (See The Get
Digit String Step, page 7-25.)

The Timeout Output Branch
If the Name To User step does not receive caller input before reaching the timeout
limit, the script executes the Timeout output branch of the Name To User step, as
shown in Figure 7-15.

Figure 7-15 Name To User Step—Timeout and Unsuccessful Output Branches

Configure the Timeout output branch to play back a prompt that informs the caller
that the call was unsuccessful. The script plays a good-bye prompt, and then
terminates the call.

As shown in Figure 7-1, use the Create Container Prompt step to create a prompt
called finalPrompt that the Play Prompt step plays at the end of the script, after
which a Terminate step terminates the call.

Configure the Create Container Prompt step in similar fashion to the previous
Create Container Prompt step (see The True Output Branch, page 7-18), with the
exception that you choose finalPrompt as the output prompt of the Create
Container Prompt step.

The Goto step, named Bye, sends the script to the Label step named Bye, under
which the final sequence of steps conclude the call. (See The Closing Steps of the
SNU.aef Script, page 7-47.)
7-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Get Digit String Step
The Unsuccessful Output Branch
If the Name To User step does not make a successful match between the name
entered by the caller and a name in the user directory, the script executes the
Unsuccessful output branch of the Name To User step, as shown in Figure 7-15.

Just as with the Timeout output branch, configure the Unsuccessful output branch
to play back a prompt that informs the caller that the call was unsuccessful. The
script plays a good-bye prompt, and then terminates the call.

Use the Create Container Prompt step to create a prompt called finalPrompt that
the Play Prompt step plays at the end of the script, after which a Terminate step
terminates the call.

Configure the Create Container Prompt step in similar fashion to the previous
Create Container Prompt step (see The True Output Branch, page 7-18), with the
exception that you choose finalPrompt as the output prompt of the Create
Container Prompt step.

The Goto step, named Bye, sends the script to the Label step named Bye, under
which the final sequence of steps conclude the call. (See The Closing Steps of the
SNU.aef Script, page 7-47.)

The Get Digit String Step
Finish building the Successful output branch of the Name To User step by
dragging a Get Digit String step from the Media palette and dropping it into the
Successful icon under the Name To User step in the Design pane.

This section contains the following topics:

 • Configuring the Get Digit String Step, page 7-26

 • The Successful Output Branch, page 7-28

 • The Timeout Output Branch, page 7-28

 • The Unsuccessful Output Branch, page 7-31
7-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Get Digit String Step
Configuring the Get Digit String Step
Configure the Get Digit String step to authenticate the caller before allowing the
caller to record a name.

The Get Digit String step asks for the PIN number of the caller (to make sure the
caller has the authority to record this name), using a concatenated prompt that
addresses the caller by name and then asks the caller to enter a PIN number.

After adding the Get Digit String step to the Design pane of the Cisco Unified
CCX Editor, configure properties in the four tabs of the Get Digit String
customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The Get Digit String step operates on the contact that triggered this
script.

 – Result Digit String—pin

The pin variable stores the digits entered by this caller. (The subsequent
Authenticate User step uses this pin variable.)

 – Interruptible—Yes

External events can interrupt the execution of this step.

 • Prompt tab

 – Prompt—namePrompt + DP[150] + SP[SNU\enter_pin.wav]

This expression is the prompt that the Get Digit String step plays back.
(This prompt plays back the name of the caller, a silence of 150
milliseconds, and the system prompt, which plays “please enter your
PIN”.

 – Barge In—Yes

The caller can enter a PIN without first having to listen to the playback
of the entire prompt.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence or waits for input from the caller.

 • Input tab
7-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Get Digit String Step
 – Input Length—25

The value 25 is the minimum number of digits required before the step
automatically checks for a user match. (This property applies only to
non-ASR channels.)

 – Terminating Key—#

The caller can use the “#” key to indicate completion of input.

 – Cancel Key—*

The caller can use the “*” key to cancel and to start over. (The cancel key
works only until the script reaches the number of maximum retries.)

 – Maximum Retries—0

The number of times the step retries to receive valid input before
executing the Unsuccessful output branch is 0.

 – Initial Timeout (in sec)—5

The system waits 5 seconds for initial input from the caller before
executing the Unsuccessful output branch.

 – Interdigit Timeout (in sec)—3

The system waits 3 seconds after receiving initial input for the caller to
enter the next digit, before executing the Unsuccessful output branch.
(This property does not apply for ASR channels.)

 – Flush Input Buffer—Yes

The script erases previously entered input before capturing new caller
input.

 – DTMF Buffer on Retry—Yes

The script clears the DTMF buffer and erases previously-entered digits
when the step retries to get input from the caller. (However, because you
configured this step for 0 retries, this attribute has no effect on the
execution of the step.)

 • Filter tab

 – All options are checked except “*” and “#”

The script considers numbers from 0 to 9 to be valid entries, and does not
consider the cancel key “*” and the terminating key “#” to be valid digits
to collect.
7-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Get Digit String Step
Note For more information about configuring the Get Digit String step, see the Cisco
Unified Contact Center Express Editor Step Reference Guide.

Figure 7-16 shows the three output branches under the Get Digit String step.

Figure 7-16 Get Digit String Step—Output Branches

The Successful Output Branch
If the Get Digit String step successfully receives a PIN number, the script executes
the Successful output branch.

Configure the Successful output branch of the Get Digit String step to attempt to
authenticate the user. If this process is successful, the caller is then given the
chance to record a name.

For a description of the steps under the Successful output branch of the Get Digit
String step, see The Authenticate User Step, page 7-32.

The Timeout Output Branch
If the Get Digit String step reaches the timeout limit before receiving input from
the caller, the script executes the Timeout output branch.

Configure the Timeout output branch of the Get Digit String step to give the caller
further chances to enter a valid PIN number, until the script reaches the maximum
number of retries, after which the Unsuccessful output branch executes.
7-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Get Digit String Step
Figure 7-17 shows the scripting under the Timeout output branch of the Get Digit
String step.

Figure 7-17 Get Digit String Step—Timeout Output Branch

Use the first If step to evaluate the expression pin==“ ”.

Note For details on configuring the If step, see “The If Step” section on page 7-17.

If the expression is true, and the pin variable is empty, this means that the Get
Digit String step has timed out without the caller having entered PIN information.
In this case, the True output branch under this If step executes.

If the expression is false, the pin variable does contain PIN information, which
means that the caller has already entered PIN information.

In this case, the False output branch executes, and a Goto step sends the script to
the Label step named Authenticate, which is located directly above the
Authenticate User step, as shown in Figure 7-17.
7-29
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Get Digit String Step
Tip Using the If step in this way is a trick that you can use to allow the caller to enter
the PIN without a terminating key and wait for the timeout to let the system deal
with the digits collected so far. This trick works well only if the maximum number
of retries is set to 0, as it is in this example.

Use the first If step under the Timeout output branch of the Get Digit String step
to determine whether or not PIN information exists.

If no PIN information exists, then the True output branch executes, and you then
use a second If step to determine whether or not the script has reached the
maximum number of retries in the attempt to obtain PIN input information from
the caller.

The following sections describe the scripting under the True and False output
branches of this second If step:

 • The True Output Branch, page 7-30

 • The False Output Branch, page 7-31

The True Output Branch

If the first If step determines that the caller has not entered PIN information, the
script executes the True output branch.

Configure the True output branch of the first If step to give the caller more
opportunities to enter PIN information, until the maximum number of retries limit
is reached.

Use a second If step, placed under the True output branch of the first If step, to
evaluate the expression “triesGetDigit < triesMaxGetDigit”; or, the value of
triesGetDigit is less than triesMaxGetDigit.

The triesGetDigit variable is an Integer variable that has an initial value of 0. The
triesMaxGetDigit variable is an Integer variable with a value of 3.

The following steps execute under the True output branch, as shown in
Figure 7-17):

 • The Set step—Adds 1 to the value of triesGetDigit.

Configure the Set customizer window by first choosing the triesGetDigit
variable from the Variable drop-down menu. Then in the Assign text field,
you enter the expression triesGetDigit + 1.
7-30
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Get Digit String Step
This means that each time the script reaches this Set step, the value of the
triesGetDigit variable is increased by 1. After three attempts, the value of
triesGetDigit is 3, which is equal to the value of triesMaxGetDigit, so the
False output branch of this If step executes.

 • The Play Prompt step—Plays the system prompt, SP[SNU\still_there.wav],
which asks if the caller is still connected, followed by a silence of 500
milliseconds.

 • The Goto step—Sends the script to the Label named GetPin, above the Get
Digit String step (see Figure 7-17), in order to give the caller more attempts
at entering a PIN number. (See The Label Step (GetPin), page 7-23.)

The False Output Branch
If the second If step reaches the maximum number of retries, the script executes
the False output branch.

Configure the False output branch of the second If step to create a final prompt to
play back to the caller before ending the call.

Use a Create Container Prompt step to create a prompt named finalPrompt that
contains the system prompt, SP[SNU\error_try_later.wav], which informs the
caller that an error has occurred and asks the caller to call back later.

Next, a Goto step sends the script to the Label named Bye, located above the
closing steps of the script (see The Closing Steps of the SNU.aef Script, page 7-47
below), where a Play Prompt step plasy finalPrompt before the script terminates
the contact.

The Unsuccessful Output Branch
If the Get Digit String step does not receive valid input, the script executes the
Unsuccessful output branch.

Configure the Unsuccessful output branch of the Get Digit String step to provide
a prompt that informs the caller that the call was unsuccessful, and the script
moves to the final steps that terminate the contact.
7-31
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Authenticate User Step
Figure 7-18 shows the scripting under the Unsuccessful output branch of the Get
Digit String step.

Figure 7-18 Get Digit String Step—Unsuccessful Output Branch

Use the Create Container Prompt step to specify that the prompt finalPrompt
contains the system prompt, SP[SNU\error_try_later.wav], which informs the
caller that an error has occurred and asks the caller to call back later.

Next, a Goto step sends the script to the Label named Bye, located above the
closing steps of the script (see The Closing Steps of the SNU.aef Script, page 7-47
below), where a Play Prompt step plays finalPrompt before the script terminates
the contact.

The functionality in this branch of the Get Digit String step is the same as the
Create Container Prompt step and the Goto step under the False output branch of
the If step. (See The False Output Branch, page 7-31.)

The Authenticate User Step
Place a Label step under the Successful output branch of the Get Digit String step.
This Label step, named Authenticate, will serve as a target for the subsequent
Goto step under the Timeout output branch of the Get Digit String step. (See The
Timeout Output Branch, page 7-28.), and provides callers with another
opportunity to be authenticated after having already entered PIN information.

Finish building the Successful output branch of the Get Digit String step by
dragging an Authenticate User step from the User palette and dropping it onto the
Label step (Authenticate) under the Get Digit String step in the Design pane.

Configure the Authenticate User step to authenticate the user, based on the PIN
information entered by the caller.
7-32
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Authenticate User Step
Figure 7-19 shows the configured Authenticate User customizer window.

Figure 7-19 Configured Authenticate User Customizer Window

Configure the Authenticate User step to compare the value of the pin variable
with information contained in the user variable (as configured in the User
Administration web page of the Cisco Unified CCX Administration web
interface).

Note For more information about configuring the Authenticate User step, see the Cisco
Unified Contact Center Express Scripting and Development Series: Volume 2,
Editor Step Reference Guide.

If the match is made, the Success output branch executes. If not, the Unsuccessful
output branch executes.

The following sections contain these topics:

 • The Success Output Branch, page 7-33

 • The Unsuccessful Output Branch, page 7-35

The Success Output Branch
If the Authenticate User step successfully authenticates the user, the script
executes the Success output branch.
7-33
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Authenticate User Step
Configure the Success output branch of the Authenticate User step to offer the
caller the opportunity to record a name.

Figure 7-20 shows the scripting under the Success output branch of the
Authenticate User step.

Figure 7-20 Authenticate User Step—Success Output Branch

First, insert a Create Generated Prompt step and configure the Create Generated
Prompt customizer window as follows:

 • Output Prompt—pound

The name of the variable where the newly created prompt will be stored.

 • Generator Type—telephone.number

This step uses the telephone.number generator type, which provides logic on
how to play back a telephone number according to the preferences associated
with the country/language of the call.

 • Constructor Type—(number)

This step uses the number contructor type. (A constructor lists the possible
arguments that can be passed in a given generator.)

Continue configuring the Success branch of the Authenticate User step by
following the instructions in The Recording Step, page 7-37.
7-34
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Authenticate User Step
The Unsuccessful Output Branch
If the Authenticate User step does not successfully authenticate the user, the script
executes the Unsuccessful output branch.

Configure the Unsuccessful output branch of the Authenticate User step to allow
the caller to retry entering a valid PIN number until the script reaches the
maximum number of retries.

Figure 7-21 shows the scripting under the Unsuccessful output branch of the
Authenticate User step.

Figure 7-21 Authenticate User Step—Unsuccessful Output Branch

As in the scripting under the Timeout output branch of the Get Digit String step
(see The Timeout Output Branch, page 7-28), use an If step to determine whether
or not the script has reached the maximum number of retries.

In this case, the If step evaluates the expression “triesAuthentication <
triesMaxAuthentication”; or the value of triesAuthentication is less than
triesMaxAuthentication.

The triesAuthentication variable is an Integer variable that has an initial value
of 0. The triesMaxAuthentication variable is an Integer variable with a value of
3.

This If step has two output branches:

 • The True Output Branch, page 7-36

 • The False Output Branch, page 7-36
7-35
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Authenticate User Step
The True Output Branch

If the maximum number of retries has not been reached, the script executes the
True output branch.

Configure the True output branch of the If step to provide the caller with more
opportunities to be authenticated.

The following steps execute under the True output branch of the If step, as shown
in Figure 7-21:

 • The Play Prompt step—Plays the system prompt, SP[SNU\error_auth.wav],
which informs the caller that the authentication failed, followed by a silence
of 500 milliseconds.

 • The Set step—Adds 1 to the value of triesAuthentication. After three
attempts, the value of triesAuthentication is 3, which is equal to the value
of triesMaxAuthentication, so the False output branch of this If step
executes.

 • Goto—Sends the script to the Label named Get User above the Name to User
step, as shown in Figure 7-17, in order to give the caller another chance to
enter a name. (See The Label Step (GetUser), page 7-11.)

The False Output Branch

If the script has reached the maximum number of retries, the script executes the
False output branch.

Configure the False output branch of the If step to create a final prompt to be
played back to the caller, and then to send the script to the closing steps.

The following steps execute under the False output branch of the If step, as shown
in Figure 7-21:

 • The Create Container Prompt step—Creates a concatenated prompt named
finalPrompt that contains the two system prompts, SP[SNU\error_auth.wav]
and SP[SNU\error_try_later.wav], which inform the caller that authentication
failed, and ask the caller to call back later.

 • The Goto step—Sends the script to the Label named Bye, located above the
closing steps of the script (see The Closing Steps of the SNU.aef Script,
page 7-47), where a Play Prompt step plays finalPrompt before the script
terminates the contact.
7-36
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Recording Step
The Recording Step
In the recording step, you should localize according to your language. For
information on localizing scripts, see Chapter 4, “Localizing Cisco Unified CCX
Scripts.”

First, place a Label step, named Record, under the Success output branch of the
Authenticate User step. This Label step will provide a target for the scripting
under the Key 2 output branch of the subsequent Menu step (see The Menu Step,
page 7-40) to give callers another opportunity to record a name.

Then continue the SNU.aef script, once the caller has been authenticated, by
dragging a Recording step from the Media palette and dropping it on the Success
output branch of the Authenticate User step.

Next, configure the Recording step to offer the caller the opportunity to record a
name using the three tabs of the Recording customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The step operates on the contact that triggered the execution of the script.

 – Result Document—recording

The recording variable stores the audio file recorded by this caller.

 – Media Type—Voice (uncompressed)

The type of media to be recorded is uncompressed voice.

Note Cisco Unified CCX currently supports only uncompressed voice.

 – Recording Duration—10

The script gives the caller 10 seconds to record a name.

 – Interruptible—No

External events cannot interrupt the execution of this step.

 • Prompt tab

 – Prompt—Customize prompt

The step plays back a customized prompt to the caller.
7-37
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Recording Step
The box underneath the Prompt box indicates that the prompt is a
concatenation of a system prompt, SP[SNU\rec_name.wav], and a
language prompt, instructPrompt.

 – Start Tone—Default Prompt

The script plays back a system prompt providing a default start tone to
alert the caller that the recording is about to begin.

 – Barge In—Yes

The caller is allowed to respond without first having to listen to the entire
playback of the prompt.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence or waits for input from the caller.

 • Input tab

 – Maximum Retries—0

The number of times the step retries to receive valid input before
executing the Unsuccessful output branch is 0.

 – Flush Input Buffer—Yes

The system erases previously entered input before capturing new caller
input.

 • Filter tab

 – Duration—10

 – Terminating Key—#

The caller can use the “#” key to indicate completion of input.

 – Cancel Key—*

The caller can use the “*” key to cancel and start over. (The cancel key
works only until the script reaches the maximum number of retries.)

Note For more information about configuring the Recording step, see the Cisco
Unified Contact Center Express Scripting and Development Series: Volume 2,
Editor Step Reference Guide.
7-38
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Recording Step
The Recording step has two output branches, Successful and Unsuccessful,
described in the following sections:

 • The Successful Output Branch, page 7-39

 • The Unsuccessful Output Branch, page 7-39

The Successful Output Branch
If the Recording step successfully records the spoken name of the caller, the script
executes the Successful output branch.

Configure the Successful output branch of the Recording step to play the
recording back to the caller.

Figure 7-22 shows the scripting under the Successful output branch of the
Recording step.

Figure 7-22 Recording Step—Successful Output Branch

Use a Play Prompt step to play the recording back to the caller. To accomplish
this, configure the Play Prompt step to play a system prompt combined with the
value of the recording variable, which stores the recording that results from the
Recording step.

The Menu step then offers the caller the choice of approving the current recording
or making another recording attempt. (For a description of the scripting under the
Menu step, see The Menu Step, page 7-40.)

The Unsuccessful Output Branch
If the Recording step does not successfully record the spoken name, the script
executes the Unsuccessful output branch.

Configure the Unsuccessful output branch of the Recording step to create the final
prompt that is played back to the caller, and to move the script to the closing steps.
7-39
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Menu Step
Figure 7-23 shows the scripting under the Unsuccessful output branch of the
Recording step.

Figure 7-23 Recording Step—Unsuccessful Output Branch

As in previous Unsuccessful output branches (see, for example, The Unsuccessful
Output Branch, page 7-31), use a Create Container Prompt step to create a prompt
named finalPrompt that contains two system prompts, SP[SNU\error_rec.wav] +
SP[SNU\error_try_later.wav], which inform the caller that an error in recording
has occurred, and ask the caller to call back later.

Next, a Goto step sends the script to the Label named Bye, located above the
closing steps of the script (see The Closing Steps of the SNU.aef Script, page 7-47
below), where a Play Prompt step plays finalPrompt before the script terminates
the contact.

The Menu Step
Continue the SNU.aef script by dragging a Menu step from the Media palette and
dropping it on the Play Prompt step under the Successful output branch of the
Recording step.

Next, configure the Menu step to give callers the option to re-record a name.

Configure properties in the three tabs of the Menu customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The step operates on the contact that triggered the execution of the script.

 – Options—Key 1 and Key 2

Create two branches under the Menu step, providing the caller the choice
to approve the recording or re-record a name.
7-40
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Menu Step
 – Interruptible—Yes

External events can interrupt the execution of this step.

 • Prompt tab

 – Prompt—SP[SNU\menu_re_rec.wav]

This system prompt offers the caller the choice to re-record a name.

 – Barge In—Yes

The caller can respond without first having to listen to the entire
playback of the prompt.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence or waits for caller input.

 • Input tab

 – Timeout (in sec)—3

The script executes the Timeout output branch if the script receives no
input within 3 seconds.

 – Maximum Retries—3

The step attempts 3 times to receive valid input before executing the
Unsuccessful output branch.

 – Flush Input Buffer—Yes

The script erases previously entered input before capturing new user
input.

Note For more information about configuring the Menu step, see the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 2, Editor Step
Reference Guide.

The Menu step in this script has the following output branches (see Figure 7-24):

 • Key 1—Executes if the caller accepts the recording.

 • Key 2—Executes if the caller does not accept the recording.

 • Timeout—Executes if the step reaches the timeout limit without receiving
input.
7-41
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Menu Step
 • Unsuccessful—Executes if the step receives invalid input

Figure 7-24 Menu Step—Output Branches

The following sections describe the scripting under each of these output branches:

 • The Key 1 Output Branch, page 7-42

 • The Key 2 Output Branch, page 7-44

 • The Timeout and Unsuccessful Output Branches, page 7-46

The Key 1 Output Branch
If the caller decides to accept the recording, the script executes the Key 1 output
branch.

Configure the Key 1 output branch of the Menu step to store the new recorded
name of the caller in the system, and then to move the script to the closing steps.
7-42
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Menu Step
Figure 7-25 shows the scripting under the Key 1 output branch of the Menu step.

Figure 7-25 Menu Step—Key 1 Branch

Use the Set User Info step to associate the value of the variable recording (as
created by the Recording step) with the Spoken Name attribute of the user
variable.

Figure 7-26 shows the configured Set User Info customizer window.

Figure 7-26 Configured Set User Info Customizer Window

The Set User Info step has the following two output branches (see Figure 7-25):

 • Success—If the Set User Step succeeds, a Create Container Prompt step
creates a prompt finalPrompt, which plays the system prompt
SP[SNU\store_success.wav], informing the caller that the recording has been
successfully stored.

A Goto step then sends the script to the Label named Bye, which executes the
closing steps of the script.
7-43
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Menu Step
 • Unsuccessful—If the Set User Step fails, a Create Container Prompt step
creates a prompt finalPrompt, which plays two system prompts
SP[SNU\error_general.wav] + SP[SNU\error_try_later], which inform the
caller that an error has occurred and ask the caller to call back later.

A Goto step then sends the script to the Label named Bye, which executes the
closing steps of the script.

The Key 2 Output Branch
If the caller decides to re-record a name, the script executes the Key 2 output
branch.

Configure the Key 2 output branch of the Menu step to provide the caller with
more opportunities to record a name.

Figure 7-27 shows the scripting under the Key 2 output branch of the Menu step.

Figure 7-27 Menu Step—Key 2 Branch

As in previous sections of the script, use an If step to give the caller multiple
chances to record a name, until the script reaches the maximum number of retries.
(For examples of the use of the If step, see The Timeout Output Branch, page 7-28
and The Unsuccessful Output Branch, page 7-35.)

In this case, the If step evaluates the expression “triesRecord < triesMaxRecord”;
or the value of the triesRecord variable is less than the triesMaxRecord variable.

The triesRecord variable is an Integer variable that has an initial value of 0. The
triesMaxRecord variable is an Integer variable with a value of 3.

This If step has the following two output branches:
7-44
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Menu Step
 • The True Output Branch, page 7-45

 • The False Output Branch, page 7-45

The True Output Branch

If the caller has not reached the maximum number of retries in the attempt to
record a name, the script executes the True output branch of the Key 2 output
branch of the Menu step.

Configure the True output branch to give the caller more opportunities to record
a name, until the maximum number of retries limit is reached.

The following steps execute under the True output branch of the If step (see
Figure 7-27):

 • The Set step—Adds 1 to the value of triesRecord. After three attempts, the
value of triesRecord is 3, which is equal to the value of triesMaxRecord, so
the False output branch of this If step executes.

 • The Goto step—Sends the script to the Label named Record (see
Figure 7-22), in order to give the caller further chances to record. (See The
Recording Step, page 7-37.)

The False Output Branch

If the caller has reached the maximum number of retries and has not recorded a
name, the script executes the False output branch of the Key 2 output branch of
the Menu step.

Configure the False output branch to create a final prompt that will be played back
to the caller, and then moves the script to the closing steps.

The following steps execute under the False output branch of the If step (see
Figure 7-27):

 • The Create Container Prompt step—Creates a prompt finalPrompt, which
plays the system prompts SP[SNU\error_try_later], asking the caller to try
again later.

 • The Goto step—Sends the script to the Label named Bye, which executes the
closing steps of the script.
7-45
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Menu Step
The Timeout and Unsuccessful Output Branches
The scripting under both the Timeout and Unsuccessful output branches of the
Menu step (see Figure 7-28) is the same as that under the False output branch of
the If step in the previous section (see The False Output Branch, page 7-45).

Use the following scripting under both the Timeout and Unsuccessful output
branches of the Menu step:

 • Create Container Prompt step—Creates a prompt finalPrompt, which plays
the system prompt SP[SNU\error_try_later.wav], asking the caller to try
again later.

 • A Goto step then sends the script to the Label named Bye, which executes the
closing steps of the script.

Figure 7-28 Menu Step—Timeout and Unsuccessful Output Branches
7-46
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Closing Steps of the SNU.aef Script
The Closing Steps of the SNU.aef Script
Close the SNU.aef script by using steps that mark the contact as handled, play
back a final prompt to the caller, terminate the connection, and end the script.

Figure 7-29 shows the steps used to close the script.

Figure 7-29 Closing Steps of the SNU.aef Script

Use the following steps to close the script:

 • The Set Contact Info Step, page 7-48

 • The Set Step, page 7-49

 • .The Play Prompt Step, page 7-49

 • The Terminate Step, page 7-49

 • .The End Step, page 7-49
7-47
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Closing Steps of the SNU.aef Script
The Set Contact Info Step
Use the Set Contact Info step to mark the contact as Handled, which is important
for reporting purposes.

Figure 7-30 shows the configured Set Contact Info customizer window.

Figure 7-30 Configured Set Contact Info Customizer Window

To configure the Set Contact Info step, highlight the Handled attribute and click
Set. An “X” appears in the Value column of the Set Contact Info list box.

Note For more information on configuring the Set Contact Info step, see the Cisco
Unified Contact Center Express Scripting and Development Series: Volume 2,
Editor Step Reference Guide.
7-48
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Closing Steps of the SNU.aef Script
The Set Step
Use the Set step to set the value of finalPrompt (to be played by the subsequent
Play Prompt step) to combine the previous value of the finalPrompt variable with
SNU\goodbye.wav], which tells the caller good-bye.

Note For more information on configuring the Set step, see the Cisco Unified Contact
Center Express Editor Step Reference Guide.

.The Play Prompt Step
Configure the Play Prompt step to play finalPrompt back to the caller.

Note For an example of configuring the Play Prompt step, see The Play Prompt Step,
page 7-8.

The Terminate Step
Use the Terminate step to terminate the contact by disconnecting the call.

Note For more information on configuring the Terminate step, see theCisco Unified
Contact Center Express Editor Step Reference Guide.

.The End Step
Use the End step to complete processing and free all allocated resources.

This step has no properties and does not require a customizer.
7-49
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 7 Designing a Basic Script
The Closing Steps of the SNU.aef Script
7-50
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 8

Working with Multiple Contacts

The key element in a Cisco Unified CCX script is a contact, which represents one
form of connection with a remote customer. A contact can be a telephone call, an
e-mail message, or an HTTP request.

Scripts use contacts to track connections through the system. The contact is
established when the connection is made. The contact lasts until the connection is
terminated, as when the script transfers or disconnects a telephone call, responds
to an HTTP request, or sends an e-mail message.

You can use the steps of the Cisco Unified CCX Editor to design scripts that
handle multiple contacts within the same script.

This chapter describes the design of such a script, the broadcast.aef script
example.

This script also demonstrates the use of the Place Call step, the Call Subflow step,
steps from the Java palette, and annotations to explain various sections of the
script.

This section contains the following topics:

 • An Example Script Template with Multiple Contacts, page 8-2

 • The Start Step (Creating a Script), page 8-3

 • Script Variables for broadcast.aef, page 8-4

 • The Annotate Step, page 8-6

 • The Accept Step, page 8-7

 • The Get Contact Info Step, page 8-8

 • The Recording Step, page 8-8
8-1
rted with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
An Example Script Template with Multiple Contacts
 • The Play Prompt Step, page 8-11

 • The Set numbersToCall Step, page 8-12

 • The Call Subflow Step, page 8-13

 • The Set numCalls Step, page 8-15

 • The Label Step (Call Loop), page 8-15

 • The If Step, page 8-15

 • The Set Steps, page 8-17

 • The Play Prompt Step, page 8-19

 • The Call Hold Step, page 8-20

 • The Place Call Step, page 8-21

 • The Increment Step (i), page 8-27

 • The Goto Step (Call Loop), page 8-27

 • The Terminate Step, page 8-27

 • The Set Contact Info Step, page 8-27

 • The End Step, page 8-28

An Example Script Template with Multiple
Contacts

The broadcast.aef script example records a message from a caller and then
broadcasts it to a list of extensions by placing multiple outbound calls. If the caller
who triggers this script hangs up, the script aborts.
8-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Start Step (Creating a Script)
Figure 8-1 shows the top level of the broadcast.aef script in the Design pane of
the Cisco Unified CCX Editor window.

Figure 8-1 broadcast.aef Script—Top Level

The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Cisco Unified CCX Editor places a Start step in the
Design pane of the Cisco Unified CCX Editor window.
8-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
Script Variables for broadcast.aef
The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called broadcast.aef.

Script Variables for broadcast.aef
Begin the broadcast.aef script design process by using the Variable pane of the
Cisco Unified CCX Editor to define script variables.

Note For more information about defining variables, see the “Defining, Using, and
Updating Script Variables” section on page 2-31.

Figure 8-2 shows the variables of the broadcast.aef script as they appear in the
Variable pane of the Cisco Unified CCX Editor window.

Figure 8-2 Variable Pane of the broadcast.aef Script
8-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
Script Variables for broadcast.aef
Table 8-1 describes the variables used in the broadcast.aef script.

Table 8-1 Variables in the broadcast.aef Script

Variable Name Variable Type Value Function

dest String "" Stores the current destination number to call as
the script loops.

(See The Call Subflow Step, page 8-13.)

groupCallControl Integer 0 ID of the Call Control Group with which the
outbound call is associated.

(See The Place Call Step, page 8-21.)

Mark this variable as a parameter to allow the
administrator the option to change the value of
this variable.

For more information, see the Cisco Unified
Contact Center Express Administrator Guide.

groupDialog Integer 0 Identifies the ID of the primary dialog group for
handling the outbound call.

(See The Place Call Step, page 8-21.)

Mark this variable as a parameter to allow the
administrator the option to change the value of
this variable.

For more information, see the Cisco Unified
Contact Center Express Administrator Guide.

i Integer 0 Stores the current index of the number to call.

(See The If Step, page 8-15.)

Language language L[en_US] Sores the value of the local language used for
prompts.

numCalls Integer 0 Stores the number of calls to be made.

(See The Set numCalls Step, page 8-15.)

numbersToCall Java Type null Stores all the numbers to call.

(See The Set numbersToCall Step, page 8-12.)
8-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Annotate Step
The Annotate Step
Continue to build the broadcast.aef script by dragging an Annotate step from the
General palette (in the Palette pane of the Cisco Unified CCX Editor window) to
the Design pane, as shown in Figure 8-1.

Configure this Annotate step to contain notes describing the function of this
script. (This step has no impact on script functionality.)

obj Java Type null Holds the current destination object as it loops
through. This object is then typecast to a string
that represents the number to call (outCall).

(See The Set Steps, page 8-17)

outCall Contact null Stores the contact information returned when
the Place Call step succeeds.

(See The Place Call Step, page 8-21.)

recording Document null Stores the audio document that the caller
records.

(See The Recording Step, page 8-8.)

Table 8-1 Variables in the broadcast.aef Script (continued)

Variable Name Variable Type Value Function
8-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Accept Step
Figure 8-3 shows the configured Annotate step customizer window.

Figure 8-3 Configured Annotate Customizer Window—Notes for the broadcast.aef
Script

Configure the Annotate customizer window by entering notes in the Enter
Comments text field, and then clicking OK.

Note This script contains four top-level instances of the Annotate step.

Tip Notes you add about the script are useful to remind yourself of the functions of
the script and its various sections. Notes also communicate information about the
script to future designers who may need to revise or debug it.

The Accept Step
Continue to build the broadcast.aef script by dragging an Accept step from the
Contact palette (in the Palette pane of the Cisco Unified CCX Editor window) to
the Design pane.

Because you intend to accept the default contact, no configuration is necessary.
8-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Get Contact Info Step
Note For more information about using the Accept step, see “The Accept Step” section
on page 7-7.

The Get Contact Info Step
Drag a Get Contact Info step from the Contact palette and drop it on the Design
pane. Then in the customizer window, set the Language name to the Language
variable.

The Recording Step
Continue to build the broadcast.aef script by dragging a Recording step from the
Media palette to the Design pane.

Then configure the Recording step to attempt to record the message the caller
wants to broadcast.

Note For another example of configuration of the Recording step, see “The Recording
Step” section on page 7-37.

Configure the Recording step as follows:

 • General tab

 – Contact—Triggering Contact

This step operates on the contact that triggered the script.

 – Interruptible—No

External events cannot interrupt the execution of this step.

 – Result Document—recording

The recording variable stores the audio document recorded by this
caller.

 • Prompt tab

 – Prompt—Customized prompt
8-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Recording Step
The step uses a customized prompt.

The text box under the Prompt text box indicates that the prompt is the
customized prompt P[pleaseRecord.wav], which asks the caller to please
record a message.

 – Start Tone—Default Prompt

A system prompt providing a default start tone plays back to alert the
caller that the recording is about to begin.

 – Barge In—Yes

The caller can respond without first having to listen to the playback of
the entire prompt.

 – Continue on Prompt Errors—Yes

The step continues with the next prompt in the list if an error occurs in a
prompt, or if this prompt was the last in the list, awaits caller input.

 • Input tab

 – Maximum Retries—3

The script makes 3 retries to receive valid input before executing the
Unsuccessful output branch.

 – Flush Input Buffer—Yes

The system erases previously entered input before capturing new user
input.

 • Filter tab

 – Duration—10

The caller can record a message of up to 10 seconds.

 – Terminating Digit—#

The caller can use the “#” key to indicate completion of input.

 – Cancel Digit—*

The caller can use the “*” key to start over.

(The cancel key works only until the script reaches the maximum number
of retries.)
8-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Recording Step
Note For another example of the use of the Recording step, see The Recording Step,
page 7-37 of Chapter 7, “Designing a Basic Script.”

The Recording step has two output branches, Successful and Unsuccessful. (See
Figure 8-4.)

Figure 8-4 Recording Step Output Branches

These output branches are described in the following sections:

 • The Successful Output Branch, page 8-10

 • The Unsuccessful Output Branch, page 8-10

The Successful Output Branch
If the Recording step successfully records the desired message from the caller, the
script executes the Successful output branch, and the scripts fall through to the
Play Prompt step, as shown in Figure 8-1, and discussed in The Play Prompt Step,
page 8-11.

The Unsuccessful Output Branch
If the Recording step does not successfully record the desired message from the
caller, the script executes the unsuccessful output branch.

Configure the Unsuccessful output branch of the Recording step to play back a
prompt informing the caller that the recording was unsuccessful; then a Terminate
step ends the call, and an End step ends the script and releases all system
resources.
8-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Play Prompt Step
The Play Prompt Step

Begin the Unsuccessful output branch of the Recording step by dragging a Play
Prompt step from the Media palette to the Recording step icon in the Design pane.

Then configure the Play Prompt step to play back a prompt that informs the caller
that the recording was unsuccessful.

For an example of the configuration of the Play Prompt step, see “The Play
Prompt Step” section on page 7-8.

The Terminate Step

Continue the Unsuccessful output branch of the Recording step by dragging a
Terminate step from the Contact palette to the Recording step icon in the Design
pane.

The Terminate step terminates the connection. Allow the default contact (the
Triggering Contact) to be the contact that is terminated.

The End Step

End the Unsuccessful output branch of the Recording step by dragging an End
step from the General palette to the Recording step icon in the Design pane.

The End step ends the script and releases all resources. The End step requires no
configuration and has no customizer.

The Play Prompt Step
Continue the broadcast.aef script by dragging a Play Prompt step from the Media
palette to the Design pane.

Next, configure the Play Prompt step to play back to the caller a prompt that
combines the prompt P[thisIsYourMessage.wav] and message recorded by the
caller that is stored in the recording variable. The script then moves to the Create
Java Object step. (See The Set numbersToCall Step, page 8-12.)
8-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Set numbersToCall Step
The Set numbersToCall Step
Continue to build the broadcast.aef script by dragging the Set step from the
General palette to the Design pane. Use the Set step to create a vector with the
expression “new java.util.Vector()” and set that expression equal to the variable
numbersToCall.

This step creates a vector to hold the phone numbers the script will use to place
the outbound calls. This step does not access the database and the variable does
not have value yet.

Figure 8-5 shows the configured General tab of the Set customizer window.

Figure 8-5 Set numbersToCall=java.util.Vector()

Configure the General tab of the Set customizer window as follows:

 • Variable Name—numbersToCall

The numbersToCall variable stores all the numbers to call.

(A call to a subflow populates this variable.)

 • Value—java.util.Vector()

The java.util.Vector() expression stores the list of numbers to call.

Note A vector is a collection class compatible with both Sun SDK Java
1.4.2. It represents a dynamic array of objects.
8-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Call Subflow Step
The Call Subflow Step
Continue to build the broadcast.aef script by dragging a Call Subflow step from
the JAVA palette to the Design pane.

Then configure the Call Subflow step to call a subflow that populates the
numbersToCall variable. (See The Set numbersToCall Step, page 8-12).

Figure 8-6 shows the configured General tab of the Call Subflow customizer
window.

Figure 8-6 Call Subflow Customizer Window—Configured General Tab

Configure the General tab of the Call Subflow customizer window to call the
getNumbersToCall.aef script, which contains the scripting necessary to access the
directory of numbers and populate the numbersToCall variable in the primary
script. Select No for Disable Interruptions.
8-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Call Subflow Step
Figure 8-7 shows the configured Parameter Mapping tab of the Call Subflow
customizer window.

Figure 8-7 Call Subflow Customizer Window—Configured Input Mappings Tab

Use the Input Mapping tab to map variables between the getNumbersToCall.aef
script and the broadcast.aef script.

Configure the input Mapping tab to specify that the dest variable in the
broadcast.aef script maps to the numToCallVector variable in the
getNumbersToCall.aef script.

There is no need to configure the Output Mappings tab for this sample script.
8-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Set numCalls Step
The Set numCalls Step
Continue to build the broadcast.aef script by dragging a Set step from the General
palette to the Design pane.

This step assigns an integer value from the numbersToCall.size() expression to
the numCalls variable.

Figure 8-8 shows the configured General tab of the Set customizer window.

Figure 8-8 Set Customizer Window—Set numCalls

The Label Step (Call Loop)
Continue to build the broadcast.aef script by dragging a Label step from the
General palette to the Design pane. Then configure the Label step (named Call
Loop), to provide a target for the beginning of the loop. The loop repeats until all
the destination numbers have been called.

The If Step
Continue to build the broadcast.aef script by dragging an If step from the General
palette to the Design pane. Then configure the If step to compare the number of
calls the script has placed to the total number of calls to be made, and to end the
script when this number is equal.
8-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The If Step
The If step evaluates the expression “i < numCalls” (“the value of the i Integer
variable is less than the value of the numCalls Integer variable”). The value of
the i variable increases by 1 every time the script uses a subsequent Increment step
to place a call. The If step has two output branches, True and False. (See
Figure 8-9.)

Figure 8-9 If Customizer Window—Output Branches

The following sections describe the two output branches of the If step:

 • If True Output Branch, page 8-16

 • If False Output Branch, page 8-17

If True Output Branch
If the If step determines that the number of calls made is less than the total number
of calls to make, the script executes the True output branch.

Configure the True output branch of the If step to begin (or continue) to execute
the steps used to place the outbound calls.

The True output branch contains the following steps, each of which is discussed
in its own section:

 • The Set Steps, page 8-17
8-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Set Steps
 • The Play Prompt Step, page 8-19

 • The Call Hold Step, page 8-20

 • The Place Call Step, page 8-21

 • The Increment Step (i), page 8-27

 • The Goto Step (Call Loop), page 8-27

If False Output Branch
If the If step completes its task, the script executes the False output branch, and
the script falls through to the Terminate step. (See “The Terminate Step” section
on page 8-27.)

The Set Steps
Begin the True output branch of the If step by dragging two Set steps from the
General palette to the True icon under the If step in the Design pane.

Then configure the Set steps under the True output branch of the If step to extract
the phone number stored at position i inside the vector. Because the vector is a
dynamic array that is populated with all the numbers to call, use this method to
invoke a method of the vector to return a specific element of the array at the
specified index.

This section contains the following steps:

 • The First Set Step, page 8-17

 • The Second Set Step, page 8-18

The First Set Step
Configure the General tab of the first Step customizer window to specify that the
method executes on the numbersToCall variable.
8-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Set Steps
Figure 8-10 shows the configured Explore Class Information tab of the Execute
Java Method customizer window.

Figure 8-10 Set Obj= numbersToCall.elementAt(i)

Configure the General tab of the Set customizer window as follows:

 • Variable—obj

The obj Java Type variable holds the next number to call from the vector of
numbers.

 • Value

The expression numbersToCall.elementAt(i) which gets the next number to
call from the vector of numbers.

The Second Set Step
Configure the General tab of the second Set customizer window to convert the
number retrieved from the vector to a String variable so that the Place Call step
can use it as the number to dial.
8-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Play Prompt Step
Figure 8-11 shows the configured General tab of the second Set customizer
window.

Figure 8-11 Set dest=dest.valueOf(obj)

Configure the General tab of the Set customizer window as follows:

 • Variable—dest

 • Value—dest.valueOf(Obj)

The step uses the expression dest.valueOf(Obj) to convert the number stored in
the OBJ variable to a string and to assign it to the dest String variable.

The Play Prompt Step
Continue the True output branch of the If step by dragging a Play Prompt step
from the Media palette to the True icon under the If step in the Design pane.

Then configure the Play Prompt step to play back the prompt P[calling] + S[dest].
This prompt plays back a message announcing the number of the destination
phone call to the original caller.
8-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Call Hold Step
Figure 8-12 shows the configured Prompt tab of the Play Prompt customizer
window.

Figure 8-12 Play Prompt Customizer Window—Configured Prompt Tab

 • In the General tab:

 – Set the contact to the triggering contact

 – Set Interruptible to No

 • In the Prompt tab:

 – Set the prompt to P[calling] + S[dest]

 – Set Barge In to No

 – Set Continue on Prompt Errors to Yes

 • In the Input tab:

 – Set Flush Input Buffer to Yes

The Call Hold Step
Continue the True output branch of the If step by dragging a Call Hold step from
the Call Contact palette to the True icon under the If step in the Design pane.

Then configure the Call Hold step to put the incoming call that triggered the script
on hold while the outbound calls are made.
8-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Place Call Step
The Place Call Step
Continue the True output branch of the If step by dragging a Place Call step from
the Call Contact palette to the True icon under the If step in the Design pane.

Then configure the Place Call step to place the outbound calls to the numbers
stored in the dest variable.

Figure 8-13 shows the configured Place Call customizer window.

Figure 8-13 Configured Place Call Customizer Window

Configure the Place Call customizer window as follows:

 • Destination—dest

The dest variable stores the destination phone numbers placed there by the
Set step (see The Second Set Step, page 8-18).
8-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Place Call Step
 • Timeout (sec)—30

The script waits for 30 seconds before a Ring No Answer condition causes
the script to execute the RingNoAnswer output branch of the Place Call step.

 • CallControlGroupId—groupCallControl

The variable groupCallControl stores the call control group with which the
outbound call is associated.

Define this property as a parameter in order to enable the administrator to
properly configure the application with the CTI port group to use for placing
the call.

 • Dialog Groups—groupDialog

The variable groupDialog stores the identifying number of the primary
dialog group for handling the outbound call.

Define this property as a parameter in order to allow the administrator to
configure the dialog group ID that will be used when provisioning an
application.

 • Call Contact—outCall

The variable outCall is where the script returns a handle to the created call
when the step succeeds.

The Place Call step has the following six output branches:

 • Successful—The step successfully places the call.

 • NoAnswer—The step successfully makes the call but the RNA Timeout limit
is reached.

 • Busy— The step successfully places the call but the line is busy.

 • Invalid—The step tries to place the call but the extension is invalid.

 • NoResource—The step cannot place the call because no resource is available
to make the call.

 • Unsuccessful—The step does not place the call because of an internal system
error.
8-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Place Call Step
Note If the RNA timeout in the script is longer than the CFNA timer of Cisco Unified
Communications Manager, the agent phone goes to Not Ready state after a
ring-no-answer. To resolve this issue, change the timeout value in the script to a
lower than the CFNA in Cisco Unified Communications Manager.

Figure 8-14 shows the scripting under the six output branches of the Place Call
step.

Figure 8-14 Place Call Customizer Window—Output Branches

The following sections describe the six output branches of the Place Call step in
the True output branch of the If step:

 • The Successful Output Branch, page 8-24

 • The Other Output Branches, page 8-26
8-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Place Call Step
The Successful Output Branch
If the Place Call step in the True output branch of the If step successfully places
a call, the script executes the Successful output branch.

The Successful output branch of the Place Call step in the True output branch of
the If step contains the following steps:

 • The On Exception Goto Step, page 8-24

 • The Set Contact Info Step, page 8-24

 • The Play Prompt Step, page 8-25

 • The Terminate Step, page 8-25

 • The Set Contact Info Set, page 8-25

 • The Label Step (LABEL0), page 8-25

 • The On Exception Goto Step (Clear Exception), page 8-25

 • The Call Unhold Step, page 8-26

 • The Play Prompt Step, page 8-26

The On Exception Goto Step

Begin the Successful output branch of the Place Call step by dragging an On
Exception Goto step from the General palette to the Successful icon under the
Place Call step under the True icon under the If step in the Design pane.

Then configure the On Exception Goto step to send the script to the Label named
LABEL0 if the script generates a ContactInactiveException.

The script throws this exception if the Contact becomes inactive. In this event, the
script skips the Play Prompt step and the Terminate step, and goes to the Clear
Exception Step described below.

The Set Contact Info Step
Dragging a Set Contact Info step from the Contact palette to the Successful icon
under the Place Call step under the On Exception step in the Design pane.

Then configure the Set Contact Info step to set outcall language name to language.
8-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Place Call Step
The Play Prompt Step

Continue the Successful output branch of the Place Call step by dragging a Play
Prompt step from the Media palette to the Successful icon under the Place Call
step under the True icon under the If step in the Design pane.

Then configure the Play Prompt step to play the prompt recording, created by the
Recording step earlier in the script, to the outbound call.

The Terminate Step
Continue the Successful output branch of the Place Call step by dragging a
Terminate step from the Contact palette to the Successful icon under the Place
Call step under the True icon under the If step in the Design pane.

Then configure the Terminate step to terminate the outgoing call.

The Set Contact Info Set

Dragging a Set Contact Info step from the Contact palette to the Successful icon
under the Place Call step under the Terminate step in the Design pane.

Then configure the Set Contact Info step to set the Handled attribute of the outCall
contact to marked.

The Label Step (LABEL0)

Continue the Successful output branch of the Place Call step by dragging a Label
step from the General palette to the Successful icon under the Place Call step
under the True icon under the If step in the Design pane.

Then configure the Label step to provide a target for the On Exception Goto step
above.

The On Exception Goto Step (Clear Exception)
Continue the Successful output branch of the Place Call step by dragging another
On Exception Goto step from the General palette to the Successful icon under the
Place Call step under the True icon under the If step in the Design pane.

Then configure the On Exception Goto step to clear any exceptions.
8-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Place Call Step
The Call Unhold Step

Continue the Successful output branch of the Place Call step by dragging a Call
Unhold step from the Call Contact palette to the Successful icon under the Place
Call step under the True icon under the If step in the Design pane.

Then configure the Call Unhold step to take the original call off hold, so that the
subsequent Play Prompt step can play back a prompt to the original caller.

The Play Prompt Step
Continue the Successful output branch of the Place Call step by dragging a Play
Prompt step from the Media palette to the Successful icon under the Place Call
step under the True icon under the If step in the Design pane.

Then configure the On Exception Goto step to play back a prompt informing the
original caller that the outgoing call was a success.

The Increment step then increments the value of the i variable by 1, after which a
Goto step sends the script back to the Label named Call Loop, located above the
If step (see Figure 8-9).

The script loops in this way until the value of the i variable is equal to the value
of the numCalls variable, after which the False output branch of the If step
executes, the Terminate step terminates the call, and an End step ends the script.
(See The If Step, page 8-15.)

The Other Output Branches
If the Place Call step in the True output branch of the If step does not successfully
place the call, the script executes the one of the other five output branches:

Configure each of the other five output branches of the Place Call step to play a
specific prompt (different for each output branch) that informs the original caller
that the call was not placed.

The script then falls through to the Increment step (see The Increment Step (i),
page 8-27), and loops back through the steps under the If step until the value of
the i variable is equal to the value of the numCalls variable, after which the False
output branch of the If step executes, the Terminate step terminates the call, and
an End step ends the script.
8-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The Increment Step (i)
The Increment Step (i)
Continue the True output branch of the If step by dragging an Increment step from
the General palette to the True icon under the If step in the Design pane.

Then configure the Increment step to increase the value of the i variable by one.

The Goto Step (Call Loop)
Conclude the True output branch of the If step by dragging a GoTo step from the
General palette to the True icon under the If step in the Design pane.

Then configure the Goto step to move the script back to the Label step named Call
Loop.

The Terminate Step
Drag a Terminate step from the Contact palette to the Design pane and place it on
the Goto step.

Then configure the Terminate step to terminate the connection.

The Set Contact Info Step
Drag a Set Contact Info step from the Contact palette to the Design pane and place
it on the Terminate step. Then configure the value of Handled to Marked.
8-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 8 Working with Multiple Contacts
The End Step
Figure 8-15 Set Contact Info Customizer Window

The End Step
Conclude the broadcast.aef script by dragging an End step from the General
palette to the Design pane.

The End step ends the script and releases all resources. The End step requires no
configuration and has no customizer.
8-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Star
C H A P T E R 9

Designing a Web-Enabled Script

You can use the Cisco Unified CCX Editor to design web-enabled scripts that
interact with application servers. A web-enabled script is a script that obtains
information from web servers on the Internet or an intranet.

This section describes the design of such a script, hello.aef. This simple
“sayhello” server application demonstrates the procedures required to create and
implement any server application script.

Note In Unified CCX 10.0(1), you must use “http://<ipaddress>:9080/<filename>” to
access the web pages uploaded in Applications > Document Management >
Default > webapps > ROOT.

This chapter contains the following topics:

 • An Example Web-Enabled Script Template, page 9-1

 • Creating Server Script Web Pages, page 9-3

 • Creating the hello.aef Script, page 9-5

An Example Web-Enabled Script Template
The hello.aef sample script template uses a static web page that prompts the user
for a name and a dynamic web page that provides a template with an embedded
keyword that is substituted dynamically by the script when it runs.
9-1
ted with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
An Example Web-Enabled Script Template
Figure 9-1 shows the hello.aef script template as it appears in the Design pane of
the Cisco Unified CCX Editor window.

Figure 9-1 Completed Server Script

The hello.aef script prompts the user for a name, and the application server
responds with a “Hello” to the name given.

When the user opens the welcome.html web page, types a name, and clicks
Submit, the following code in welcome.html sends the HTTP request “greeting”
to the Cisco Unified CCX Engine:
<form action="/greeting" method=GET>

This trigger (/greeting) runs the hello.aef script, which performs the following
actions:

1. A Create File Document step references the response template document.

2. A Get Http Contact Info step reads the parameter “name” included with the
HTTP request.

3. A Get Http Contact Info step updates the local variable mapped to the “name”
parameter.

4. A Keyword Transform Document step replaces the keyword %name% in the
template file (sayhello.html), and then writes the result to the local variable,
doc.

5. A Send Http Response step sends the document in the doc variable to the
user’s browser.

After the Cisco Unified CCX server sends the document, the phrase “Hello
yourname” appears in the browser window of the user.

This example web-enabled script provides a starting point from which you can
develop the kind of application scripts you need.
9-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating Server Script Web Pages
Creating Server Script Web Pages
Create the following two web pages to use with the sample hello.aef server script:

 • Static page (welcome.html)—Prompts the user for a name.

 • Dynamic page (sayhello.html)—Provides a template with an embedded
keyword that is substituted dynamically by the script when it runs. In this
sample script, this page also displays the results to the user.

This section contains these topics:

 • Creating a Static Web Page, page 9-3

 • Creating a Dynamic Web Page, page 9-4

Creating a Static Web Page

Note In your development or production environment, place your static HTML pages
in a location where they can be read by the HTTP server process and where they
are secure from unauthorized access.

To create the sample static web page for your hello.aef script, do the following:

Procedure

Step 1 Use a text or web-page editor to enter the following HTML source code:
<html>
<body>
<form action="/greeting" method=GET>
What is your name <input type="text" name="name">
<input type="submit">
</form>
</body>
</html>

Step 2 Save the file as welcome.html and upload it to the Document Management using
Unified CCX Web Administration by choosing Applications > Document
Management > Default > webapps > ROOT. This location with respect to
installationdirectory is /webapps/ROOT.
9-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating Server Script Web Pages
Step 3 Test the HTML page by accessing it as http://<ipaddress>:9080/welocme.html in
different web browsers.

This sample HTML code generates the web page as shown below, which prompts
a user for a name.

Figure 9-2 Static HTML Page with User Prompt

You are now ready to create a dynamic web page.

Creating a Dynamic Web Page
To create the dynamic web page for your hello.aef script, do the following:

Procedure

Step 1 Use a text editor or web-page editor to create a template document, entering the
following HTML source code:
<html>
<body>
Hello %name%
</body>
</html>

Step 2 Use the following format to identify the variables you will use when you write the
hello.aef script:

%keyword%

In this example, keyword represents a keyword to be replaced with some textual
representation as specified by the Keyword Transform Document step.

Step 3 Use the Keyword Transform Document step in the Cisco Unified CCX Editor to
identify the location of the text substitution template.

When you run the hello.aef script, the Keyword Transform Document step
replaces each keyword with the data you specify for that keyword.
9-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
Step 4 After you complete the template file, save the template file as sayhello.html.

Step 5 Create a folder called “template” in Document Management and upload the
template file in this folder. To access Document Management, choose
Applications > Document Management > Default > webapps > ROOT on the
Unified CCX Web Administration.

You are now ready to write the hello.aef script.

Creating the hello.aef Script
This section demonstrates the process of writing the hello.aef script, a Cisco
Unified CCX Editor script that responds to an HTTP request from a web browser.

This section contains the following topics:

 • The Start Step, page 9-5

 • Web-enabled Script Variables, page 9-6

 • The Get Http Contact Info Step, page 9-8

 • The Create File Document Step, page 9-10

 • The Keyword Transform Document Step, page 9-11

 • The Send Http Response Step, page 9-14

 • The End Step, page 9-16

The Start Step
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Cisco Unified CCX Editor places a Start step in the
Design pane of the Cisco Unified CCX Editor window.
9-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called Hello.aef.

Web-enabled Script Variables
Begin the process of designing the hello.aef script by defining script variables.

Use the Variable pane of the Cisco Unified CCX Editor to define two variables
for the hello.aef script, as shown in Table 9-1:

Table 9-1 Variables in the hello.aef Script

Variable Name
Variable
Type Function

name String Contains the value entered by the user.

See The Get Http Contact Info Step,
page 9-8.

doc Document Contains the document to be sent in
response to the user.

See The Create File Document Step,
page 9-10.

To define the two variables for the hello.aef script, do the following:

Procedure
Step 6 With the Hello.aef file open in the Cisco Unified CCX Editor window, click the

New Variable icon in the Variable pane toolbar.

The New Variable dialog box appears.
9-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
Figure 9-3 New Variable Dialog Box

Step 7 From the Type drop-down menu, choose String.

This automatically enters quotation marks in the value field since the value will
be enclosed in quotations.

Step 8 In the Name field, enter name.

This will be the variable that will hold the name entered by the user.

Step 9 Click OK.

The New Variable dialog box closes, and the name of the first variable appears in
the Variable pane of the Cisco Unified CCX Editor.

Step 10 To define the second variable, doc, click the New Variable icon in the Variable
pane toolbar.

The New Variable dialog box appears, as shown in Figure 9-3.

Step 11 From the Type drop-down menu, choose Document.

DOC[] appears automatically in the value field.

Step 12 In the Name field, enter doc.

This variable will contain the document to be sent in response to the user.

Step 13 Click OK.

The New Variable dialog box closes, and the name of the second variable appears
in alphabetical order with the first variable in the Variable pane of the Cisco
Unified CCX Editor.
9-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
The Get Http Contact Info Step
Add a Get Http Contact Info step to the hello.aef script to map parameters from
an HTTP request to locally defined variables.

To map the parameter name to a local variable, do the following:

Procedure

Step 1 From the Http Contact Palette in the Palette pane, drag a Get Http Contact Info
step to the Design pane, and then drop it over the Start step icon.

The Get Http Contact Info step icon appears in the Design pane, just below, and
on the same level as, the Start step icon.

Step 2 Right-click the new Get Http Contact Info step icon.

A popup menu appears.

Step 3 Choose Properties.

The Get Http Contact Info customizer window appears, displaying its General tab.

Step 4 Click the Parameters tab.

The Parameters tab of the Get Http Contact Info window appears.

Step 5 Click Add.

The Add Parameter dialog box appears.
9-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
Step 6 In the Name text field, enter "name".

Note You need quotation marks around your text since this is a string variable.

Step 7 In the Variable drop-down menu, choose name.

Step 8 Click OK.

The Add Parameter dialog box closes, and the added values appear under the
Parameters section of the Parameters tab of the Get Http Contact Info customizer
window.

Figure 9-4 shows the configured Parameters tab of the Get Http Contact Info
customizer window.

Figure 9-4 Get Http Contact Info Customizer Window—Parameters Tab

Step 9 Click OK.

The Get Http Contact Info customizer window closes.
9-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
You are now ready to add the next step to the hello.aef script in the Design pane
of the Cisco Unified CCX Editor.

The Create File Document Step
Add a Create File Document step to the hello.aef script to create a file document
that represents the HTML template sayhello.html. You will then use this file
document in the Keyword Transform Document step.

To create this file document, do the following:

Procedure

Step 1 From the Document palette in the Palette pane, drag a Create File Document step
to the Design pane, and then drop it over the Get Http Contact Info step icon.

The Create File Document step icon appears in the Design pane, just below, and
on the same level as, the Get Http Contact Info step icon.

Step 2 Right-click the new Create File Document step icon.

A popup menu appears.

Step 3 Choose Properties.

The Create File Document customizer window appears.

Figure 9-5 Configured Create File Document Customizer Window
9-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
Step 4 In the Filename text field, enter the following file name, as shown in Figure 9-5:

“template\sayhello.html”

This pathname is a relative pathname that uses a predefined subdirectory within
the installationdirectory. When you implement a real application in a production
environment, make sure that the file and pathname work on the production server.

Step 5 From the Document drop-down menu, choose the variable doc, as shown in
Figure 9-5.

This variable contains the document to be sent in response to the user.

Step 6 Click OK.

The Create File Document customizer window closes.

You are now ready to add the next step to the hello.aef script in the Design pane
of the Cisco Unified CCX Editor.

Note You must create a file document in the Unified CCX customer folder only. You
can access the Unified CCX customer folder using the following syntax:
System.getProperty(“uccx.customer.dir”)
For more information on how to retrieve information from the customer folder
using CLI commands, refer to the Command Line Interface Reference Guide for
Cisco Unified CCX and Cisco Unified IP IVR available here:
http://www.cisco.com/en/US/products/sw/custcosw/ps1846/products_installatio
n_and_configuration_guides_list.html

The Keyword Transform Document Step
Add a Keyword Transform Document step to the hello.aef script to specify
keywords in the file document that will be replaced with text in the dynamic web
page by performing the following procedure.

Procedure

Step 1 From the Document palette, drag a Keyword Transform Document step to the
Design pane, and then drop it over the Create File Document step icon.
9-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

http://www.cisco.com/en/US/products/sw/custcosw/ps1846/products_installation_and_configuration_guides_list.html

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
The Keyword Transform Document step icon appears in the Design pane.

Step 2 Right-click the new Keyword Transform Document step icon.

A popup menu appears.

Step 3 In the popup menu, choose Properties.

The Keyword Transform Document customizer window appears.

Figure 9-6 Keyword Transform Document Customizer Window

Step 4 From the Keyword Template drop-down menu, choose doc.

This variable represents the sayhello.html template document, which contains the
embedded keyword to be replaced.

Step 5 From the Document drop-down menu, choose doc.

This choice specifies that the completed document is stored back in the same
variable.

Step 6 Click Add.

The Add Keyword dialog box appears.
9-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
Figure 9-7 Configured Add Keyword Dialog Box

Step 7 In the Name text field, enter “name”, as shown in Figure 9-7.

Step 8 From the Local Variable drop-down menu, choose name, as shown in Figure 9-7.

This choice specifies that the system supplies the correct String data type.

Note You need to enter quotes since this is a string variable.

This choice specifies that name is the name of the keyword in the sayhello.html
template, as shown below:
<html>
<body>
Hello %name%
</body>
</html>

Step 9 Click OK.
9-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
The Add Keyword dialog box closes, and appears in the Keyword Transform
Document customizer window, as shown in Figure 9-8.

Figure 9-8 Configured Keyword Transform Document Customizer Window

Step 10 Click OK.

The Keyword Transform Document customizer window closes, and the name of
the source document variable appears next to the Keyword Transform Document
step icon in the Design pane of the Cisco Unified CCX Editor.

You are now ready to add the next step to the hello.aef script in the Design pane
of the Cisco Unified CCX Editor.

The Send Http Response Step
Add a Send Http Response step to the hello.aef script to send back the completed
document, in which the value of the name parameter has been substituted for a
keyword embedded in the sayhello.html template.
9-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Creating the hello.aef Script
Procedure

Step 1 From the Http Contact palette, drag the Send Http Response step to the Design
pane, and then drop it over the Text Substitution for Keywords step icon in the
Design pane.

The Send Http Response step icon appears in the Design pane, just below, and on
the same level as, the Keyword Transform Document step icon.

Step 2 Right-click the new Send Http Response step icon.

A popup menu appears.

Step 3 Choose Properties.

Step 4 The Send Http Response customizer window appears.

Figure 9-9 Configured Send Http Response Customizer Window

Step 5 From the HTTP Contact drop-down menu, choose Triggering Contact, as shown
in Figure 9-9.

This allows the contact that triggers the script to trigger the execution of this step.

Step 6 From the Document drop-down menu, choose the doc variable, as shown in
Figure 9-9.

This variable stores the document that is sent to the browser.

Step 7 Click OK.

The Send Http Response customizer window closes, and the name of the Http
Contact and the Document variable appear next to the Send Http Response step
icon in the Design pane of the Cisco Unified CCX Editor.
9-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Managing the hello.aef Script
You are now ready to add the next step to the hello.aef script in the Design pane
of the Cisco Unified CCX Editor.

The End Step
Use the End step to complete each script you create with the Cisco Unified CCX
Editor. The End step needs no configuration and has no customizer window.

To end the hello.aef script, follow this procedure:

Procedure

Step 1 From the General palette, drag the End step to the Design pane, and then drop it
over the Send Http Response step icon in the Design pane.

The End step icon appears in the Design pane, just below, and on the same level
as, the Send Http Response step icon.

Step 2 Save the file as hello.aef.

Managing the hello.aef Script
This section demonstrates the process of managing the hello.aef script, a Cisco
Unified CCX Editor script that responds to an HTTP request from a web browser.

This section contains the following topics:

 • Uploading the hello.aef Script, page 9-17

 • Creating the Application for hello.aef Script, page 9-17

 • Creating the HTTP Trigger, page 9-17

 • Testing the script, page 9-18
9-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Managing the hello.aef Script
Uploading the hello.aef Script
To upload the script, do the following:

Step 1 Navigate to Applications > Script Management > Upload scripts.

Step 2 Browse to locate the script you want to upload.

Step 3 Click Upload.

Now you can view the uploaded script file listed on the Script Management page.

Creating the Application for hello.aef Script
To create the application for hello.aef, do the following:

Step 1 Browse to Applications > Application Management > Add New.

Step 2 Select Application type as Cisco Script Application and click Next.

Step 3 Provide a name for the Application as sayhello.

Step 4 For the Script field, select SCRIPT[hello.aef] from the drop-down list.

Step 5 Click Add.
This saves the application.

Creating the HTTP Trigger
To create a HTTP trigger to use with this hello.aef application, do the following:

Step 1 Create a Trigger by following either of the steps:

 • From the Unified CCX Web Administration, browse to Applications >
Application Management and then select the sayhello application that you
created and then click Add New Trigger.

 • Browse to Subsystems > HTTP and then click Add New.
9-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 9 Designing a Web-Enabled Script
Managing the hello.aef Script
Step 2 In the URL field, provide a value greeting, which is the trigger you have
configured in the welcome.html page.

Step 3 In the Application Name field, select the Application name as sayhello.

Step 4 Select Enable and click Add.
The trigger is saved as /greeting.

Testing the script
To test the script, do the following:

Step 1 In a web browser, type http:// <ipaddress>:9080/welcome.html.

Step 2 In the What is your name field, enter your name and click Submit Query.
Then verify that the HTML page displays “Hello <your name>”.
9-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
C H A P T E R 10

Designing a Web-Enabled Client
Script

A web-enabled script is a script that obtains information from web servers on the
Internet or an intranet. A client script is a script that can retrieve information from
a server.

After the client script receives and extracts the desired information, you can use
steps from the other palettes to make this information available to users or other
scripts. A web-enabled client script may be an Interactive Voice Response (IVR)
script or any other user script that makes a web request.

You can use the Cisco Unified CCX Editor to design a sample web-enabled client
script, getQuoteClient.aef, that gets an XML (eXtensible Markup Language) file
containing stock quotes from a web server, extracts the stock quote, and outputs
the price to the user.

This chapter contains the following topics:

 • Example Web-Enabled Client Script Template, page 10-2

 • Analyzing the Data Source, page 10-3

 • Creating the getQuoteClient.aef Script, page 10-4

 – The Start Step (Creating a Script), page 10-5

 – Defining the Client Script Variables, page 10-5

 – The Accept Step, page 10-6

 – The Create URL Document Step, page 10-7

 – The Create XML Document Step, page 10-8

 – The Get XML Document Data Step, page 10-10
10-1
arted with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Example Web-Enabled Client Script Template
 – The Create Generated Prompt Step, page 10-12

 – Create Container Prompt Step, page 10-15

 – The Play Prompt Step, page 10-17

 – The Terminate Step, page 10-18

 – The End Step, page 10-18

Example Web-Enabled Client Script Template
This sample script template uses a static XML page that you store on the local
HTTP subsystem web server and a simple server script that sends the XML page
in response to the client request.

Note While this sample script uses a static XML file, you can apply the same steps to
handle dynamic XML output directly from any web server.

Figure 10-1 shows the getQuoteClient.aef script tempplate as it appears in the
Design pane of the Cisco Unified CCX Editor window.

Figure 10-1 Completed Client Script
10-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Analyzing the Data Source
Analyzing the Data Source
Begin the process of building the getQuoteClient.aef script by first analyzing the
structure of the data the server obtains. To do this, you need to to identify the data
you want to extract from the XML file. This is found in the XML data path in the
file.

To determine the XML data path in the file, do the following.

Procedure

Step 1 Access the web server XML file that is to supply data for your client script by
entering the following URL in your web browser:

http://127.0.0.1:8080/getQuote.xml

In this example, the getQuote.xml file is on the local web server included in the
HTTP subsystem on the Cisco Unified CCX Engine.

The getQuote.xml file contains the following:
<?xml version="1.0" standalone="yes"?>
<STOCKLIST>
 <STOCK symbol="ABC" error="0">
 <HIGH>58.0625</HIGH>
 <PCT_CHANGE>0.67114094</PCT_CHANGE>
 <LOW>55.1875</LOW>
 <LAST>56.25</LAST>
 <CHANGE>0.375</CHANGE>
 <VOLUME>31,973,600</VOLUME>
 <REC_STATUS>0</REC_STATUS>
 <DATE>02/21/2001</DATE>
 <TIME>15:52</TIME>
 </STOCK>
</STOCKLIST>

Step 2 Identify the path in the XML file of the information you want to extract from the
file.

In the preceding example, the XML path to the stock quote for the ABC Company
is as follows:
"/descendant::STOCKLIST/child::STOCK[attribute::symbol= 'ABC']
/child::LAST"
10-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
You will use this XML path to identify the data you want to extract from the XML
file.

You are now ready to define the variables you will use to build the
getQuoteClient.aef script in the Design pane of the Cisco Unified CCX Editor.

Creating the getQuoteClient.aef Script
This section demonstrates the process of writing the getQuoteClient.aef script, a
Cisco Unified CCX Editor script that gets an XML file containing stock quotes
from a web server, extracts the stock quote, and outputs the price to the user.

This section contains the following steps:

 • The Start Step (Creating a Script), page 10-5

 • Defining the Client Script Variables, page 10-5

 • The Create URL Document Step, page 10-7

 • The Create XML Document Step, page 10-8

 • The Terminate Step, page 10-18

 • The End Step, page 10-18
10-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called getQuoteClient.aef.

Defining the Client Script Variables
Begin the process of designing the getQuoteClient.aef script by defining script
variables.

Use the Variable pane of the Cisco Unified CCX Editor to define five variables,
as shown in Table 10-1:

Table 10-1 Variables in the Web-Enabled Client Script

Variable Name Type Value Description

doc Document DOC[] Contains the URL for the client request
to the local web server.

result Float 0.0F Contains the value obtained by the
client script.

stockprice Prompt P[stockprice.wav] Contains the StockPrice.wav file that
plays back the sentence, “The stock
price of the selected company is.”

resultPrompt Prompt P[] Contains the information in the result
variable.

outputPrompt Prompt P[stockprice.wav] Contains the resultPrompt and
stockprice prompts.
10-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
To define the five variables for the getQuoteClient.aef script, do the following:

Procedure

Step 1 In the Cisco Unified CCX Editor window, click the New Variable icon in the
Variable pane toolbar.

Step 2 In the Name field, enter doc.

This variable will contain the URL for the client request to the local web server.

Step 3 From the Type drop-down menu, choose Document.

DOC[] appears automatically in the value field. This field will contain the name
of the document when the script is run.

Step 4 Click OK.

The New Variable dialog box closes, and the name of the variable appears in the
Variable pane of the Cisco Unified CCX Editor.

Step 5 For each of the other four variables, repeat Steps 3 to 5, using the information
shown in Table 10-1.

You are now ready to create the getQuoteClient.aef script in the Design pane of
the Cisco Unified CCX Editor.

The Accept Step
Add an Accept step to the getQuoteClient.aef script to accept the contact.

To add an Accept step, drag an Accept step from the Contact palette in the Palette
pane to the Design pane, and then drop it over the Start step icon. The Accept step
icon appears in the Design pane, just below, and on the same level as, the Start
step icon. You do not need to configure this step because you can simply use the
default contact as the triggering contact for the step.

You are now ready to add the next step to the getQuoteClient.aef script in the
Design pane of the Cisco Unified CCX Editor.
10-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
The Create URL Document Step
Add a Create URL Document step to the getQuoteClient.aef script to enter the
URL that contains the stock price information.

To configure the Create URL Document customizer window, do the following:

Procedure

Step 1 From the Document Palette in the Palette pane, drag a Create URL Document step
to the Design pane, and then drop it over the Accept step icon.

The Create URL Document step icon appears in the Design pane, just below, and
on the same level as, the Accept step icon.

Step 2 Right-click the new Create URL Document step icon.

A popup menu appears.

Step 3 Choose Properties.

The Create URL Document customizer window appears.

Figure 10-2 Create URL Document Customizer Window
10-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
Step 4 In the URL text field, enter the following URL:
“http://127.0.0.1:8080/getquote”

This URL is composed of the following three parts:

 • The IP address of the web server—This example uses the special IP address
assigned to the local host. When an HTTP request uses this address, the
request is directed to the web server running on the same machine as the
client that issued the request.

 • The port number of the web server—This example uses the default port
number used by the HTTP subsystem web server. If the web server uses the
standard HTTP port (port 80), you can omit this part of the URL.

 • The HTTP script—In this example, the string “getquote” invokes the server
script described in the previous section.

Step 5 From the Document drop-down menu, choose doc.

This choice defines the document that contains the information found in the URL.

Step 6 Click OK.

The Create URL Document customizer window closes.

You are now ready to add the next step to the getQuoteClient.aef script in the
Design pane of the Cisco Unified CCX Editor.

The Create XML Document Step
Add a Create XML Document step to the getQuoteClient.aef script to create an
XML document out of the document created in the previous procedure (in order
to make the information in the URL document available to the script).

To configure the Create XML Document customizer window, do the following:

Procedure

Step 1 From the Document Palette in the Palette pane, drag a Create XML Document
step to the Design pane, and then drop it over the Create URL Document step icon.
10-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
The Create XML Document step appears in the Design pane, just below, and on
the same level as, the Create URL Document step icon.

Step 2 Right-click the new Create XML Document step icon.

A popup menu appears.

Step 3 Choose Properties.

The Create XML Document customizer window appears.

Step 4 From the Source Document drop-down menu, choose doc.

You used the Create URL Document step in the last procedure to define this
variable to store the URL for making the request.

Step 5 From the Document drop-down menu, choose doc.

This variable stores the results of the HTTP request, issued when the Create XML
Document step executes. You use the same variable as for the source document.

If you want to reuse the URL in the source document in a subsequent step, use a
separate document variable to store the results of that HTTP request.

Figure 10-3 Create XML Document Customizer Window

Step 6 Click OK.

The Create XML Document customizer window closes, and the names of the
chosen variables appear next to the Create XML Document icon in the Design
pane.
10-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
Figure 10-4 Create XML Document Step in the Design Pane

Note The source document variable name appears in parentheses after the step
name next to the step name icon in the Design pane.

Step 7 You are now ready to add the next step to the getQuoteClient.aef script in the
Design pane of the Cisco Unified CCX Editor.

The Get XML Document Data Step
Add an Get XML Document Data step to the getQuoteClient.aef script to extract
the specified information from the XML document you created in the preceding
procedure and store it in a variable.

To configure the Get XML Document Data customizer window, do the following:

Procedure

Step 1 From the Document Palette in the Palette pane, drag an Get XML Document Data
step to the Design pane, and then drop it over the Create XML Document step
icon.

The Get XML Document Data step icon appears in the Design pane, just below,
and on the same level as, the Create XML Document step icon.

Step 2 Right-click the new Get XML Document Data step icon.

A popup menu appears.

Step 3 Choose Properties.

The Get XML Document Data customizer window appears.
10-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
Figure 10-5 Get XML Document Data Customizer Window

Step 4 From the Document drop-down menu, choose doc.

This variable contains the XML document data stored by the Create XML
Document step.

Step 5 In the XML Path text field, click the Expression Editor (...) button.

The Expression Editor dialog box appears.

Figure 10-6 Expression Editor Dialog Box
10-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
Step 6 In the Expression Editor text field, enter the following expression:
"/descendant::STOCKLIST/child::STOCK[attribute::symbol='ABC']
/child::LAST”

This means that the data to be extracted is from the XML element named LAST,
contained in the XML element named STOCKLIST, identified by the symbol
ABC.

Step 7 Click OK.

The Expression Editor dialog box closes, and the expression appears in the XML
path text field of the Get XML Document Data customizer window.

Step 8 From the Result Data drop-down menu, choose result.

This variable stores the data extracted from the XML document when the Get
XML Document step executes.

If you want to reuse the data in the source document to extract other values, use
a separate document variable to store the extracted value.

Step 9 Click OK.

The Get XML Document Data customizer window closes, and the variables you
chose appear next to the Get XML Document Data step icon in the Design pane
of the Cisco Unified CCX Editor.

You are now ready to add the next step to the getQuoteClient.aef script in the
Design pane of the Cisco Unified CCX Editor.

The Create Generated Prompt Step
Add a Create Generated Prompt step to the getQuoteClient.aef script to create the
prompt that combines the audio file introducing the information and the
information itself.

To configure the Create Generated Prompt customizer window, do the following:

Procedure

Step 1 From the Prompt Palette in the Palette pane, drag a Create Generated Prompt step
to the Design pane, and then drop it over the Get XML Document Data step icon.
10-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
The Create Generated Prompt step icon appears in the Design pane, just below,
and on the same level as, the Get XML Document Data step icon.

Step 2 Right-click the new Create Generated Prompt step icon.

A popup menu appears.

Step 3 Choose Properties.

The Create Generated Prompt customizer window appears.

Step 4 From the Output Prompt drop-down menu, choose stockprice.

The stockprice variable contains the StockPrice.wav file that plays back the
following phrase: “The stock price of the selected company is.” (See The Create
URL Document Step, page 10-7).

Step 5 From the Generator Type drop-down menu, choose currency.

The Constructor type text field automatically displays “(amount)”.

Step 6 In the Argument Information text box, double-click amount.

The Set Amount dialog box appears.

Figure 10-7 Set Amount Dialog Box

Step 7 From the variable drop-down menu, choose result.

The result variable contains the value obtained by the client script.

Step 8 Click OK.

The Set Amount dialog box closes, and “result” appears under the Value column
in the Argument text field.
10-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
Figure 10-8 Create Generated Prompt Customizer Window

Step 9 Click OK.

The Create Generated Prompt customizer window closes, and the generator type
and the output prompt variable appear next to the Create Generated Prompt step
icon in the Design pane of the Cisco Unified CCX Editor.

You are now ready to add the next step to the getQuoteClient.aef script in the
Design pane of the Cisco Unified CCX Editor.
10-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
Create Container Prompt Step
Add a Create Container Prompt step to the getQuoteClient.aef script to create the
concatenated prompt that combines the stockprice.wav file with the result
variable.

To configure the Create Container Prompt customizer window, do the following:

Procedure

Step 1 From the Prompt Palette in the Palette pane, drag a Create Container Prompt step
to the Design pane, and then drop it over the Create Generated Prompt step icon.

The Create Container Prompt step icon appears in the Design pane, just below,
and on the same level as, the Create Generated Prompt step icon.

Step 2 Right-click the new Create Container Prompt step icon.

A popup menu appears.

Step 3 Choose Properties.

The Create Container Prompt customizer window appears.

Figure 10-9 Configured Create Container Prompt Customizer Window
10-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
Step 4 From the Output Prompt drop-down menu, choose outputPrompt, as shown in
Figure 10-9.

This variable stores the prompt that is played back to the caller.

Step 5 From the Prompt Container Type drop-down menu, choose Concatenation, as
shown in Figure 10-9.

For more information on concatenated prompts, which are prompts that combine
other prompts, see the Cisco Unified Contact Center Express Editor Step
Reference Guide.

Step 6 To specify the prompts to be concatenated into outputPrompt, click the Add
button.

The Add Prompt dialog box appears.

Figure 10-10 Configured Add Prompt Dialog Box

Step 7 From the Prompt drop-down menu, choose stockprice, and then click OK, as
shown in Figure 10-10.

The Add Prompt dialog box closes, and stockprice appears in the Prompts text
box, as shown in Figure 10-9.

Step 8 Repeat Steps 6 to 7 to add the resultPrompt variable to the Prompts text field, as
shown in Figure 10-9.

Step 9 You are now ready to add the next step to the getQuoteClient.aef script in the
Design pane of the Cisco Unified CCX Editor.
10-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
The Play Prompt Step
Add a Play Prompt step to the getQuoteClient.aef script to play back the prompt
outputPrompt to the caller.

To configure the Play Prompt customizer window, do the following:

Procedure

Step 1 From the Media Palette in the Palette pane, drag a Play Prompt step to the Design
pane, and then drop it over the Create Container Prompt step icon.

The Play Prompt step icon appears in the Design pane, just below, and on the same
level as, the Create Container Prompt step icon.

Step 2 Right-click the new Play Prompt step icon.

A popup menu appears.

Step 3 Choose Properties.

The Play Prompt customizer window appears, displaying the General tab.

Step 4 Click the Prompt tab.

The Prompt tab of the Play Prompt customizer window appears.

Figure 10-11 Play Prompt Customizer Window—Configured Prompt Tab

Step 5 From the Prompt drop-down menu, choose outputPrompt, and then click OK.
10-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
The Play Prompt customizer window closes, and the name of the prompt variable
appears next to the Play Prompt step in the Design pane of the Cisco Unified
CCX Editor.

You are now ready to add the next step to the getQuoteClient.aef script in the
Design pane of the Cisco Unified CCX Editor.

The Terminate Step
Add the Terminate step to the getQuoteClient.aef script to terminate the
connection.

To add a Terminate step, drag an Terminate step from the Contact palette in the
Palette pane to the Design pane, and then drop it over the Play Prompt step icon.
The Terminate step icon appears in the Design pane, just below, and on the same
level as, the Play Prompt step icon. You do not need to configure this step because
you do not need to change the default contact choice.

You are now ready to end the getQuoteClient.aef script in the Design pane of the
Cisco Unified CCX Editor.

The End Step
Use the End step to complete each script you create with the Cisco Unified CCX
Editor. The End step needs no configuration and has no customizer window.

To end the getQuoteClient.aef script, follow this procedure:

Procedure

Step 1 From the General palette, drag the End step to the Design pane, and then drop it
over the Terminate step icon in the Design pane.

The End step icon appears in the Design pane, just below, and on the same level
as, the Terminate step icon.

Step 2 Save the client script as getQuoteClient.aef.
10-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
10-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 10 Designing a Web-Enabled Client Script
Creating the getQuoteClient.aef Script
10-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 11

Designing a Database Script

You can use the Cisco Unified CCX Editor to design scripts that can access
information from a specified database.

This section describes the design of a script that can access information in a
database. This simple script template, database.aef, uses steps from the Database
palette to automatically provide callers with contact information for local
physicians.

This chapter contains the following topics:

 • An Example Database Script Template, page 11-2

 • The Start Step (Creating a Script), page 11-3

 • Database Script Variables, page 11-3

 • The Accept Step, page 11-5

 • The Play Prompt Step, page 11-5

 • The DB Read Step, page 11-6

 • The Label Step (Physician Loop), page 11-9

 • The DB Get Step, page 11-9

 • The End Step, page 11-17
11-1
rted with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
An Example Database Script Template
An Example Database Script Template
In this sample script template, the script reads all the data from a database table
named physician_locator and plays back output one row at a time, looping back
and repeating this process until there is no more data.

Figure 11-1 shows the database.aef script template as it appears in the Design
pane of the Cisco Unified CCX Editor window.

Figure 11-1 database.aef Script

Table 11-1 shows the physician_locator database table.

Table 11-1 Physician_Locator Database Table

ZIP_COD
E

CATEGOR
Y NAME

SPOKEN_NAM
E ADDRESS PHONE

11111 chiropractor john doe (audio document) 222 main st. bedrock ca 5551112222

22222 podiatrist jane wong (audio document) 333 oak st. bubble city ny 5552344343
11-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The Start Step (Creating a Script)
The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called database.aef.

Database Script Variables
Begin the database.aef script design process by using the Variable pane of the
Cisco Unified CCX Editor to define script variables.

33333 dentist jim smith (audio document) 435 state st. oakwood tn 5556458978

99999 general tia gomez (audio document) 382 first st. river city ia 5557674444

Table 11-1 Physician_Locator Database Table (continued)

ZIP_COD
E

CATEGOR
Y NAME

SPOKEN_NAM
E ADDRESS PHONE
11-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
Database Script Variables
Figure 11-2 shows the variables of the database.aef script as they appear in the
Variable pane of the Cisco Unified CCX Editor.

Figure 11-2 Variable Pane of the database.aef Script

Table 11-2 describes the variables used in the database.aef script.

Table 11-2 Variables in the database.aef Script

Variable Name Variable Type Value Function

Address String "" Stores the address of the physician.

(See The DB Get Step, page 11-9.)

Category String "" Stores the category of the physician.

(See The DB Get Step, page 11-9.)

Name String "" Stores the written name of the physician.

(See The DB Get Step, page 11-9.)

Phone String "" Stores the phone number of the physician.

(See The DB Get Step, page 11-9.)

Spoken_Name Document null Stores the audio document of the spoken name
of the physician.

(See The DB Get Step, page 11-9.)

Zip_Code String "" Stores the Zip code of the physician.

(See The DB Get Step, page 11-9)
11-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The Accept Step
The Accept Step
Continue the database.aef script by dragging an Accept step from the Contact
palette (in the Palette pane of the Cisco Unified CCX Editor window) to the
Design pane, and dropping it over the Start step, as shown in Figure 11-1.

Note Since you intend to accept the default triggering contact, no further configuration
is necessary for this step.

The Play Prompt Step
Continue the database.aef script by dragging a Play Prompt step from the Media
palette into the Design pane.

Configure the Play Prompt step to play a welcome message to the caller,
announcing that the script will play back a list of physicians and their addresses.

Figure 11-3 shows the configured Prompt tab of the Play Prompt customizer
window.

Figure 11-3 Play Prompt Customizer Window—Configured Prompt Tab

Configure the Play Prompt step as follows:

 • General tab

 – Contact—Triggering Contact
11-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Read Step
The step operates on the contact that triggers the execution of the script.

 – Interruptible—Yes

External events can interrupt the playing of the prompt. (At this point the
script has not yet queued the call, so this configuration has no effect.)

 • Prompt tab

 – Prompt—WelcomePrompt

WelcomePrompt is the prompt that the Play Prompt step plays back to
welcome the caller.

 – Barge in—Yes

The caller can interrupt the prompt playback.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence or waits for caller input.

 • Input tab

 – Flush Input Buffer—No

The system does not erase previously entered input before capturing new
caller input.

The DB Read Step
Continue the database.aef script by dragging a DB Read step from the Database
palette into the Design pane.

Configure the DB Read step to use SQL (Structured Query Language) commands
to read the physician_locator table in the specified database.
11-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Read Step
Figure 11-4 shows the configured General tab of the DB Read customizer
window.

Figure 11-4 DB Read Customizer Window—Configured General Tab

Configure the General tab of the DB Read customizer window as follows:

 • DB Resource Name—getPhysicians

This choice names the query that is used by the subsequent DB Get step to
read data from the database.

 • Data Source Name—ALPINE00

This choice specifies the database that contains the desired information.
11-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Read Step
Figure 11-5 shows the configured Field Selector tab of the DB Read customizer
window,

Figure 11-5 DB Read Customizer Window—Configured Field Selector Tab

Configure the Field Selector tab as follows:

 • Enter the SQL command select * from physician_locator, which tells the
DB Read step to read all the data that exists in the physician_locator table.

The DB Read step has three output branches, Successful, Connection Not
Available, and SQL Error. The following sections describe these output branches:

 • The Successful Output Branch, page 11-8

 • The Connection Not Available Output Branch, page 11-9

 • The SQL Error Output Branch, page 11-9

The Successful Output Branch
If the DB Read step successfully reads the physician_locator table in the specified
database, the script executes the Successful output branch.
11-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The Label Step (Physician Loop)
Configure the Successful output branch of the DB Read step to concatenate all the
information extracted from the database and play it back to the caller.

The Successful output branch is discussed in the following sections, beginning
with The Label Step (Physician Loop), page 11-9.

The Connection Not Available Output Branch
If the DB Read step does not successfully read the physician_locator table in the
specified database, the script executes the Connection Not Available output
branch, and the script goes to the End step.

The SQL Error Output Branch
If the DB Read step cannot execute because of an error in the SQL command, the
script executes the SQL Error output branch, and the script goes to the End step.

The Label Step (Physician Loop)
Begin the Successful output branch of the DB Read step by dragging a Label step
from the General palette into the Design pane, and dropping it over the Successful
icon under the DB Read step icon.

Configure the Label step to provide a target for the beginning of a loop that will
repeat until all the names in the database have been read back to the caller.

After the DB Read step, use a DB Get step within a Label step defined as
Physician Loop. (See Figure 11-1.)

The DB Get Step
Continue the Successful output branch of the DB Read step by dragging a DB Get
step from the Database palette to the Design pane, and dropping it over the Label
step icon under the Successful icon under the DB Read step icon.

Then configure the DB Get step to retrieve the information in the
physicians_locator database.
11-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Get Step
Figure 11-6 shows the configured General tab of the DB Get customizer window.

Figure 11-6 DB Get Customizer Window—Configured General Tab

In the DB Resource Name text field, specify “getPhysicians”, which is the query
that retrieves one row of data at a time from the physician_locator table.
11-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Get Step
Figure 11-7 shows the configured Field Selection tab of the DB Get customizer
window.

Figure 11-7 DB Get Customizer Window—Configured Field Selection Tab

Use the Field Selection tab to associate each field in the database table with a local
variable.

The DB Get step has three output branches, Successful, No Data, and SQL Error.
(See Figure 11-1.)

These following sections describe these output branches:

 • The Successful Output Branch, page 11-11

 • The No Data Output Branch, page 11-13

 • The SQL Error Output Branch, page 11-17

The Successful Output Branch
If the DB Get step successfully obtains data from the database table and stores the
data in the defined variables, the script executes the Successful output branch.

Configure the Successful output branch of the DB Get step to concatenate all the
information extracted from the database, play it back to the caller.
11-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Get Step
The Successful output branch contains two steps, discussed in the following
sections:

 • The Play Prompt Step, page 11-12

 • The Goto Step (Physician Loop), page 11-13

The Play Prompt Step
Begin the Successful output branch of the DB Get step by dragging a Play Prompt
step from the General palette to the Design pane, and dropping it over the
Successful icon under the DB Get step icon.

Then configures the Play Prompt step to play back to the caller the information
retrieved from the database table.

Figure 11-8 shows the configured Prompt tab of the Play Prompt customizer
window.

Figure 11-8 Play Prompt Customizer Window—Configured Prompt Tab

Set the Prompt variable to the following expression:

“Spoken_Name + DP[250] + S[Phone] + DP[250] + S[Address] + DP[250] +
S[Name] + DP[250] + S[Category] + DP[250] + S[Zip_Code]”

This expression represents a prompt concatenation where the Play Prompt step
plays back the Document variable Spoken_Name as a prompt.
11-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Get Step
DP[250] stands for 250 milliseconds of silence. All the S[xx] elements represent
the xx String variables that the Play Prompt step converts to a prompt that spell
out the contents of the variables.

The Goto Step (Physician Loop)

End the Successful output branch of the DB Get step by dragging a Goto step from
the General palette to the Design pane, and dropping it over the Play Prompt step
icon under the Successful icon under the DB Get step icon, as shown in
Figure 11-1.

Then configure the Goto step to instruct the script to loop back to the DB Get step
and continue to retrieve a row of data from the table each time this step executes.

When the script reads every row of data and no data is found, the script
automatically drops down to the DB Get step No Data output branch. (See The No
Data Output Branch, page 11-13.)

The No Data Output Branch
If the DB Get step does not find any data in the database table, or reaches the end
of the table, the script executes the No Data output branch.

The No Data output branch contains four steps, discussed in the following
sections:

 • The DB Write Step, page 11-13

 • The DB Release Step, page 11-16

 • The Terminate Step, page 11-16

 • The End Step, page 11-17

The DB Write Step

Begin the No Data output branch of the DB Get step by dragging a DB Write step
from the Database palette to the Design pane, and dropping it over the No Data
icon under the DB Get step icon, as shown in Figure 11-1.

Then configure the DB Write step to search the database table for entries for
which the zip code is 99999 and delete them from the table.
11-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Get Step
Figure 11-9 shows the configured General tab of the DB Write customizer
window.

Figure 11-9 DB Write Customizer Window—Configured General Tab

Configure the General tab of the DB Write customizer window as follows:

 • DB Resource Name—Next

You assign this name to identify this database query.

 • Data Source Name—ALPINE00.

This variable specifies the database that contains the desired information.
11-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Get Step
Figure 11-10 shows the configured SQL tab of the DB Write customizer window.

Figure 11-10 DB Write Customizer Window—Configured SQL Tab

Configure the SQL tab as follows:

 • Enter SQL Comments—delete from physician_locator where zip_code =
99999

This SQL command tells the step what to write to the database table.

Using the data in Table 11-1, the DB Write step deleted the last row of the table.

The DB Write step has the following three output branches, (each of which fall
through to the DB Release step):

 • Successful—The DB Write step successfully deleted the specified
information.

 • Connection Not Available—The DB Write step was not successful because a
connection was not found.

 • SQL Error—The DB Write step was not successful because of a SQL
command error.
11-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The DB Get Step
The DB Release Step

Continue the No Data output branch of the DB Get step by dragging a DB Release
step from the Database palette to the Design pane, and dropping it over the DB
Write step icon under the No Data output branch of the DB Get step icon, as
shown in Figure 11-1.

Then configure the DB Release step to close the SQL query and release the
allocated resources.

The system returns the released DB connection to the connection pool, and no
longer associates data with this connection.

Figure 11-11 shows the configured DB Release customizer window.

Figure 11-11 Configured DB Release Customizer Window

In the DB Resource Name text field, specify getPhysicians as the DB Resource to
be released.

The Terminate Step

Continue the No Data output branch of the DB Get step by dragging a Terminate
step from the Contact palette to the Design pane, and dropping it over the DB
Release step icon under the No Data output branch of the DB Get step icon, as
shown in Figure 11-1.

Then configure the Terminate step to terminate the outgoing call.
11-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The End Step
The End Step

End the No Data output branch of the DB Get step by dragging an End step from
the General palette to the Design pane, and dropping it over the DB Terminate
step icon under the No Data output branch of the DB Get step icon, as shown in
Figure 11-1.

The End step ends the script and releases all system resources. The End step
requires no configuration and has no customizer.

The SQL Error Output Branch
If the DB Get step does not execute because of a SQL command error, the script
executes the SQL Error output branch, and the script falls through to the End step
to end the script.

The End Step
Conclude the database.aef script by dragging an End step from the General palette
into the Design pane, and dropping it over the DB Read step.

The End step ends the script and releases all system resources. The End step
requires no configuration and has no customizer.
11-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 11 Designing a Database Script
The End Step
11-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 12

Designing a Cisco Unified IP IVR
Script

You can use the Cisco Unified CCX Editor to design scripts that take advantage
of Cisco Unified IP IVR (Interactive Voice Response) capability.

This section describes the design of an AutoAttendant (AA) script template,
aa.aef, which is included with the Cisco Unified CCX Editor. This script can work
in a Cisco Unified IP IVR system or a traditional ACD IVR system.

This chapter contains the following topics:

 • The Sample AutoAttendant (aa.aef) Script Template, page 12-2

 • The Start Step (Creating a Script), page 12-5

 • The aa.aef Script Variables, page 12-6

 • The Getting the Contact Information and Setting Up the Prompts, page 12-10

 • Determining if the System is ASR Enabled, page 12-19

 • Creating and Setting an Error Message Prompt, page 12-22

 • Recognizing Input, page 12-24

 • The DialByExtn Output Branch of the Simple Recognition Step, page 12-27

 • The Successful Output Branch (of Get Digit String), page 12-30

 • Confirming the Caller Input, page 12-35

 • Localizing the Prompt Language, page 12-36

 • Completing the Input Confirmation, page 12-38

 • Transferring the Call, page 12-41
12-1
rted with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Sample AutoAttendant (aa.aef) Script Template
 • The DialByName Output Branch of the Simple Recognition Step, page 12-46

 • The No Output Branch of the Simple Recognition Step, page 12-55

 • The Operator Output Branch of the Simple Recognition Step, page 12-73

 • The Concluding Steps of the Script, page 12-78

The Sample AutoAttendant (aa.aef) Script
Template

This simple script template answers a call, asks for the name or extension of the
person to whom the caller would like to be connected, and transfers the call.

Note You can modify the aa.aef file to create your own Cisco Unified IP IVR script.
Please make a backup copy of the aa.aef file before modifying it, so that you
always have access to the original file.

The aa.aef script template is a good example of how you can use various steps:
steps in the Media palette to receive caller input; the Switch step in the General
palette to switch based on a language; steps in the Prompt palette to create a
variety of prompts; and steps in the Media palette to specify grammars that
recognize caller input.

The aa.aef script template is also a good example of a media-neutral script that
accepts either speech or Dual Tone Multi-Frequency (DTMF) input from the
caller.

The aa.aef script can handle the following two media types:

 • Cisco Media Termination (CMT)—Simple media termination, either playing
a prompt or receiving DTMF digits

 • Automatic Speech Recognition (ASR)—Speech recognition media
12-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Sample AutoAttendant (aa.aef) Script Template
Figure 12-1 shows the aa.aef script as it appears in the Design pane of the Cisco
Unified CCX Editor window.

Figure 12-1 aa.aef Script

The aa.aef script performs the following tasks:

1. Accepts the call.

2. Plays a welcome prompt, asking the caller to perform one of three actions:

 • Press or say “1” to enter an extension number

 • Press or say “2” to enter the name of a person

If the caller chooses to spell a name, the script maps the letters entered
against the available users defined in a specified directory and transfers
the call to the primary extension of the user.
12-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Sample AutoAttendant (aa.aef) Script Template
If more than one match occurs, the script prompts the caller to choose the
correct extension. If too many matches occur, the script prompts the
caller to enter more characters. If no match occurs, the script prompts the
caller to enter another name.

 • Press or say “0” to speak to an operator

Configure this welcome prompt as a parameter, which means that the
administrator can configure this prompt when provisioning an
application with this script. (For more information on provisioning
applications, see the Cisco Unified Contact Center Express
Administration Guide.)

3. When the script receives a valid extension, it transfers the call.

 • If the destination is busy, the caller hears the system prompt, “The phone
number you are trying to reach is currently busy.”

 • If the destination is out of service, the caller hears the system prompt,
“The phone number you are trying to reach is currently out of service.”

The aa.aef script uses audio prompts stored as .wav files in the
wfavvid_1001\prompts\system\en_Us\AA\ directory and installed automatically
with the Cisco Unified CCX Engine.

These audio prompts include the following:

 • AAMainMenu_ASR.wav—Provides a menu of choices: press 1 or say “one”
to enter an extension, press 2 or say “two” to enter the first few characters of
a user name, or press 0 or say “zero” to speak to an operator.

 • AASorry.wav—States that the transfer was not successful.

 • AABusyExtn.wav—States that the dialed extension is busy.

 • AAInvalidExtn.wav—States that the entered extension is not a valid choice.

 • AAExntOutofService.wav—States that the entered extension is no longer in
service.

 • AAWelcome.wav—Greets the caller.

In the AutoAttendant application, you configure the filename and pathname
for the AAWelcome.wav prompt by running the AA configuration wizard
from the main menu of the Cisco Unified CCX Administration web interface.
You can choose to change the default welcome prompt to reference a
customized prompt.
12-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Start Step (Creating a Script)
Note For custom scripts, you need to record your own prompts. To record a prompt, see
the Recording step information in the Cisco Unified Conact Center Express
Editor Step Reference Guide or the Cisco Unified Contact Center Express
Administration Guide.

The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Cisco Unified CCX Editor places a Start step in the
Design pane of the Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called aa.aef.
12-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The aa.aef Script Variables
The aa.aef Script Variables
Begin the aa.aef script design process by using the Variable pane of the Cisco
Unified CCX Editor to define script variables.

Figure 12-2 shows the variables of the aa.aef script as they appear in the Variable
pane of the Cisco Unified CCX Editor.

Figure 12-2 Variables Pane of the aa.aef Script
12-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The aa.aef Script Variables
Table 12-1 describes the variables used in the aa.aef script.

Table 12-1 Variables in the aa.aef Script

Variable Name
Variable
Type Value Function

AlwaysEnable
 DialByName

Boolean False Stores the information that indicates whether
Dial By Name is always enabled for the script
(regardless of the language associated with
the incoming call or the type of media).

(See If ASR, page 12-19.)

MaxRetry Integer 3 Stores the maximum retries a caller can make
in this script before the script terminates the
call.

(See Localizing the Prompt Language,
page 12-36.)

Define this variable as a parameter so that the
administrator can configure it when
provisioning an application with this script.

asr Boolean False Stores the information that indicates whether
or not ASR is enabled for this call.

(See Get Contact Info, page 12-11.)

attempts Integer 1 Stores the number of times the script has
attempted confirmation.

(See Localizing the Prompt Language,
page 12-36.)

extnPrompt Prompt P[] Prompts the caller to either press or say the
extension number.

(See The DialByExtn Output Branch of the
Simple Recognition Step, page 12-27.)

extnXfer String "" Stores the extension to which the caller is
transferred.

(See The Get Digit String Step, page 12-29.)

firstName String "" Stores the first name of the selected user.
12-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The aa.aef Script Variables
fullNamePrompt Prompt P[] Stores the full name of the user to be played
back.

grammar Grammar G[] Stores the value SG[AA/AAWantToCall]
assigned to it by the Set step.

(See The Explicit Confirmation Step,
page 12-62.)

language Language L[en_US] Stores the current language associated with
the call.

Default: English (United States)

(See Get Contact Info, page 12-11.)

lastName String "" Stores the last name of the selected user.

menuPrompt Prompt P[] Stores the result from the Create Conditional
Prompt step. This prompt presents the initial
menu of options for calling by name or by
extension.

(See The First Create Conditional Prompt
Step, page 12-12.)

name String "" Stores the written name of the person the
caller is trying to reach.

(See The Successfully Receiving Caller Input,
page 12-51.)

namePrompt Prompt P[] Asks the caller to say the name of the person
the caller wants to reach.

(See The First Create Container Prompt Step,
page 12-14.)

Table 12-1 Variables in the aa.aef Script (continued)

Variable Name
Variable
Type Value Function
12-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The aa.aef Script Variables
operExtn String "" Stores the Operator extension the Call
Redirect step uses to transfer the call to the
operator.

(See The Call Redirect Step, page 12-80.)

Define this variable as a parameter so that the
administrator can configure it when
provisioning an application with this script.

prefixPrompt Prompt P[] Informs the caller of the status of the call.
This value is dependent on many steps.

(See The DialByExtn Output Branch of the
Simple Recognition Step, page 12-27.)

prompt Prompt P[] Used for a variety of purposes throughout the
script.

(See The First Create Container Prompt Step,
page 12-14.)

spokenName Document null Stores the audio document of the spoken name
of the person the caller is trying to reach.

(See The Successfully Receiving Caller Input,
page 12-51.)

ttsPrompt Prompt P[] Contains the TTS prompt for the user
selected.

Note When TTS is available, the system
can use this prompt instead of spelling
back the full user name.

Table 12-1 Variables in the aa.aef Script (continued)

Variable Name
Variable
Type Value Function
12-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
The Getting the Contact Information and Setting
Up the Prompts

This section contains the following:

 • Accept, page 12-10

 • Get Contact Info, page 12-11

 • The First Create Conditional Prompt Step, page 12-12

 • The Second Create Conditional Prompt Step, page 12-13

 • The First Create Container Prompt Step, page 12-14

 • The Third Create Conditional Prompt Step, page 12-16

 • The Play Prompt Step, page 12-16

 • The Label Step (MainMenu), page 12-18

Accept
Continue to build the aa.aef script by dragging an Accept step from the Contact
palette (in the Palette pane of the Cisco Unified CCX Editor window) to the
Design pane, and dropping it over the Start step.

user User null Identifies the user that the caller chooses with
the Name To User step.

(See The Name To User Step, page 12-48.)

welcomePrompt Prompt P[AA\Welcome.wav] Greets the caller.

(See The Play Prompt Step, page 12-16.)

Define this variable as a parameter so that the
administrator can configure it when
provisioning an application with this script.

Table 12-1 Variables in the aa.aef Script (continued)

Variable Name
Variable
Type Value Function
12-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
Because you intend to accept the default contact, no configuration is necessary for
this step.

Get Contact Info
Continue the aa.aef script by dragging a Get Contact Info step from the Contact
palette to the Design pane, and dropping it over the Accept step.

Then configure the Get Contact Info step to retrieve information about the contact
that the script uses. This determines which prompts to use, based on whether or
not Automatic Speech Recognition (ASR) is enabled, and, if so, what language
the script uses.

Figure 12-3 shows the configured customizer window of the Get Contact Info
step.

Figure 12-3 Configured Get Contact Info Customizer Window
12-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
Configure the Get Contact Info customizer window as follows:

 • Contact—Triggering Contact

The contact that triggered the script remains the contact for this step.

 • Attribute/Variable—language and asr

The two variables for which the Get Contact Info step obtains values.
Subsequent If steps use these values to determine the language context of the
call and whether or not ASR is enabled for this call.

The First Create Conditional Prompt Step
Continue to build the aa.aef script by dragging the first of three Create
Conditional Prompt steps from the Prompt palette to the Design pane, and
dropping it over the Get Contact Info step.

Configure the first Create Conditional Prompt step to play back one of two
prompts, according to whether or not ASR is enabled for this call.

Figure 12-4 shows the configured customizer window for the first Create
Conditional Prompt step.

Figure 12-4 Configured Create Conditional Prompt Customizer Window

Configure the first Create Conditional Prompt step as follows:

 • Condition Expression—asr
12-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
The Boolean variable for which the Create Conditional Prompt step evaluates
the Boolean expression of the variable (as defined by you when defining
variables).

 • True Prompt—SP[AA\AAMainMenu_ASR]

The script plays back this .wav file if the condition evaluates to true; that is,
if ASR is enabled for this call.

 • False Prompt—SP[AA\AAMainMenu]

The script plays back this .wav file if the condition evaluates to false; that is,
if ASR is not enabled for this call.

 • Output Prompt—menuPrompt

The variable that stores the prompt value resulting from this Create
Conditional Prompt step.

The Second Create Conditional Prompt Step
Continue to build the aa.aef script by dragging the second of three Create
Conditional Prompt steps from the Prompt palette to the Design pane, and
dropping it over the first Create Conditional Prompt step.

Configure the second Create Conditional Prompt step to play back one of two
prompts, according to whether or not ASR is enabled for this call. The first
prompt offers the caller the option to either press or say an extension; the second
prompt offers the caller only the choice of pressing the extension.

Configure the properties of the second Create Conditional Prompt step in the
same manner as the first Create Conditional Prompt step (see The First Create
Conditional Prompt Step, page 12-12), with the following two exceptions:

 • True Prompt—SP[AA\AAEnterExtn_ASR]

The script plays back this .wav file if the condition evaluates to true; that is,
if ASR is enabled for this call.

 • False Prompt—SP[AA\AAEnterExtn]

The script plays back this .wav file if the condition evaluates to false; that is,
if ASR is not enabled for this call.
12-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
Note The third Create Conditional Prompt step appears just after the next step, the first
Create Container Prompt step.

The First Create Container Prompt Step
Continue the aa.aef script by dragging a Create Container Prompt step from the
Prompt palette to the Design pane, and dropping it over the second Create
Conditional Prompt step.

Then configure the Create Container Prompt step to ask the caller to speak the
name of the desired person.

This container prompt is an escalating container prompt, which consists of a
series of prompts, each of which provides more information to the caller. If the
first prompt attempt does not receive valid input, the step prompts the caller with
the next prompt in the sequence. This progression continues until either the caller
returns valid input or the step reaches the last prompt in the sequence.
12-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
Figure 12-5 shows the configured Create Container Prompt customizer window.

Figure 12-5 Configured Create Container Prompt Customizer Window

Configure the Create Container Prompt customizer window as follows:

 • Prompt Container Type—escalating

The prompt container type is escalating, a series of prompts that provides
increasing amounts of information.

 • Prompts List Box

 – SP[AA\AANameDial0_ASR]

 – SP[AA\AANameDial1_ASR]

 – SP[AA\AANameDial2_ASR]

The three prompts that are played, one after the other, if the media steps must
use all three (or more) attempts at eliciting a valid response.

 • Override Language (optional)—(not chosen)
12-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
You can check this option in order to specify a different language than the
original language context of the contact.

 • Output Prompt—namePrompt

This prompt results from the Create Container Prompt step.

The Third Create Conditional Prompt Step
Continue to build the aa.aef script by dragging the third of three Create
Conditional Prompt steps from the Prompt palette to the Design pane, and
dropping it over the Create Container Prompt step.

Configure the third Create Conditional Prompt step to play back one of two
prompts, according to whether or not ASR is enabled for this call.

Configure the properties of the third Create Conditional Prompt step in the same
manner as the first Create Conditional Prompt step (see The First Create
Conditional Prompt Step, page 12-12), with the following two exceptions:

 • True Prompt—namePrompt

The script plays back namePrompt (as configured by the previous Create
Container Prompt step) if the condition evaluates to true; that is, if ASR is
enabled for this call.

 • False Prompt—AA/AANameDial

If ASR is not enabled, then the value of namePrompt becomes the system
prompt AA/AANameDial (one of the system prompts included with the
aa.aef file), which prompts the caller to spell the name of the desired person
by pressing digits.

The Play Prompt Step
Continue the aa.aef script by dragging a Play Prompt step from the Prompt palette
to the Design pane, and dropping it over the third Create Conditional Prompt step,
as shown in Figure 12-1.

Then configure the Play Prompt step to plays the prompts that the other Prompt
steps create.
12-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
Figure 12-6 shows the configured Prompt tab of the Play Prompt customizer
window.

Figure 12-6 Play Prompt Customizer Window—Configured Prompt Tab

Configure the three tabs of the Play Prompt customizer window as follows:

 • General tab

 – Contact—Triggering contact

The contact that triggered the script remains the contact for this step.

 – Interruptible—No

No external events can interrupt the playback of the prompt.

 • Prompt tab

 – Prompt—welcomePrompt

This prompt plays back to greet the caller.

 – Barge In—No

The caller must listen to the whole prompt before responding.

 – Continue on Prompt Errors—Yes

If a prompt error occurs, the script continues to play the next prompt, or,
if this is the last prompt in the sequence, the script waits for caller input.

 • Input tab

 – Flush Input Buffer— Yes
12-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Getting the Contact Information and Setting Up the Prompts
The step erases previous input.

The Label Step (MainMenu)
Continue the aa.aef script by dragging a Label step from the General palette to the
Design pane, and dropping it over the Play Prompt step.

Then configure the Label step to create a target for the script. This target is used
later in the script when an output branch reaches a timeout, unsuccessful, or
otherwise dead-end position and the script returns the caller to the Label step to
try again.

The Label step is named MainMenu.

Note For an example of configuring the Label step, see “The Label Step” section on
page 6-10.
12-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Determining if the System is ASR Enabled
Determining if the System is ASR Enabled
This section contains the following:

 • If ASR, page 12-19

 • The True Output Branch, page 12-20

 • The False Output Branch, page 12-20

 • The Switch Step, page 12-21

If ASR
Continue the aa.aef script by dragging an If step from the General palette to the
Design pane, and dropping it over the Label step.

Then configure the If step to determine which segment of the script handles the
contact, depending on whether or not the system is ASR-enabled and Name To
User capability is enabled or supported.

The If step evaluates the expression “asr || AlwaysEnableDialByName” (“either
ASR is enabled, or the system allows the caller to enter the person’s name to
which they would like to be connected”).

Note For an example of configuring the If step, see “The If Step” section on page 7-17.
12-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Determining if the System is ASR Enabled
Figure 12-7 shows the If step’s two output branches, True and False.

Figure 12-7 If Step Scripting

The following sections describe the two output branches of the If step:

 • The True Output Branch, page 12-20

 • The False Output Branch, page 12-20

The True Output Branch
If the If step evaluates the expression “asr || AlwaysEnableDialByName” as true,
the script executes the True output branch, which allows the script to fall through
to the subsequent Create Container Prompt step in the script.

Note Use an Annotate step to contain notes describing the function of the branch. (This
step has no impact on script functionality.) For more information about using the
Annotate step, see “The Annotate Step” section on page 8-6.

The False Output Branch
If the If step evaluates the expression “asr || AlwaysEnableDialByName” as false,
the script executes the False output branch.
12-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Determining if the System is ASR Enabled
Configure the False output branch of the If step to use a Switch step to allow the
script to automatically enable the Dial By Name feature based on the language
associated with the call. If the language is either English or Canadian French, then
the script prompts the caller for the option to Dial By Name.

The False out put branch contains the Switch step, discussed below.

The Switch Step
Configure the False output branch of the If step by dragging a Switch step from
the General palette to the Design pane, and dropping it over the False icon under
the If step.

Then configure the Switch step to evaluate the value of the language variable (as
retrieved by the previous Get Contact Info step) and to switch the language
context of the call accordingly.

Figure 12-8 shows the configured Switch customizer window.

Figure 12-8 Configured Switch Customizer Window
12-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Creating and Setting an Error Message Prompt
Configure the Switch customizer window as follows:

 • Switch Value—language

The variable that stores the current language of the call.

 • Case(s)—L[en], L[fr_CA]

The language options available for the call.

The Switch step has three output branches, based on the language variable as
specified in the Switch Expression text field: L[en], L[fr_CA], and Default.

The following sections describe the three output branches of the Switch step:

 • The L[en] Output Branch, page 12-22

 • The L[fr_CA] Output Branch, page 12-22

 • The Default Output Branch, page 12-22

The L[en] Output Branch
If the Switch step determines that English is the language context of the call, the
script executes the L[en] output branch and the script uses English in subsequent
steps.

The L[fr_CA] Output Branch
If the Switch step determines that Canadian French is the language context of the
call, the script executes the L[fr_CA] output branch, and the script uses Canadian
French in subsequent steps.

The Default Output Branch
If the Switch step determines that Dial By Name is not supported for this call, the
script executes the Default output branch.

Configure the Default output branch of the Switch step to use the Goto step to
send the caller to the DialByExtn Label step under the Simple Recognition step.
(See The Get Digit String Step, page 12-29.)

Creating and Setting an Error Message Prompt
 • The Second Create Container Prompt Step, page 12-23

 • The Set Step, page 12-23
12-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Creating and Setting an Error Message Prompt
The Second Create Container Prompt Step
Continue the aa.aef script by dragging a second Create Container Prompt step
from the Prompt palette to the Design pane, and dropping it over the If step.

Then configure the second Create Container Prompt step to create an escalating
prompt called prompt, which combines menuPrompt (the first prompt created in
the script; see the “The First Create Conditional Prompt Step” section on
page 12-12) with a new prompt called prefixPrompt.

The prefixPrompt variable initializes with no value in the beginning, but as the
caller loops through the application and fails to be connected to a destination, this
variable holds an error message to be played back to the caller.

Use an escalating prompt so that the error message plays only on the first attempt
of the subsequent Simple Recognition step, which uses the prompt created by this
step.

Configure this Create Container Prompt step as follows:

 • Type—escalating

This step creates an escalating prompt.

 • Prompts List Box

 – prefixPrompt + menuPrompt

 – menuPrompt

This specifies the prompt phrases that are played if the Media step uses more
than one attempt at eliciting a valid response from the caller.

 • Override Language (optional)—(not chosen)

You can check this option in order to specify a different language than the
original language context of the contact.

 • Output Prompt—prompt

This prompt results from this (second) Create Container Prompt step.

The Set Step
Continue the aa.aef script by dragging a Set step from the General palette to the
Design pane, and dropping it over the second Create Container Prompt step.
12-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Recognizing Input
Then configure the Set step to set the value of prefixPrompt to P[], which means
it is empty.

This script uses this Set step to return callers to the MainMenu Label step to listen
to menu options again, in order to clear this prompt of values that the script may
have previously assigned.

Recognizing Input
Continue the aa.aef script by dragging a Simple Recognition step from the Media
palette to the Design pane, and dropping it over the Set step.

Then configure the Simple Recognition step to receive either speech or digits in
response to prompts. The script steps under the Simple Recognition step transfer
the call to the proper extension if the script receives valid input from the caller.

Note The Simple Recognition step is similar to the Menu step, with the added
advantage that it allows you to utilize user-defined grammar for matching user
input with options you provide.

Use this step to configure grammar variables that store the words or digits that the
script must recognize in order to dial an extension number, a name, or the
operator, depending on the input from the caller.
12-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Recognizing Input
Figure 12-9 shows the configured Filter tab of the Simple Recognition customizer
window.

Figure 12-9 Simple Recognition Customizer Window—Configured Filter Tab

Configure the Simple Recognition customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The contact that triggered this script remains the contact for this step.

 – Interruptible—Yes

External events can interrupt the execution of this step.

 • Prompt tab

 – Prompt—prompt

The step plays this prompt back to the caller.

 – Barge In—Yes

The caller can respond without first having to listen to the playback of
the entire prompt.
12-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Recognizing Input
 – Continue on Prompt Errors—Yes

If a prompt error occurs, the script continues to play the next prompt, or,
if this is the last prompt in the sequence, the script waits for caller input.

 • Input tab

 – Timeout (in sec)—5

After playing all prompts, the script waits 5 seconds for initial input from
the caller before re-attempting with a timeout error, or, if this was the last
attempt, the script executes the Timeout output branch.

 – Maximum Retries—5

The script will retry to receive input 5 times before sending the script to
the Unsuccessful output branch.

 – Flush Input Buffer—No

The script saves previous input.

 • Filter tab

 – Grammar—SG[AA\AAMainMenu]

The system grammar that the step uses to recognize caller input.

 – Options Tag/Connection list box—DialByExtn, DialByName,
Operator

The list of options the menu offers to the caller. The tags map to the
output points to determine the execution of branching output paths.

Note The tag values must correspond to the tag values defined in the
grammar.
12-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByExtn Output Branch of the Simple Recognition Step
The Simple Recognition step contains two built-in output branches: Timeout and
Unsuccessful. Add three output branches, as shown in Figure 12-10,
corresponding to the three choices menuPrompt gives the caller: to dial by
extension, dial by name, or to dial the operator.

Figure 12-10 Simple Recognition Step Output Branches

The Timeout and Unsuccessful output branches need no scripting. If the script
reaches either of these branches, it falls through to the next step on the same level
as the Simple Recognition step, the second Play Prompt step (see The Play Prompt
Step, page 12-79).

The following sections describe the three designer-specified output branches,
each of which is described in its own section:

 • The DialByExtn Output Branch of the Simple Recognition Step, page 12-27

 • The DialByName Output Branch of the Simple Recognition Step, page 12-46

 • The Operator Output Branch of the Simple Recognition Step, page 12-73

The DialByExtn Output Branch of the Simple
Recognition Step

If the caller chooses menu option “1” (press or say an extension number) when
given the option by the Simple Recognition step, the script executes the
DialByExtn output branch.

Then configure the DialByExtn output branch of the Simple Recognition step to
receive the extension number provided by the caller.
12-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByExtn Output Branch of the Simple Recognition Step
Figure 12-11 shows the scripting under the DialByExtn output branch of the
Simple Recognition step.

Figure 12-11 DialByExtn Scripting

The DialByExtn contains the following steps, the last of which is discussed in its
own section:

 • The Label Step, page 12-28

 • The Create Container Prompt Step, page 12-28

 • The Set Step, page 12-29

 • The Get Digit String Step, page 12-29

The Label Step
Begin the DialByExtn output branch of the Simple Recognition step by dragging
a Label step from the General palette to the Design pane, and dropping it over the
DialByExtn icon under the Simple Recognition step.

Then configure the Label step to create a target for the Goto step under the default
output branch of the If step above. (See If ASR, page 12-19.)

The Create Container Prompt Step
Continue the DialByExtn output branch of the Simple Recognition step by
dragging a Create Container Prompt step from the General palette to the Design
pane, and dropping it over the Label step (DialByExtn) icon under the
DialByExtn icon.
12-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByExtn Output Branch of the Simple Recognition Step
Then configure the Create Container Prompt step to create a concatenated
container prompt, consisting of prefixPrompt (see The Second Create Container
Prompt Step, page 12-23) and extnPrompt, a preset prompt that prompts the
caller to either press or say the extension number (with a possible error message
when looping back if there is an error connecting to the destination).

The Set Step
Continue the DialByExtn output branch of the Simple Recognition step by
dragging a Set step from the General palette to the Design pane, and dropping it
over the Create Container Prompt icon under the DialByExtn icon.

Then configure the Set step to set the value of prefixPrompt to P[], which clears
prefixPrompt of any values that the script may have previously assigned.

The Get Digit String Step
Conclude the DialByExtn output branch of the Simple Recognition step by
dragging a Get Digit String step from the Media palette to the Design pane, and
dropping it over the Set step icon under the DialByExtn icon.

Then configure the Get Digit String step to receive the digits entered by the caller
in response to prompt, stores them in a result digit string variable named
extnXfer, and then attempt to transfer the call.

Note For more information on configuring the Get Digit String step, see “The Get Digit
String Step” section on page 7-25.

The Get Digit String has three output branches: Successful, Timeout, and
Unsuccessful.
12-29
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Successful Output Branch (of Get Digit String)
Figure 12-12 shows the output branches of the Get Digit String step.

Figure 12-12 Get Digit String Output Branches

The following sections describe the three output branches of the Get Digit String
step:

 • The Timeout Output Branch, page 12-30

 • The Unsuccessful Output Branch, page 12-30

 • The Successful Output Branch (of Get Digit String), page 12-30

The Timeout Output Branch
If the Get Digit String step does not receive input before reaching the timeout
limit, the script executes the Timeout output branch, and the script skips the rest
of the output branches of the Simple Recognition step and falls through to the
second Play Prompt step (see The Play Prompt Step, page 12-79).

The Unsuccessful Output Branch
If the Get Digit String step is unsuccessful in receiving valid input, the script
executes the Unsuccessful output branch, and the script skips the rest of the output
branches of the Simple Recognition step and falls through to the second Play
Prompt step (see The Play Prompt Step, page 12-79).

The Successful Output Branch (of Get Digit
String)

If the Get Digit String step successfully receives caller input, the script executes
the Successful output branch.
12-30
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Successful Output Branch (of Get Digit String)
Figure 12-13 shows the scripting of the Successful output branch of the Get Digit
String step.

Figure 12-13 Get Digit String—Successful Branch Scripting

Configure the Successful output branch of the Get Digit String step to transfer the
call.

The Successful output branch of the Get Digit String step contains an If step,
discussed in the section that follows.
12-31
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Successful Output Branch (of Get Digit String)
Transferring the Call if Recognition Is Successful
Continue the aa.aef script by dragging an If step from the General palette to the
Design pane, and dropping it over the Get Digit String step. This section
determines which part of the script handles the contact.

In the customizer window of the If step, set the condition toextnXfer == ""

The following sections describe the two output branches of the If step:

 • The True Recognition Branch, page 12-32

 • The False Recognition Branch, page 12-34

The True Recognition Branch
The True Output branch of the If step contains the following steps:

 • Setting the Retry Message, page 12-32

 • Configuring the Number of Retries, page 12-33

Setting the Retry Message
From the General palette, drag the Set step below the True label and set the value
of the prefixPrompt variable.

Configure the Set Customzer window as follows:
12-32
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Successful Output Branch (of Get Digit String)
 • Variable—prefixPrompt

The prefixPrompt is used informing the caller of the status of the call.

 • Value— SP[AA\AAInvalidExtn] + DP[500]

Configuring the Number of Retries

From the General palette, drag the If step below the Set step.

Configure the If step in the customizer window so that the condition reads
Attempts < MaxRetry.

The Retry Branch

The True branch of the If step contains:

 • Increment Step, page 12-33

 • Goto MainMenu Step, page 12-34

Increment Step
From the General palette, drag the Increment step and place it under the True
branch. In the Increment step customizer window set the value of the Increment
variable to Attempts.
12-33
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Successful Output Branch (of Get Digit String)
Goto MainMenu Step
To finish the True branch of the If step, from the General palette, drag the Goto
step under the Increment step and in the customizer window choose the
MainMenu label.

The False Recognition Branch
The False Output branch of the If transfer step contains the following steps:

 • Drag a Create Generated Prompt step from the Prompt palette to the Design
pane and drop it on the False output of the Successful icon under the Get Digit
String step., page 12-35

 • Use the Create Language Prompt step to localize the prompt with a specific
language., page 12-36
12-34
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Confirming the Caller Input
 • Continue the Successful output branch of the Get Digit String step by
dragging an Implicit Confirmation step from the Media palette to the Design
pane, and dropping it over the Create Generated Prompt step icon under the
Successful icon under the Get Digit String step., page 12-38

Confirming the Caller Input
Drag a Create Generated Prompt step from the Prompt palette to the Design pane
and drop it on the False output of the Successful icon under the Get Digit String
step.

Then configure the Create Generated Prompt step to create a prompt to play back
to the caller the digits received, in order to confirm the caller input before
transferring the call.

Figure 12-14 shows the configured Create Generated Prompt customizer window.

Figure 12-14 Configured Create Generated Prompt Customizer Window

Configure the Create Generated Prompt customizer window as follows:
12-35
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Localizing the Prompt Language
 • Generator Type— telephone.number

Telephone.number is the generator type.

 • Constructor Type—number

Number is the constructor type.

 • Argument Information list box—extnXfer

The extnXfer variable stores the results of the number constructor.

 • Override Language

Optional. Use only if the resulting prompt is played in a different language
than the one defined by the contact in which the prompt is played back.

 • Output Prompt—prompt

The prompt variable stores the value that results from this step.

Localizing the Prompt Language
Use the Create Language Prompt step to localize the prompt with a specific
language.
12-36
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Localizing the Prompt Language
Figure 12-15 Configured Create Language Prompt Customizer Window

Configure the Create Language Prompt customizer window as follows:

 • Options— Language and Prompt

Enter all the languages you want and all the prompt expression names or
prompt expressions.

 • Output Prompt— telephone.number

Enter the script variable where the prompt that results from the Create
Language Prompt step will be stored.

You can use the Create Language Prompt step to adapt concatenating prompts to
the sentence structures of different languages. For example, a normal grammar
sequence for an English sentence is Subject + Verb + Object. For a Japanese
sentence, it is Subject + Object + Verb. The selection of the prompt is based on
the standard search for a matching language. For example, assuming a language
context of {L[fr_FR}, L[en_GB]}, the search returns the first prompt defined for
the following languages: L[fr_FR], L[fr], L[en_GB], L[en], and finally L[].

See Chapter 4, “Localizing Cisco Unified CCX Scripts” for more information on
localizing scripts.
12-37
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Completing the Input Confirmation
Completing the Input Confirmation
Continue the Successful output branch of the Get Digit String step by dragging an
Implicit Confirmation step from the Media palette to the Design pane, and
dropping it over the Create Generated Prompt step icon under the Successful icon
under the Get Digit String step.

Then configure the Implicit Confirmation step to confirm the extension entered
without requiring more input from the caller.

Figure 12-16 shows the prompt tab of the configured Implicit Confirmation
customizer window.

Figure 12-16 Configured Implicit Confirmation Customizer Window

Configure the Implicit Confirmation customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The contact that triggered this script remains the contact for this step.

 – Interruptible—Yes

External events are allowed to interrupt the execution of this step.

 • Prompt tab

 – Prompt—prompt

The step plays this prompt back to the caller.

 – Continue on Prompt errors—Yes
12-38
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Completing the Input Confirmation
In the event of a prompt error, the script will play the next prompt in the
sequence, or if this is the last prompt, will wait for caller input.

 • Input tab

 – Timeout (in sec)— 2

The caller has 2 seconds to stop the transfer before the script accepts the
confirmation and transfers the call.

The Implicit Confirmation step has two output branches: No and Yes.

The following sections describe these two output branches:

 • The Caller Does Not Give Confirmation, page 12-39

 • The Extension is Confirmed as Correct, page 12-41

The Caller Does Not Give Confirmation
If the caller interrupts the Implicit Confirmation step and thereby does not give
confirmation, the script executes the No output branch.

Configure the No output branch of the Implicit Confirmation step to Use an If step
to try again, until the maximum number of retries is reached.

The No output branch contains the following step:

 • Configuring the Retries, page 12-39

Configuring the Retries
Configure the No output branch of the Implicit Confirmation step by dragging an
If step from the General palette to the Design pane, and dropping it over the No
icon under the Implicit Confirmation step.

Then configure the If step to allow the script to determine whether or not the
maximum number of retries has been reached, by evaluating the expression
“attempts < MaxRetry”, (“the number of attempts, as stored in the attempts
variable, is less than the maximum number of retries, as stored in the MaxRetry
variable”).

The If step has two output branches: True and False.

The following sections describe these two output branches:
12-39
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Completing the Input Confirmation
 • The Caller With Retries Gives Confirmation, page 12-40

 • The Caller Does Not Give Confirmation, page 12-41

The Caller With Retries Gives Confirmation
If the If step determines that the maximum number of retries has not been reached,
the script executes the True output branch.

Configure the True output branch of the If step to increment the number of retries
by one and to give the caller another try.

The True output branch of the If step contains three functional steps:

The Play Prompt Step

Continue the True output branch of the If step by dragging a Play Prompt step
from the Prompt palette to the Design pane, and dropping it over the True icon
under the If step.

Then configure the Play Prompt step to play an empty prompt, P[], in order to
flush the DTMF buffer of any digits that the script may have accumulated as part
of the previous Implicit Confirmation step.

Note Configure the Play Prompt step with an empty prompt to enable the script to
return immediately from this step after flushing out the buffer.

The Increment Step
Continue the True output branch of the If step by dragging an Increment step from
the General palette to the Design pane, and dropping it over the Play Prompt step
icon under the True icon under If step.

Then configure the Increment step to increase the number of attempts until the
maximum number of retries is reached.
12-40
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Transferring the Call
The Goto Step
Ends the True output branch of the If step by dragging a Goto step from the
General palette to the Design pane, and dropping it over the Increment step icon
under the True icon under the If step.

Then configure the Goto step to return the caller to the beginning of the
DialByExtn Label step at the beginning of the DialByExtn output branch of the
Get Digit String step, in order to give the caller more attempts to input the proper
extension.

The Caller Does Not Give Confirmation
If the If step determines that the maximum number or retries has been reached,
the script executes the False output branch.

Configure the False output branch of the If step to skip the rest of the steps under
the Simple Recognition step and fall through to the second Play Prompt step (see
The Play Prompt Step, page 12-79).

The Extension is Confirmed as Correct
If the Implicit Confirmation step successfully confirms the extension, the script
executes the Yes output branch of the Implicit Confirmation step.

Configure the Yes output branch of the Implicit Confirmation step to transfer the
call.

The Yes output branch contains the following steps:

 • Transferring the Call, page 12-41

 • The If Step, page 12-45

Transferring the Call
Begin the Yes output branch of the Implicit Confirmation step by dragging a Call
Redirect step from the Call Contact palette to the Design pane and dropping it
over the Yes icon under the Implicit Confirmation step.
12-41
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Transferring the Call
As in the other two main output branches of the Simple Recognition step
(DialByName and Operator), the DialByExtn output branch contains the Call
Redirect step. This step attempts to transfer the call, which, in this case, is the
desired extension number.

As shown in Figure 12-17, the Call Redirect step has four output branches.

Figure 12-17 Call Redirect Output Branch Scripting

The following sections describe these four output branches.

 • Successfully Transferring the Call, page 12-42

 • Receiving a Busy Signal, page 12-43

 • Registering an Invalid Transfer Extension, page 12-44

 • Unsuccessfully Transferring the Call, page 12-44

Successfully Transferring the Call
If the Call Redirect step successfully transfers the call, the script executes the
Successful output branch.

Configure the Successful output branch of the Call Redirect step to mark the
contact as Handled and to end the script.

The Successful output branch of the Call Redirect step contains two steps:
12-42
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Transferring the Call
 • The Set Contact Info Step, page 12-43

 • The End Step, page 12-43

The Set Contact Info Step

Begin the Successful output branch of the Call Redirect step by dragging a Set
Contact Info step from the Contact palette to the Design pane, and dropping it
over the Successful icon under the Call Redirect step, as shown in Figure 12-17.

Then configure the Set Contact Info step to mark the call as Handled.

Note For reporting purposes, you should use the Set Contact Info step to mark the
contact as Handled; otherwise, reports may not show that the script successfully
handled the contact.

The End Step
Conclude the Successful output branch of the Call Redirect step by dragging an
End step from the General palette to the Design pane, and dropping it over the Set
Contact Info step icon under the Successful icon under the Call Redirect step, as
shown in Figure 12-17.

The End step ends this branch of the script.

Receiving a Busy Signal
If the Call Redirect step registers the destination extension as busy, the script
executes the Busy output branch.

Configure the Busy output branch of the Call Redirect step to set the value of the
prefixPrompt variable to inform the caller that the extension was busy.

The Busy output branch of the Call Redirect step contains the Set step.
12-43
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Transferring the Call
The Set Step
Configure the Busy output branch of the Call Redirect step by dragging a Set step
from the General palette to the Design pane, and dropping it over the Busy icon
under the Call Redirect step, as shown in Figure 12-17.

Then configure the Set step to set the value of prefixPrompt to contain a system
prompt that plays back a message to the caller that the extension is busy.

Registering an Invalid Transfer Extension
If the Call Redirect step registers the destination extension as invalid, the script
executes the Invalid output branch.

Configure the Invalid output branch of the Call Redirect step to set the value of
the prefixPrompt variable to inform the caller that the extension was invalid.

The Invalid output branch of the Call Redirect step contains the Set step.

The Set Step
Configure the Invalid output branch of the Call Redirect step by dragging a Set
step from the General palette to the Design pane, and dropping it over the Invalid
icon under the Call Redirect step, as shown in Figure 12-17.

Then configure the Set step to set the value of prefixPrompt to contain a system
prompt that plays back a message to the caller that the extension is invalid.

Unsuccessfully Transferring the Call
If the Call Redirect step registers the destination extension as out of service, the
script executes the Unsuccessful output branch.

Configure the Unsuccessful output branch of the Call Redirect step to set the
value of the prefixPrompt variable to inform the caller that the extension was out
of service.

The Unsuccessful output branch of the Call Redirect step contains the Set step.
12-44
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
Transferring the Call
The Set Step
Configure the Unsuccessful output branch of the Call Redirect step by dragging a
Set step from the General palette to the Design pane, and dropping it over the
Unsuccessful icon under the Call Redirect step, as shown in Figure 12-17.

Then configure the Set step to set the value of the prefixPrompt to play back a
message to the caller that the extension is out of service.

The If Step
End the Yes output branch of the Implicit Confirmation step by dragging an If step
from the General palette to the Design pane, and dropping it over the Call Redirect
step icon under the Implicit Confirmation step, as shown in Figure 12-17.

Then configure the If step to allow the script to determine whether or not the
maximum number of retries has been reached, by evaluating the expression
“attempts < MaxRetry”, (“the number of attempts, as stored in the attempts
variable, is less than the maximum number of retries, as stored in the MaxRetry
variable”).

The If step has two output branches, True and False.

The following sections describe these two output branches.

 • The True Output Branch, page 12-45

 • The False Output Branch, page 12-46

The True Output Branch

If the If step determines that the maximum number of retries has not been reached,
the script executes the True output branch.

Configure the True output branch of the If step to allow the caller to keep
returning to the MainMenu Label until it reaches the maximum number of retries.

The True output branch contains two steps:

 • The Increment Step, page 12-46

 • The Goto Step, page 12-46
12-45
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
The Increment Step
Begin the True output branch of the If step by dragging an Increment step from
the General palette to the Design pane, and dropping it over the True icon under
the If step, as shown in Figure 12-17. Then configure the Increment step to
increase the numbers or retries by 1.

The Goto Step
End the True output branch of the If step by dragging a Goto step from the General
palette to the Design pane, and dropping it over the True step icon under the under
the If step, as shown in Figure 12-17.

Then configure the Goto step to send the caller back to the Label step named
MainMenu to provide the caller another opportunity to enter an extension.

The False Output Branch

If the If step determines that the maximum number of retries has been reached,
the script executes the False output branch.

Configure the False output branch of the If step to fall through to the second Play
Prompt step (see The Play Prompt Step, page 12-79).

The DialByName Output Branch of the Simple
Recognition Step

If the caller chooses menu option “2” (press or say to enter the name of a person)
when given the option by the Simple Recognition step, the script executes the
DialByName output branch.

Configure the DialByName output branch of the Simple Recognition step to
receive the name of the person the caller desires to reach.
12-46
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
Figure 12-18 shows the scripting under the DialByName output branch of the
Simple Recognition step.

Figure 12-18 DialByName Output Branch Scripting

The DialByName output branch contains four functional steps, the last of which
is described in its own section:

 • The Label Step, page 12-47

 • The Create Container Prompt Step, page 12-48

 • Continue the Successful output branch of the Get Digit String step by
dragging an Implicit Confirmation step from the Media palette to the Design
pane, and dropping it over the Create Generated Prompt step icon under the
Successful icon under the Get Digit String step., page 12-38

 • The Set Step, page 12-48

 • The Name To User Step, page 12-48

The Label Step
Begin the DialByName output branch of the Simple Recognition step by dragging
a Label step from the General palette to the Design pane, and dropping it over the
DialByName icon under the Simple Recognition step icon, as shown in
Figure 12-18.

Then name the Label step DialByName to provide a target for the script to provide
the caller more opportunities if necessary to enter a name successfully.
12-47
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
The Create Container Prompt Step
Continue the DialByName output branch of the Simple Recognition step by
dragging a Create Container Prompt step from the Prompt palette to the Design
pane, and dropping it over the Label step icon under the DialByName icon under
the Simple Recognition step icon, as shown in Figure 12-18.

Then configure the Create Container Prompt step to create a prompt that asks the
caller to enter the name of the desired person.

The Set Step
Continue the DialByName output branch of the Simple Recognition step by
dragging a Set step from the General palette to the Design pane, and dropping it
over the Create Container Prompt step icon under the Simple Recognition step
icon, as shown in Figure 12-18.

Then configure the Set step to clear the value of the prefixPrompt variable, so
that it can be assigned by subsequent steps.

The Name To User Step
End the DialByName output branch of the Simple Recognition step by dragging
a Name To User step from the Media palette to the Design pane, and dropping it
over the Set step icon under the Simple Recognition step icon, as shown in
Figure 12-18.

Then configure the Name To User step to allow the caller to find a user based on
either DTMF digits or spoken input from the caller.

The Name To User customizer window has three tabs: General, Prompt, and
Input.
12-48
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
Figure 12-19 shows the configured General tab of the Name To User customizer
window.

Figure 12-19 Name To User Customizer Window—Configured General Tab

Configure the Name To User customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The contact that triggered the script remains the contact for this step.

 – Interruptible—Yes

External events can interrupt the playback of the prompt.

 – Operator—Yes

The script gives the caller the option to connect to an operator by
pressing “0” or saying “operator” in the appropriate language.

 – Result User—user

The user variable stores the user object that maps to the selection of the
caller.

 • Prompt tab

 – Prompt—prompt

The prompt variable stores the custom prompt the script plays back to
the caller.
12-49
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
 – Match Threshold—4

If the number of matches is less than 4, the script prompts the caller to
choose the correct entry from the list of matches. If the number of
matches is greater than or equal to 4, the script prompts the caller to enter
additional letters to reduce the number of matches.

 – Barge In—Yes

The caller can respond without first having to listen to the playback of
the entire prompt.

 – Continue On Prompt Errors—Yes

If a prompt error occurs, the script continues to play the next prompt, or,
if this prompt is the last in the sequence, the script waits for caller input.

 • Input tab

 – Initial Timeout (in sec)—5

The step times out if the script receives no input within 5 seconds after
playing back the prompt.

 – Interdigit Timeout (in sec)—3

The step times out if the script receives no input between digits for 3
seconds.

 – Maximum Retries—5

The maximum number of retries is 5.

 – Flush Input Buffer—No

The script saves input previously entered by the caller.

 • Filter tab

 – Input Length—30

Specifies that the script automatically triggers a lookup when the caller
enters 30 digits.

 – Terminating Digit—#

The terminating digit is “#”.

 – Cancel Digit—*

The cancel digit is “*”.
12-50
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
The Name To User step has four output branches: Successful, Timeout
Unsuccessful and Operator.

The Timeout and Unsuccessful output branches need no scripting. If the step
times out, the script falls through to the second Play Prompt step (see The Play
Prompt Step, page 12-79). If an invalid entry is made, after 5 attempts the script
also falls through to the second Play Prompt step (see The Play Prompt Step,
page 12-79).

Two output branches require scripting, each of which is described in its own
section:

 • The Successfully Receiving Caller Input, page 12-51

 • The Operator Output Branch of the Simple Recognition Step, page 12-73

The Successfully Receiving Caller Input

If the Name to User step successfully receives caller input, the script executes the
Successful output branch.

Then configure the Successful output branch of the Name To User step to receive
confirmation of the name from the caller and to transfer the call.

The steps under this branch are similar to the steps under the Successful output
branch of the Get Digit String step above (See The Get Digit String Step,
page 12-29); the script requests confirmation, and redirects the call to the desired
extension.
12-51
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
Figure 12-20 shows the scripting under the Successful output branch of the Name
To User step.

Figure 12-20 Name To User—Successful Output Branch Scripting

The Successful output branch of the Name To User step contains three main steps,
the last of which is discussed in its own section:

 • The Get User Info Step, page 12-53

 • The If Step, page 12-54

 • The Implicit Confirmation Step, page 12-54
12-52
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
The Get User Info Step

Begin the Successful output branch of the Name To User step by dragging a Get
User Info step from the User palette to the Design pane, and dropping it over the
Successful icon under the Name To User step icon, as shown in Figure 12-20.

Then configure the Get User Info step to make user attributes available to the
script. Figure 12-21 shows the configured customizer window for the Get User
Info step.

Figure 12-21 Configured Get User Info Customizer Window

Configure the Get User Info customizer window as follows:

 • User—user

Specifies user as the variable that holds a handle to the user information
selected by the Name To User step.

 • Attribute/Variable text box

 – Full Name—name

 – Extension—extnXfer

 – Spoken Name—spokenName
12-53
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The DialByName Output Branch of the Simple Recognition Step
The If Step

Continue the Successful output branch of the Name To User step by dragging an
If step from the General palette to the Design pane, and dropping it over the Get
User Info step icon under the Name To User step icon, as shown in Figure 12-20.

Then configure the If step to create a prompt based on whether or not a recording
of the spoken name of the person whose extension is being called is available.

The If step evaluates the Boolean expression spokenName==null; or, the value of
the Document variable spokenName is equal to null.

The If step has two output branches: True and False. (See Figure 12-20.)

The following sections describe the two output branches of the If step:

 • The True Output Branch, page 12-54

 • The False Output Branch, page 12-54

The True Output Branch
If the If step determines that a recording of the spoken name of the person whose
extension is being called is not available, the script executes the True output
branch.

Configure the True output branch of the If step to instruct prompt to play the
system prompt SP[AA/AACalling], which does not speak the name of the person
being called.

The False Output Branch
If the If step determines that a recording of the spoken name of the person whose
extension is being called is available, the script executes the False output branch.

Configure the False output branch of the If step to instruct prompt to play the
system prompt SP[AA/AACallingName], which is then followed by the spoken
name.

The Implicit Confirmation Step
End the Successful output branch of the Name To User step by dragging an
Implicit Confirmation step from the Media palette to the Design pane, and
dropping it over the If step icon under the Name To User step icon, as shown in
Figure 12-20.
12-54
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
Then configure the Implicit Confirmation step to implicitly confirm the name
entered without demanding more input from the caller.

The Implicit Confirmation step performs in a similar way to the DialByExtn
section above. (See Localizing the Prompt Language, page 12-36).

The Implicit Confirmation Step has two output branches: No and Yes. (See
Figure 12-20.)

The following sections describe the two output branches of the Implicit
Confirmation step:

 • The No Output Branch of the Simple Recognition Step, page 12-55

 • The Yes Output Branch, page 12-66

The No Output Branch of the Simple Recognition
Step

If the Implicit Confirmation step does not successfully confirm the choice of the
caller, the script executes the No output branch.

Configure the No output branch of the If step to create a prompt that will then
provide the caller an opportunity to explicitly confirm the choice.
12-55
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
Figure 12-22 shows the scripting under the No output branch of the Implicit
Confirmation step.

Figure 12-22 Name To User—No Output Branch of Implicit Confirmation Step

The No output branch of the Implicit Confirmation step contains nine functional
steps:

 • Get User Info Step, page 12-57

 • The First Create Generated Prompt Step, page 12-57

 • The Second Create Generated Prompt Step, page 12-58

 • The First Create Conditional Prompt Step, page 12-59

 • The If Step, page 12-60
12-56
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
 • The Create Container Prompt Step, page 12-61

 • The Set Step, page 12-62

 • The Explicit Confirmation Step, page 12-62

 • The If Step, page 12-65

Get User Info Step
The purpose of this step is to fall back to a spelling prompt if the name is not
spoken or text to speech is not available. See The Get User Info Step, page 12-53
for an explanation of how to configure this step.

The First Create Generated Prompt Step
Drag a Create Generated Prompt step from the Prompt palette to the Design pane,
and drop it on the False output of the Successful icon under the Get User Info step.

Then configure the Create Generated Prompt step to create a prompt to play back
to the caller the digits received, in order to confirm the caller input before
transferring the call.
12-57
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
Figure 12-23 shows the configured Create Generated Prompt customizer window.

Figure 12-23 Create Generated Prompt customizer window

The Second Create Generated Prompt Step
Enter a second Create Generated Prompt step.
12-58
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The First Create Conditional Prompt Step
Begin the No output branch of the Implicit Confirmation step by dragging a
Create Conditional Prompt step from the Prompt palette to the Design pane, and
dropping it over the No output branch icon under the Implicit Confirmation step
icon, as shown in Figure 12-22.

Then configure the first Create Conditional Prompt step to create a prompt based
on whether or not the variable spokenName is null. (The spokenName variable
is not null if a spoken name exists for the selected user in the directory.)

If it is true that spokenName is null, the prompt plays the prompt S[name], which
corresponds to the name of the user spelled back one letter at a time. If the
expression is false, (which means there is a recording of the name of the person),
the prompt plays P[] + spokenName.
12-59
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The If Step
Continue the No output branch of the Implicit Confirmation step by dragging an
If step from the General palette to the Design pane, and dropping it under the first
Create Conditional Prompt step icon under the Implicit Confirmation step icon,
as shown in Figure 12-22.

In the If customizer window, set the condition as ASR.

True Branch—Create Language Prompt
From the Prompt palette, drag a Create Language Prompt step to the Design pane
and drop it in the True branch. In the customizer window of the Create Language
Prompt step, enter the languages and prompts. For more information on
configuring this step, see Localizing the Prompt Language, page 12-36.
12-60
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
False Branch—Set Prompt

From the General palette, drag a Set step to the Design pane and drop it in the
False branch. In the customizer window of the Set step, select the variable
Prompt, and enter prompt + DP[250] + SP[AA\AAWant2Call] as its value.

Then configure the second Create Conditional Prompt step to create a prompt
based on whether or not ASR is enabled for this call. If ASR is enabled, the script
plays SP[AA/AAWant2Call_ASR] + prompt (for example, “Do you want to call
John Doe?”). If ASR is not enabled for this call, then the script plays
prompt + DP[250] + SP[AA/AAWant2Call] (for example, “John Doe, is this the
name of the person you want to call?”.

The Create Container Prompt Step
Continue the No output branch of the Implicit Confirmation step by dragging a
Create Container Prompt step from the Prompt palette to the Design pane, and
dropping it on the If step icon under the Implicit Confirmation step icon.
12-61
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The Set Step
Continue the No output branch of the Implicit Confirmation step by dragging a
Set step from the Prompt palette to the Design pane, and dropping it over the
second Create Conditional Prompt step icon under the Implicit Confirmation step
icon, as shown in Figure 12-22.

Then configure the Set step to assign the system grammar
SG[AA/AAWantToCall] to the grammar variable. This choice instructs the script
how to interpret spoken input from the caller.

The Explicit Confirmation Step
Continue the No output branch of the Implicit Confirmation step by dragging an
Explicit Confirmation step from the Media palette to the Design pane, and
dropping it over the Set step icon under the Implicit Confirmation step icon, as
shown in Figure 12-22.

Then configure the Explicit Confirmation step to make an explicit confirmation
of the name of the desired person.
12-62
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
Figure 12-24 shows the configured Prompt tab of the Explicit Confirmation
customizer window.

Figure 12-24 Explicit Confirmation Customizer Window—Configured Prompt Tab

Configure the Explicit Confirmation customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The contact that triggered the script remains the contact for this step.

 – Interruptible—Yes

External events can interrupt the playback of the prompt.

 • Prompt tab

 – Initial Prompt—prompt

The prompt variable stores the first prompt.

 – Error Prompt—prompt

The prompt variable plays in the event of an input error.

 – Timeout Prompt—prompt

The prompt variable plays if the timeout limit is reached.

 – Barge In—Yes
12-63
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The caller can respond without first having to listen to the playback of
the entire prompt.

 – Continue on Prompt Errors—Yes

If a prompt error occurs, the script continues to play the next prompt, or,
if this is the last prompt in the sequence, the script waits for caller input.

 • Input tab

 – Timeout (in sec)—5

After playing all prompts, the script waits 5 seconds for initial input from
the caller before re-attempting with a timeout error, or, if this was the last
attempt, the script executes the Timeout output branch.

 – Maximum Retries—3

The script will attempt a maximum of 3 retries to receive confirmation
before executing the Unsuccessful output branch.

 – Flush Input Buffer—Yes

The step erases previous input.

 • Filter tab

 – Grammar—grammar

This variable is assigned the value SG[AA/AAWantToCall] by the Set
step in the preceding section.

The Explicit Confirmation step has four output branches: Yes, No, Timeout, and
Error.

The No, Timeout, and Error output branches do not require scripting. The script
falls through to the If step (see The If Step, page 12-65) to allow the caller more
attempts to confirm until the maximum retries limit is reached, after which the
script falls through to the Play Prompt step at the same level as the Simple
Recognition step. (See Figure 12-1.)

The following section describes the Yes output branch:

 • The Yes Output Branch, page 12-64

The Yes Output Branch
If the Explicit Confirmation step successfully receives confirmation from the
caller, the script executes the Yes output branch.
12-64
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
Configure the Yes output branch of the Explicit Confirmation step to direct the
script to the Xfer Label step under the Yes output branch of the Implicit
Confirmation step (see The Label Step, page 12-68), which contains the steps
necessary to redirect the call to the desired extension.

The If Step
Finish the No output branch of the Implicit Confirmation step by dragging an If
step from the General palette to the Design pane, and dropping it over the Explicit
Confirmation step icon, as shown in Figure 12-22.

Configure the If step to determine whether or not the maximum number of retries
has been reached, by evaluating the expression “attempts < MaxRetry”; or “the
number of attempts (as stored by the attempts variable) is less than the maximum
retries value stored in the MaxRetry variable.”

The If step has two output branches, True and False. (See Figure 12-22.)

The following sections describe the two output branches of the If step:

 • The True Output Branch, page 12-65

 • The False Output Branch, page 12-66

The True Output Branch

If the If step determines that the maximum number of retries has not been reached,
the script executes the True output branch.

Configure the True output branch of the If step to provide the caller with another
opportunity to enter the name of the desired person.

The following sections describe the two steps under the True output branch of the
If step:

 • The Increment Step, page 12-65

 • The Goto Step (DialByName), page 12-66

The Increment Step
Begin the True output branch of the If step by dragging an Increment step from
the General palette to the Design pane, and dropping it under the True icon under
If step, as shown in Figure 12-22.
12-65
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
Then configure the Increment step to increase the value of the attempts variable
by 1.

The Goto Step (DialByName)
End the True output branch of the If step by dragging a Goto step from the General
palette to the Design pane, and dropping it over the Increment step icon under the
True icon under the If step, as shown in Figure 12-22.

Then configure the Goto step to return the caller to the beginning of the
DialByName Label step at the beginning of the DialByName output branch of the
Name to User step, in order to give the caller more attempts to input the proper
name.

The False Output Branch
If the If step determines that the maximum number of retries has been reached,
the script executes the False output branch, and the script also falls through to the
second Play Prompt step (see The Play Prompt Step, page 12-79).

The Yes Output Branch
If the Implicit Confirmation step is successful, the script executes the Yes output
branch.

Configure the Yes output branch of the If step to redirect the call to the desired
extension.
12-66
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
Figure 12-25 shows the scripting under the Yes output branch of the Implicit
Confirmation step.

Figure 12-25 Name To User—Yes Output Branch of Implicit Confirmation Step

The Yes output branch of the Implicit Confirmation step contains three functional
steps directly underneath it:

 • The Label Step, page 12-68

 • The First If Step, page 12-68

 • The Second If Step, page 12-72
12-67
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The Label Step

Begin the Yes output branch of the Implicit Confirmation step by dragging a Label
step from the General palette to the Design pane, and dropping it over the Yes icon
under the Implicit Confirmation step icon, as shown in Figure 12-25.

Then configure the Label step to provide a target for the Yes output branch of the
Explicit Confirmation step.

The First If Step
Continue the Yes output branch of the Implicit Confirmation step by dragging an
If step from the General palette to the Design pane, and dropping it over the Label
step icon under the Implicit Confirmation step icon, as shown in Figure 12-25.

Then configure the first If step to direct the script based on whether or not the
desired extension exists, by evaluating the expression “extnXfer != null”; or, “the
value of the extnXfer variable (which stores the extension number) is not null.”

The If step has two output branches, True and False. (See Figure 12-25.)

The following sections describe the two output branches of the If step:

 • The False Output Branch, page 12-68

 • The True Output Branch, page 12-68

The False Output Branch
If the If step finds no extension exists for the selected user, the script executes the
False output branch.

Configure the Set step underneath the False output branch to set the value of a
prompt that will be played back to inform the caller that the extension was invalid.

The True Output Branch
If the If step evaluates the desired extension as valid, the script executes the True
output branch.

Configure the True output branch of the If step to transfer the call.

The If step contains one step, described in its own section:

 • The Call Redirect Step, page 12-69
12-68
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The Call Redirect Step
Begin the True output branch of the first If step by dragging a Call Redirect step
from the Call Contact palette to the Design pane, and dropping it over the True
icon under the first If step icon, as shown in Figure 12-25.

As in the other two main output branches of the Simple Recognition step
(DialByExtn and Operator), the DialByName output branch contains the Call
Redirect step, which attempts to transfer the call, in this case, the desired
extension number.

The Call Redirect step has four output branches:

 • The Successful Output Branch, page 12-69

 • The Busy Output Branch, page 12-70

 • The Invalid Output Branch, page 12-71

 • The Unsuccessful Output Branch, page 12-71

Note Adding a 2 second delay is a best practice when you have a script that performs a
a transfer or redirect to another script. Without the delay, there will be a timing
issue. When a transfer or redirect occurs, a call leg is initiated. If the transfer or
redirect completes and then another transfer or redirect occurs, the call leg from
the second transfer or redirect can get stuck. In this case, the second transfer or
redirect fails. Adding a delay ensures that the second transfer or redirect leg can
complete before continuing through the script.

The Successful Output Branch

If the Call Redirect step successfully transfers the call, the script executes the
Successful output branch.

Configure the Successful output branch of the Call Redirect step to mark the
contact as Handled and to end the script.

The Successful output branch of the Call Redirect step contains two steps:

 • The Set Contact Info Step, page 12-70

 • The End Step, page 12-70
12-69
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The Set Contact Info Step
Begin the Successful output branch of the Call Redirect step by dragging a Set
Contact Info step from the Contact palette to the Design pane, and dropping it
over the Successful icon under the Call Redirect step, as shown in Figure 12-25.

Then configure the Set Contact Info step to mark the call as Handled.

Note For reporting purposes, you should use the Set Contact Info step to mark the
contact as Handled; otherwise, reports may not show that the script successfully
handled the contact.

The End Step
Conclude the Successful output branch of the Call Redirect step by dragging an
End step from the General palette to the Design pane, and dropping it over the Set
Contact Info step icon under the Successful icon under the Call Redirect step, as
shown in Figure 12-25.

The End step ends the script and releases all system resources.

The Busy Output Branch
If the Call Redirect step registers the destination extension as busy, the script
executes the Busy output branch.

Configure the Busy output branch of the Call Redirect step to set the value of the
prefixPrompt variable to inform the caller that the extension was busy.

The Busy output branch of the Call Redirect step contains the Set step.

The Set Step
Configure the Busy output branch of the Call Redirect step by dragging a Set step
from the General palette to the Design pane, and dropping it over the Busy icon
under the Call Redirect step, as shown in Figure 12-25.

Then configure the Set step to set the value of prefixPrompt to contain a system
prompt that will play back a message to the caller that the extension is busy when
the script falls through to the final Play Prompt step (see The Call Redirect Step,
page 12-80).
12-70
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The Invalid Output Branch

If the Call Redirect step registers the destination extension as invalid, the script
executes the Invalid output branch.

Configure the Invalid output branch of the Call Redirect step to set the value of
the prefixPrompt variable to inform the caller that the extension was invalid.

The Invalid output branch of the Call Redirect step contains the Set step.

The Set Step
Configure the Invalid output branch of the Call Redirect step by dragging a Set
step from the General palette to the Design pane, and dropping it over the Invalid
icon under the Call Redirect step, as shown in Figure 12-25.

Then configure the Set step to set the value of prefixPrompt to contain a system
prompt that plays back a message to the caller that the extension is invalid when
the script falls through to the final Play Prompt step (see The Call Redirect Step,
page 12-80).

The Unsuccessful Output Branch

If the Call Redirect step registers the destination extension as out of service, the
script executes the Unsuccessful output branch.

Configure the Unsuccessful output branch of the Call Redirect step to set the
value of the prefixPrompt variable to inform the caller that the extension was out
of service.

The Unsuccessful output branch of the Call Redirect step contains the Set step.

The Set Step
Configure the Unsuccessful output branch of the Call Redirect step by dragging a
Set step from the General palette to the Design pane, and dropping it over the
Unsuccessful icon under the Call Redirect step, as shown in Figure 12-25.

Then configure the Set step to set the value of prefixPrompt contain a system
prompt that plays back a message to the caller that the extension is out of service
when the script falls through to the final Play Prompt step (see The Call Redirect
Step, page 12-80).
12-71
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The No Output Branch of the Simple Recognition Step
The Second If Step

End the Yes output branch of the Implicit Confirmation step by dragging a second
If step from the General palette to the Design pane, and dropping it over the first
If step icon under the Implicit Confirmation step icon, as shown in Figure 12-25.

Then configure the second If step to direct the script based on whether or not the
maximum number of retries has been reached, by evaluating the expression
“attempts < MaxRetry”; or, “the number of attempts, as stored in the attempts
variable, is less than the maximum number of retries allowed, as stored in the
MaxRetry variable”).

The If step has two output branches, True and False. (See Figure 12-25.)

The following sections describe the two output branches of the If step:

 • The False Output Branch, page 12-72

 • The True Output Branch, page 12-72

The False Output Branch
If the second If step finds that the maximum number of retries has been reached,
the script executes the False output branch, and the script falls through to the final
Play Prompt step (see The Call Redirect Step, page 12-80).

The True Output Branch
If the If step finds that the maximum number of retries has not been reached, the
script executes the True output branch.

Configure the True output branch of the If step to provide more opportunities for
the caller to successfully enter a name.

The True output branch of the If step contains two functional steps:

 • The Increment Step, page 12-72

 • The Goto Step, page 12-73

The Increment Step
Begin the True output branch of the second If step by dragging an Increment step
from the General palette to the Design pane, and dropping it over the True icon
under the True icon under the If step, as shown in Figure 12-25.

Then configure the Increment step to increase the value of the attempts variable
by 1.
12-72
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Operator Output Branch of the Simple Recognition Step
The Goto Step
End the True output branch of the second If step by dragging a Goto step from the
General palette to the Design pane, and dropping it over the Increment step icon
under the True icon under the If step, as shown in Figure 12-25.

Then configure the Goto step to return the caller to the beginning of the
DialByName Label step at the beginning of the DialByName output branch of the
Get Digit String step, in order to give the caller more attempts to input the proper
extension.

The Operator Output Branch of the Simple
Recognition Step

If the caller chooses menu option “3” (press or say to speak to an operator) when
given the option by the Simple Recognition step, the script executes the Operator
output branch.

Then configure the Operator output branch of the Simple Recognition step to
transfer the call to an operator.
12-73
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Operator Output Branch of the Simple Recognition Step
Figure 12-26 shows the scripting under the Operator output branch of the Simple
Recognition step.

Figure 12-26 Simple Recognition—Operator Output Branch

The Operator output branch of the Simple Recognition step contains three steps,
each of which is described in its own section:

 • The Label Step (Xfer Operator), page 12-74

 • The Call Redirect Step, page 12-75

 • The If Step, page 12-77

The Label Step (Xfer Operator)
Begin the Operator output branch of the Simple Recognition step by dragging a
Label step from the General palette to the Design pane, and dropping it over the
Operator icon under the Simple Recognition step icon, as shown in Figure 12-26.

Then configure the Label step to provide a target for the Goto step.
12-74
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Operator Output Branch of the Simple Recognition Step
The Call Redirect Step
Continue the Operator output branch of the Simple Recognition step by dragging
a Call Redirect step from the Call Contact palette to the Design pane, and
dropping it over the Label step icon under the Simple Recognition step icon, as
shown in Figure 12-26.

As in the other two main output branches of the Simple Recognition step
(DialByExtn and DialByName), the Operator output branch contains the Call
Redirect step, which attempts to transfer the call, in this case to the operator.

For examples using this step, see Chapter 18, “Designing Cisco Unified Gateway
Scripts.”

The Call Redirect step has four output branches:

 • The Successful Output Branch, page 12-75

 • The Busy Output Branch, page 12-76

 • The Invalid Output Branch, page 12-76

 • The Unsuccessful Output Branch, page 12-77

The Successful Output Branch

If the Call Redirect step successfully transfers the call, the script executes the
Successful output branch.

Configure the Successful output branch of the Call Redirect step to transfer the
call.

The Successful output branch of the Call Redirect step contains two steps:

The Set Contact Info Step
Begin the Successful output branch of the Call Redirect step by dragging a Set
Contact Info step from the Contact palette to the Design pane, and dropping it
over the Successful icon under the Call Redirect step, as shown in Figure 12-26.

Then configure the Set Contact Info step to mark the call as Handled.

Note For reporting purposes, you should use the Set Contact Info step to mark the
contact as Handled; otherwise, reports may not show that the script successfully
handled the contact.
12-75
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Operator Output Branch of the Simple Recognition Step
The End Step
Conclude the Successful output branch of the Call Redirect step by dragging an
End step from the General palette to the Design pane, and dropping it over the Set
Contact Info step icon under the Successful icon under the Call Redirect step, as
shown in Figure 12-26.

The End step ends the script and releases all system resources.

The Busy Output Branch

If the Call Redirect step registers the destination extension as busy, the script
executes the Busy output branch.

Configure the Busy output branch of the Call Redirect step to set the value of the
prefixPrompt variable to inform the caller that the extension was busy.

The Busy output branch of the Call Redirect step contains the Set step.

The Set Step
Configure the Busy output branch of the Call Redirect step by dragging a Set step
from the General palette to the Design pane, and dropping it over the Busy icon
under the Call Redirect step, as shown in Figure 12-26.

Then configure the Set step to set the value of prefixPrompt to contain a system
prompt that plays back a message to the caller that the extension is busy.

The Invalid Output Branch

If the Call Redirect step registers the destination extension as invalid, the script
executes the Invalid output branch.

Configure the Invalid output branch of the Call Redirect step to set the value of
the prefixPrompt variable to inform the caller that the extension was invalid.

The Invalid output branch of the Call Redirect step contains the Set step.

The Set Step
Configure the Invalid output branch of the Call Redirect step by dragging a Set
step from the General palette to the Design pane, and dropping it over the Invalid
icon under the Call Redirect step, as shown in Figure 12-26.
12-76
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Operator Output Branch of the Simple Recognition Step
Then configure the Set step to set the value of prefixPrompt to contain a system
prompt that plays back a message to the caller that the extension is invalid.

The Unsuccessful Output Branch

If the Call Redirect step registers the destination extension as out of service, the
script executes the Unsuccessful output branch.

Configure the Unsuccessful output branch of the Call Redirect step to set the
value of the prefixPrompt variable to inform the caller that the extension was out
of service.

The Unsuccessful output branch of the Call Redirect step contains the Set step.

The Set Step
Configure the Unsuccessful output branch of the Call Redirect step by dragging a
Set step from the General palette to the Design pane, and dropping it over the
Unsuccessful icon under the Call Redirect step, as shown in Figure 12-26.

Then configure the Set step to set the value of prefixPrompt contain a system
prompt that plays back a message to the caller that the extension is out of service.

The If Step

End the Operator output branch of the Simple Recognition step by dragging an If
step from the General palette to the Design pane, and dropping it over the Call
Redirect icon under the Simple Recognition step, as shown in Figure 12-26.

Then configure the If step to allow the script to determine whether or not the
maximum number of retries has been reached, by evaluating the expression
“attempts < MaxRetry”, (“the number of attempts, as stored in the attempts
variable, is less than the maximum number of retries, as stored in the MaxRetry
variable”).

The If step has two output branches, True and False.

The following sections describe these two output branches.

 • The True Output Branch, page 12-78

 • The False Output Branch, page 12-78
12-77
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Concluding Steps of the Script
The True Output Branch

If the If step determines that the maximum number of retries has not been reached,
the script executes the True output branch.

Configure the True output branch of the If step to allow the caller to keep
returning to the MainMenu Label until it reaches the maximum number of retries.

The True output branch contains two steps:

 • The Increment Step, page 12-78

 • The Goto Step, page 12-78

The Increment Step
Begin the True output branch of the If step by dragging an Increment step from
the General palette to the Design pane, and dropping it over the True icon under
the If step, as shown in Figure 12-26.

Then configure the Increment step to increase the value of the attempts variable
by 1.

The Goto Step
End the True output branch of the If step by dragging a Goto step from the General
palette to the Design pane, and dropping it over the True step icon under the under
the If step, as shown in Figure 12-26.

Then configure the Goto step to send the script back to the MainMenu label.

The False Output Branch

If the If step determines that the maximum number of retries has been reached,
the script executes the False output branch.

Configure the False output branch of the If step to fall through to the next step at
the same level in the script as the Simple Recognition step, which is the Play
Prompt step. (See Figure 12-1.)

The Concluding Steps of the Script
This section contains the following:
12-78
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Concluding Steps of the Script
 • The Play Prompt Step, page 12-79

 • The Call Redirect Step, page 12-80

 • The If Step, page 12-81

 • The Play Prompt Step, page 12-81

 • The Terminate Step, page 12-81

 • The End Step, page 12-81

The Play Prompt Step
In case none of the steps and branches under the Simple Recognition step succeed
in transferring the call, continue the aa.aef script by dragging a Play Prompt step
from the Prompt palette to the Design pane, and dropping it over the Simple
Recognition step, as shown in Figure 12-1.

Configure the Play Prompt step to (as a last resort) play a prompt informing the
caller of the inability to transfer the call.

The Play Prompt Step plays prefixPrompt + SP[AA/AASorry], which informs
the caller the reason the attempted transfer was unsuccessful.
12-79
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Concluding Steps of the Script
Figure 12-27 shows the closing steps of the aa.aef script.

Figure 12-27 End of Script

The Call Redirect Step
Continue the aa.aef script by dragging a Call Redirect step from the Call Contact
palette to the Design pane, and dropping it over the Play Prompt step, as shown
in Figure 12-27.

Configure the Call Redirect step to attempt to redirect the call to an operator,
using the extension number stored in the operExtn variable. This step has four
possible outputs:

 • Successful: for the successful output, add the Terminate and End steps.

 • Busy: for the busy output, add the Set step and set the prefixPrompt variable
to SP[AA\AABusyExtn] + DP[500].

 • Invalid: for the invalid output, add the Set Step and set the prefixPrompt
variable to SP[AA\AAInvalidExtn] + DP[500].
12-80
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Concluding Steps of the Script
 • Unsuccessful: for the unsuccessful output, add the Set step and set the
prefixPrompt variable to SP[AA\AAExtnOutOfService] + DP[500].

The If Step
Continue the aa.aef script by dragging an If step from the General palette to the
Design pane, and dropping it over the Call Redirect step, as shown in
Figure 12-27.

Configure the If step to determine whether or not the maximum number of retries
has been reached. As in the previous examples, the If step and Increment step
allow the caller the maximum number of retries.

If the transfer is successful, the script ends.

The Play Prompt Step
When the maximum number of retries is reached without successfully transferring
the call to an operator, continue the aa.aef script by dragging a Play Prompt step
from the Prompt palette to the Design pane, and dropping it over the If step, as
shown in Figure 12-1.

Configure the Play Prompt step to play prefixPrompt, which explains why the
transfer was unsuccessful.

The Terminate Step
Conclude the contact in the aa.aef script by dragging a Terminate step from the
General palette to the Design pane and entering the triggering contact number into
the customizer window.

The End Step
Conclude the aa.aef script by dragging a End step from the General palette to the
Design pane.

The End step ends the script and releases all system resources. The End step
requires no configuration and has no customizer.
12-81
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 12 Designing a Cisco Unified IP IVR Script
The Concluding Steps of the Script
12-82
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Star
C H A P T E R 13

Designing Contact-Neutral Scripts

You can use the Cisco Unified CCX Editor to create a script that is contact
neutral, that is, a script that accepts either a phone call or an HTTP request as the
triggering contact.

This chapter describes the Cisco Unified CCX Editor steps used to create such a
contact-neutral sample script, which executes one of two tasks, depending on the
contact type:

 • If the contact is a call, the script directs the contact to the beginning of a
modified version of the Cisco Unified IP Interactive Voice Response (IVR)
aa.aef script as described in Chapter 12, “Designing a Cisco Unified IP IVR
Script.”

 • If the contact is an HTTP request, the script expects an “Extension” parameter
in the HTTP form to be defined with the extension to be called back.

This section contains the following topics:

 • An Example Contact Neutral (Phone or HTTP) Script Template, page 13-2

 • The Start Step (Creating a Script), page 13-3

 • Contact-Neutral Script Variables, page 13-4

 • The Accept Step, page 13-7

 • The Get Contact Info Step, page 13-7

 • The Switch Step, page 13-8

 • The HttpContact Output Branch of the Switch Step, page 13-10

 • The CallContact Branch of the Switch Step, page 13-19

 • The Default Branch of the Switch Step, page 13-22
13-1
ted with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
An Example Contact Neutral (Phone or HTTP) Script Template
An Example Contact Neutral (Phone or HTTP)
Script Template

The example template in Figure 13-1 shows a script that generates a web page
containing a field that prompts the user for an extension, at which point the system
posts this data to the script. Once the script starts, it extracts the extension and
attempts to place a call to the given extension.

If the call fails, an error message is returned as a result to the HTTP request.

If the call succeeds, the script sends back a response to the HTTP request
indicating that the call is connected, and then the call continues with the aa.aef
script as if it was an inbound call.
13-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The Start Step (Creating a Script)
Figure 13-1 Contact-Neutral Scripting Example Template

The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.
13-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
Contact-Neutral Script Variables
A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called hello.aef.

Contact-Neutral Script Variables
Begin the contact-neutral sample script design process by using the Variable pane
of the Cisco Unified CCX Editor to define script variables.

Figure 13-2 shows the variables of the contact-neutral sample script as they
appear in the Variable pane of the Cisco Unified CCX Editor window.

Figure 13-2 Variable Pane of the Contact-Neutral Sample Script
13-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
Contact-Neutral Script Variables
Table 13-1 describes the variables used in the contact-neutral sample script.

Table 13-1 Variables in the Contact-Neutral Script

Variable Name Variable Type Value Function

CallControlGroupId Integer 0 Call Control Group with which the
outbound call is associated.

(See The HttpContact Output Branch of the
Switch Step, page 13-10.)

Mark this variable as a parameter to allow
the administrator the option to change the
value of this variable.

For more information, see the Cisco Unified
Contact Center Express Administrator
Guide.

PrimaryControlGroupId Integer 0 Stores the identifying number of the
primary dialog group for handling the
outbound call.

(See The HttpContact Output Branch of the
Switch Step, page 13-10.)

Mark this variable as a parameter to allow
the administrator the option to change the
value of this variable.

For more information, see the Cisco Unified
Contact Center Express Administrator
Guide.
13-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
Contact-Neutral Script Variables
SecondaryControlGroupId Integer 0 Stores the Identifying number of the
fallback dialog control group for handling
the outbound call.

(See The HttpContact Output Branch of the
Switch Step, page 13-10.)

Mark this variable as a parameter to allow
the administrator the option to change the
value of this variable.

For more information, see the Cisco Unified
Contact Center Express Administration
Guide.

asr boolean true Indicates whether or not the script is
enabled for speech recognition.

(See The Get Contact Info Step, page 13-7.)

call Contact 0 Stores a handle to the call object to which
the Cisco Unified IP IVR script will be
applied.

(See The HttpContact Output Branch of the
Switch Step, page 13-10.)

callbackExtn String "" Stores the extension number input from the
web page prompt.

(See The HttpContact Output Branch of the
Switch Step, page 13-10.)

contactType String "" Stores the information identifying the type
of contact (telephone call or HTTP request).

(See Variable Pane of the Contact-Neutral
Sample Script, page 13-4.)

language Language Stores the default language used for
prompts.

(See The Get Contact Info Step, page 13-7.)

Table 13-1 Variables in the Contact-Neutral Script (continued)

Variable Name Variable Type Value Function
13-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The Accept Step
The Accept Step
Continue the script by dragging an Accept step from the Contact palette (in the
Palette pane) to the Design pane of the Cisco Unified CCX Editor window, as
shown in Figure 13-1. The script uses an Accept step to accept a contact, in this
case either a telephone call or an HTTP request.

The Get Contact Info Step
Use the Get Contact Info step to make available to the script the type of contact
received.

Figure 13-3 shows the configured Get Contact Info customizer window.

Figure 13-3 Configured Get Contact Info Customizer Window
13-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The Switch Step
Configure the Get Contact Info customizer window as follows:

 • Type—contactType

The contactType variable stores the information identifying the type of
contact (call or HTTP).

 • Language—language

The language variable stores the language context of the contact.

 • ASR Supported—asr

The asr variable stores the information that tells the script whether or not
Automatic Speech Recognition (ASR) is supported on the local system.

The Switch Step
Next, use a Switch step to switch the contact to the appropriate section of the
script, depending on whether the contact is a telephone call or an HTTP contact.

Figure 13-4 shows the configured Switch customizer window.

Figure 13-4 Configured Switch Customizer Window
13-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The Switch Step
Configure the Switch customizer window as follows:

 • Switch Expression—contactType

The Switch step evaluates the value of the contactType variable (as assigned
by the Get Contact Info step).

 • Switch Cases

 – HttpContact

The script executes this case if the contact type is an HTTP request made
through a web browser.

Note The value in both switch cases is a string and requires quotes.

 – CallContact

The script executes this case if the contact type is a telephone call.

As shown in Figure 13-5, the two cases appear as output branches underneath the
Switch step in the script, along with the Default output branch that always appears
under the Switch step.

Figure 13-5 Switch Step Output Branches

The following sections describe the three output branches of the Switch step:

 • The HttpContact Output Branch of the Switch Step, page 13-10

 • The CallContact Branch of the Switch Step, page 13-19

 • The Default Branch of the Switch Step, page 13-22
13-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
The HttpContact Output Branch of the Switch
Step

If the contact is an HTTP request, the scripting under the HttpContact output
branch executes and the script attempts to place the outbound call.

Figure 13-6 shows the scripting under the HttpContact output branch of the
Switch step.

Figure 13-6 HttpContact Scripting

This section contains the following steps:

 • The Get Http Contact Info Step, page 13-11

 • The Place Call Step, page 13-11
13-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
The Get Http Contact Info Step
Use the Get Http Contact Info step to map the Extension parameter to the
callbackExtn variable, which stores the extension number that the person making
the request provides via the web browser.

Figure 13-7 shows the configured Parameters tab of the Get Http Contact Info
customizer window.

Figure 13-7 Get Http Contact Info Customizer Window—Configured Parameters Tab

The Place Call Step
After the Get Http Contact Info step, use the Place Call step to attempt to place
the call back to the person who made the HTTP request.

(The Place Call step uses the extension number that the person entered through
the web browser and that is stored in the callbackExtn variable.)

Configure the Place Call customizer window as follows:

 • Destination Telephone No.—callbackExtn

The callbackExtn variable stores the destination number of the outbound
call.

 • Timeout (sec)—5
13-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
The Place Call step waits 5 seconds before a Ring No Answer condition
terminates the call.

 • CallControlGroupId—CallControlGroupId

The CallControlGroupId variable stores the call control group information
with which the outbound call is associated.

 • Primary Dialog Group ID—PrimaryDialogGroupId

The PrimaryDialogGroupId variable stores the primary dialog group
information with which the outbound call is associated.

 • Secondary Dialog Group ID—SecondaryDialogGroupId

 • The SecondaryDialogGroupId variable stores the secondary dialog group
information with which the outbound call is associated.

 • Call Contact—call

The call variable name stores a handle to the call object that the subsequent
Cisco Unified IP IVR script uses.

The Place Call step has the following six default output branches:

 • Successful—Call was successful.

 • NoAnswer—Call was made, but there was no answer.

 • Busy— Call was made, but there was no answer.

 • Invalid—Call was not made because the extension was invalid.

 • NoResource—Call was not made because no Resource was available.

 • Unsuccessful—Call was not made because of an internal system error.

The following sections describe these output branches:

 • The Successful Output Branch, page 13-13

 • The Other Output Branches, page 13-17
13-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
The Successful Output Branch

When the Place Call step successfully places the call, the script sends this
information back to the web browser of the contacting person, marks the HTTP
Contact as Handled, and sends the call to the beginning of the Cisco Unified IP
IVR script.

Figure 13-8 shows the scripting under the Successful output branch of the Place
Call step.

Figure 13-8 Successful Output Branch Script

This section contains the following steps:

 • The Http Forward Step, page 13-13

 • The Set Contact Info Steps, page 13-15

 • The Get Contact Info Step, page 13-16

 • The Goto Step, page 13-17

The Http Forward Step

Use the Http Forward step to send a (previously created) Java Server Page (JSP)
template called CallConnected back to the originating web browser, to inform the
web browser that the call has been connected.
13-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
Figure 13-9 shows the configured Http Forward customizer window.

Figure 13-9 Configured Http Forward Customizer Window

Configure the General tab of the Http Forward customizer window as follows:

 • Http Contact—Triggering Contact

The default Triggering Contact is the Http Contact that triggers the
execution of the Http Forward step.

 • URI Path—callbackExtn

The callbackExtn variable stores the outbound call extension, which the Http
Forward step includes in its message to the web browser.

Configure the “parameters” Map tab of the Http Forward customizer window as
follows:

 • Keyword—“Extension”

The Extension keyword maps to the callbackExtn variable.

 • Value—callbackExtn
13-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
The Set Contact Info Steps

After the Http Forward step, use the first Set Contact Info step to mark the HTTP
Contact as Handled, which is useful for reporting purposes. Figure 13-10 shows
the configured first Set Contact Info customizer window.

Figure 13-10 Configured First Set Contact Info Customizer Window

Next configure a second Set Contact Info step to assign the call variable (which
is used by the subsequent Cisco Unified IP IVR script) the value of the language
variable as the default language.

Figure 13-11 Configured Second Set Contact Info Customizer Window
13-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
The Get Contact Info Step

Use the Get Contact Info step to determine whether or not ASR is enabled on the
system. Figure 13-3 shows the configured Get Contact Info customizer window.

Figure 13-12 Configured Get Contact Info Customizer Window

Configure the Get Contact Info customizer window as follows:

 • Contact—call

The call variable is the handle that identifies the contact throughout the rest
of the Cisco Unified IP IVR script.

 • ASR Supported—asr

The Get Contact Info step retrieves the information stored in the asr variable
to tell the script whether or not ASR is supported for this call.
13-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
The Goto Step

The last step under the Successful output branch of the Place Call step is a Goto
step, which directs the script to the Label AAStart at the beginning of the Cisco
Unified IP IVR script (see Figure 13-1.) From the AAStart label, the script is
exactly the same as if the call had been an inbound call.

The Other Output Branches

For all the other output branches of the Place Call step, use a Send Http Response
step to send an HTML file back to the originating web browser, with information
on why the call was not able to be placed. An End step then ends the script.

Figure 13-13 shows the scripting under the other output branches of the Place Call
step.

Figure 13-13 Other Output Branches of the Place Call Step
13-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The HttpContact Output Branch of the Switch Step
This section contains the following steps:

 • The Send Http Response Step, page 13-18

 • The End Step, page 13-18

The Send Http Response Step

Use the Send Http Response step to send the HTML file back to the originating
browser.

Figure 13-14 shows the configured Send Http Response customizer window.

Figure 13-14 Configured Send Http Response Customizer Window

Configure the Send Http Response customizer window as follows:

 • HTTP Contact—Triggering Contact

The default Triggering Contact is the Http Contact that triggers the
execution of the Send Http Response step.

 • Document

For each output branch of the Place Call step executes, the Document file that
contains the appropriate message.

The End Step

The End step ends the script and releases all system resources. The End step
requires no configuration and has no customizer.
13-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The CallContact Branch of the Switch Step
The CallContact Branch of the Switch Step
If the contact is not an HTTP request, but is an incoming call, the Switch step (see
The Switch Step, page 13-8) directs the script to the CallContact case.

Figure 13-15 shows the scripting under the CallContact (and Default) case of the
Switch step.

Figure 13-15 CallContact and Default Cases of the Switch Step

The CallContact output branch of the Switch step has one step:

 • The Get Trigger Info Step, page 13-20
13-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The CallContact Branch of the Switch Step
The Get Trigger Info Step
Use the Get Trigger Info step to retrieve a handle to the triggering contact, which
in this case is a call, and to save it into a variable named call.

Figure 13-16 shows the configured Get Trigger Info customizer window.

Figure 13-16 Configured Get Trigger Info Customizer Window

Choose the call variable, instead of the default Triggering Contact variable used
by the Accept and Get Contact Info steps at the beginning of the script (see
Figure 13-1), so that the subsequent Cisco Unified IP IVR script treats the contact
as a call rather than an HTTP request.
13-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The CallContact Branch of the Switch Step
Figure 13-17 shows the top level of the full Cisco Unified IP IVR script.

Figure 13-17 Full Cisco Unified IP IVR Scripting Example

After the AA Label, the script is identical to the aa.aef script described in
Chapter 12, “Designing a Cisco Unified IP IVR Script,” with the exception that
the call variable is selected as the triggering variable for many steps; for example,
see the Play Prompt step after the last Create Conditional Prompt step and the
Simple Recognition step.
13-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 13 Designing Contact-Neutral Scripts
The Default Branch of the Switch Step
The Default Branch of the Switch Step
If the trigger is not recognized as either an HTTP contact or a phone contact, the
Default case of the Switch step executes, as shown in Figure 13-15.

The Default output branch of the Switch step has one step:

 • The End Step, page 13-22

The End Step
The End step ends the script and releases all system resources. The End step
requires no configuration and has no customizer.
13-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 14

Designing a Script with
Text-To-Speech (TTS)

You can use the steps of the Cisco Unified CCX Editor to design scripts that take
advantage of Text-To-Speech (TTS) capability. This chapter describes the design
of such as script, TTSsample.aef.

Note Before using a TTS script as a Cisco Unified CCX application, you should first
validate the script against the MCRP TTS vendor’s list of supported capabilities.

This chapter contains the following topics:

 • An Example Text-To-Speech (TTS) Script, page 14-2

 • The Start Step (Creating a Script), page 14-3

 • TTS Script Variables, page 14-3

 • The Accept Step, page 14-4

 • The Set Contact Info Step, page 14-4

 • The First Create TTS Prompt Step, page 14-5

 • The Play Prompt Step, page 14-7

 • The Create File Document Step, page 14-8

 • The Second Create TTS Prompt Step, page 14-9

 • The Annotate Step, page 14-10

 • The Menu Step, page 14-11
14-1
rted with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
An Example Text-To-Speech (TTS) Script
 • The Terminate Step, page 14-15

 • The End Step, page 14-15

An Example Text-To-Speech (TTS) Script
The TTSsample.aef script creates prompts based on text files that are played back
as speech to callers, and provides a good example of how you can use the Set
Contact Info step, the Create TTS Prompt step, the Create File Document step,
and the Menu step to offer callers two menu choices, in this case based on whether
the caller chooses English or Spanish.

Figure 14-1 shows the TTSsample.aef script as it appears in the Design pane of
the Cisco Unified CCX Editor window.

Figure 14-1 Design Pane of the TTSsample.aef Script
14-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Start Step (Creating a Script)
The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called TTSsample.aef.

Note Nuance TTS server needs to be configured with UTF-8 to enable correct playing
of accented characters.

TTS Script Variables
Begin the TTSsample.aef script design process by using the Variable pane of the
Cisco Unified CCX Editor to define script variables.

Figure 14-2 shows the variables of the TTSsample.aef script as they appear in the
Variable pane of the Cisco Unified CCX Editor window.

Figure 14-2 Variable Pane of the TTSsample.aef Script
14-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Accept Step
Table 14-1 describes the variables used in the TTSsample.aef sample script.

Table 14-1 Descriptions of Variables in the TTSsample.aef Script

Variable Name Variable Type Value Function

spanishPrompt Prompt — Prompt created by the second Create TTS
Prompt step, which is played by the
subsequent Menu step.

(See The Second Create TTS Prompt Step,
page 14-9.)

spanishPromptDoc Document null Variable created by the Create File Document
step to store a reference to the text file in order
to make it available for the subsequent Create
TTS Prompt.

(See The Create File Document Step,
page 14-8.)

welcomePrompt Prompt — Prompt created by the first Create TTS
Prompt step, which is played back by the
subsequent Play Prompt step.

(See The First Create TTS Prompt Step,
page 14-5.)

The Accept Step
Continue to build the TTSsample.aef script by dragging an Accept step (from the
Contact palette in the Palette pane) to the Design pane of the Cisco Unified CCX
Editor window, as shown in Figure 14-1. The script uses an Accept step to accept
a contact.

The Set Contact Info Step
Continue to build the TTSsample.aef script by adding a Set Contact Info step
(from the Contact palette), which modifies the context information associated
with a contact. In this case, the script designer sets the language context of the call
to L[en_US], which is American English.
14-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The First Create TTS Prompt Step
Figure 14-3 shows the configured Set Contact Info customizer window.

Figure 14-3 Configured Set Contact Info Customizer Window

The First Create TTS Prompt Step
Continue to build the TTSsample.aef script by adding a Create TTS Prompt step
(from the Prompt palette) to create a prompt based on text that you enter into the
customizer window of the Create TTS Prompt step.
14-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The First Create TTS Prompt Step
Figure 14-4 shows the configured Create TTS Prompt Customizer window.

Figure 14-4 Configured Create TTS Prompt Customizer Window

Configure the Create TTS Prompt step as follows:

 • Text Input—“Welcome to Company ABC”

The step converts this sentence into speech.

 • Voice Gender—Neutral

The step uses the neutral voice gender.

Voice gender can be male, female, or neutral, if supported by the TTS
provider. If optional voice genders are not supported, the system
automatically falls back to a supported voice gender.

 • Override provider (optional)

Variable or expression indicating a different TTS provider to be used when
the prompt is played back instead of the provider defined for the contact.

 • Override Language (optional)—English (United States) (en_US)

The prompt will be played back in American English.
14-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Play Prompt Step
Note Setting the Override Language option is particularly important for
TTS prompts because the text entered is already in a specified
language. For example, if the language associated with the call is
Spanish, relying on the language of the call may result in the script
trying to speak English text in Spanish.

 • Output Prompt—welcomePrompt

The name of the prompt that this step creates. The subsequent Play Prompt
step will play this prompt. (You create the sentence using the Expression
Editor.)

The Play Prompt Step
Continue to build the TTSsample.aef script by adding a Play Prompt step (from
the Prompt palette) to play back the prompt created by the Create TTS Prompt
step.

To do this, choose welcomePrompt from the Prompt drop-down menu in the
Prompt tab of the Play Prompt customizer window.

Figure 14-5 shows the configured Prompt tab of the Play Prompt customizer
window.

Figure 14-5 Play Prompt Customizer Window—Configured Prompt Tab
14-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Create File Document Step
The Create File Document Step
Continue to build the TTSsample.aef script by adding a Create File Document
step (from the Document palette) to create a document variable,
spanishPromptDoc, from a text file.

The subsequent Create TTS Prompt step will then use this document variable to
create a prompt in the Spanish language.

Figure 14-6 shows the configured Create File Document customizer window.

Figure 14-6 Configured Create File Document Customizer Window

Configure the Create File Document customizer window as follows:

 • Filename—“spanishPrompt.txt”

This filename represents the text file that holds the text that the subsequent
Create TTS Prompt step will convert into speech.

 • Document—spanishPromptDoc

This document variable will be used by the subsequent Create TTS Prompt
step to create a Spanish language prompt.
14-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Second Create TTS Prompt Step
The Second Create TTS Prompt Step
Use a second Create TTS Prompt step (from the Prompt palette) to convert the text
contained in the spanishPromptDoc variable into a prompt, spanishPrompt, that
the subsequent Menu step will use to offer callers the choice of the Spanish
language.

Figure 14-4 shows the configured second Create TTS Prompt customizer window.

Figure 14-7 Configured Second Create TTS Prompt Customizer Window

Configure the second Create TTS Prompt customizer window as follows:

 • Text Input—spanishPromptDoc

The document that is the source of the text that is converted to speech.

 • Voice Gender—Neutral

The prompt playback uses the default voice gender.

 • Override Provider (optional)

Variable or expression indicating a different TTS provider to be used where
the prompt is played back instead of the provider defined for the contact.

 • Override Language (optional)—Spanish (Colombia) (es_CO)

The prompt will be played back in Colombian (American) Spanish.
14-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Annotate Step
Note Make sure to specify that the prompt converts the language of the
text, and not the language of the call, to speech.

 • Output Prompt—spanishPrompt

The name of the prompt that this step creates and that the subsequent Menu
step will play.

The Annotate Step
Add an Annotate step (from the General palette) after the second Create TTS
Prompt step to insert a note describing the functionality of the subsequent Menu
step.

Figure 14-8 shows the configured Annotate customizer window.

Figure 14-8 Annotate Customizer Window

Note The Menu step itself also contains two instances of the Annotate step.
14-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Menu Step
The Menu Step
Continue to build the TTSsample.aef script by adding a Menu step (from the
Media palette) to offer the caller the choice between the English and Spanish
languages.

Figure 14-9 shows the configured General tab of the Menu customizer window.

Figure 14-9 Menu Customizer Window—Configured General Tab

Configure the General tab of the Menu customizer window as follows:

 • Contact—Triggering Contact

The Menu step acts upon the contact that triggered the execution of the Menu
step.

 • Interruptible—Yes

External events can interrupt the execution of this step.
14-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Menu Step
Figure 14-10 shows the configured Prompt tab of the Menu customizer window.

Figure 14-10 Menu Customizer Window—Configured Prompt Tab

Configure the Prompt tab of the Menu customizer window as follows:

 • Prompt—TTS[“For English, press one"] + spanishPrompt

The Menu step plays this prompt back to the caller. The specified prompt
expression combines the TTS prompt, “For English, press one” with
spanishPrompt, which the second Create TTS Prompt step previously
created. (See The Second Create TTS Prompt Step, page 14-9.)

Note The format TTS[...] is another way to create a TTS prompt that uses the
default gender and the language of the call. The text passed in parameter
must match the language of the call.

 • Barge In—Yes

The caller can respond without having to listen to the whole playback of the
prompt.

 • Continue on Prompt Errors—Yes

In the event of a prompt error, instead of generating an exception, the step
continues with the second prompt if the error occurs on the first prompt, or,
if this is the last prompt in the sequence, the script waits for input from the
caller.
14-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Menu Step
Figure 14-11 shows the configured Input Tab of the Menu customizer window.

Figure 14-11 Menu Customizer Window—Configured Input Tab

Configure the Input tab of the Menu customizer window as follows:

 • Timeout (in sec)—3

The system waits 3 seconds for input from the caller before sending the script
to the Timeout output branch (after the script reaches the maximum number
of attempts).

 • Maximum Retries—3

The Menu step will plays the prompt to the caller up to 3 times after a timeout
or invalid input response.

In this case, after 3 retries, the Menu step executes either the Timeout or
Unsuccessful output branches, depending on whether the last try timed out or
the caller entered an invalid input response.

 • Flush Input Buffer—No

The caller can type ahead and the step will save the previous input.
14-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Menu Step
Figure 14-12 shows the configured Filter Tab of the Menu customizer window.

Figure 14-12 Menu Customizer Window—Configured Input Tab

Configure the Filter tab of the Menu customizer window as follows:

 • Options—English, Spanish

The Menu step offers these two menu choices to the caller. Use the Add
button to enter these two options.

In this sample script (see Figure 14-1), the Menu step has the following four
output branches:

 • English—If this were a fully-functioning script, this output branch would
contain steps providing business logic in an English language context.

 • Spanish—If this were a fully-functioning script, this output branch would
contain steps providing business logic in a Spanish language context.

 • Timeout—If the script times out, the script will fall through to the closing
steps of the script.

 • Unsuccessful—If valid caller response is not received, the script will fall
through to the closing steps of the script.
14-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The Terminate Step
The Terminate Step
Close the sample script TTSsample.aef with a Terminate step (from the Contact
palette), which ends the call.

The End Step
Conclude the TTSsample.aef script with an End step (from the General palette).

The End step ends the script and releases all system resources.
14-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 14 Designing a Script with Text-To-Speech (TTS)
The End Step
14-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Star
C H A P T E R 15

Designing Cisco Unified CCX
VoiceXML Applications

This chapter describes how to use the capabilities of Cisco Unified CCX 4.0 and
later to develop VoiceXML applications.

This section includes the following topics:

 • Understanding the Terminology, page 15-2

 • A Prerequisite and a Recommendation, page 15-3

 • Updating CRS 3.x VoiceXML Applications, page 15-3

 • Designing Cisco Unified CCX VoiceXML Applications, page 15-6

 • Creating VoiceXML Documents, page 15-6

 • Creating Cisco Unified CCX Scripts that Run VoiceXML Documents,
page 15-20

 • Designing International Cisco Unified CCX VoiceXML Applications,
page 15-29

 • Cisco Unified CCX VoiceXML Application Troubleshooting Tips,
page 15-32

For further information in this guide on Cisco Unified CCX VoiceXML
applications, see:

 • Appendix B, “VoiceXML Implementation for Cisco Voice Browser”

 • Appendix A, “A Sample VoiceXML Log File”
15-1
ted with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Understanding the Terminology
Understanding the Terminology
The following terms are used in this section:

 • VoiceXML. Voice eXtensible Markup Language (VoiceXML) is a web-based
standardized markup language for representing human-computer dialogs.
VoiceXML:

 – Is designed for creating audio dialogs that feature synthesized speech,
digitized audio, recognition of spoken input and DTMF (Dual Tone
Multi-Frequency) key input, recording of spoken input, telephony, and
mixed initiative conversations. Its major purpose is to bring the
advantages of Web-based development and content delivery to
interactive voice response applications.

 – Assumes a voice browser with:

 • audio output (prerecorded speech or text-to-speech

 • audio input (speech and/or DTMF digits)

 – Follows the conventions of HTML and XML document format with
<elements> and attributes.

 – Is:

 • A non-real-time means of communications, allowing users to access
data at any time.

 • Also called an XML application.

 • VoiceXML Document. An executable VoiceXML file (text_file.vxml) is
called a document. A VoiceXML interpreter loads a document file to execute
it.

 • Cisco Unified CCX Script. Cisco Unified CCX scripts can extend the
functionality of a VoiceXML document. A Cisco Unified CCX script is a
sequence of steps constructed in the Cisco Unified CCX Editor for
controlling the flow of customer calls and multimedia contacts. You can use
the steps of the Cisco Unified CCX Editor to design scripts that take
advantage of the capabilities of VoiceXML. In a Cisco Unified CCX script
you can link any number of times to one or more VoiceXML documents
depending on what you need to accomplish.

 • Cisco Unified CCX VoiceXML application. A Cisco Unified CCX
VoiceXML application is a Cisco Unified CCX script (Cisco Unified
CCX_Editor_file.aef) that links to a VoiceXML document (text_file.vxml).
15-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
A Prerequisite and a Recommendation
A Prerequisite and a Recommendation
Before using a VoiceXML document with a Cisco Unified CCX script, you should
first validate that document against the Media Resource Control Protocol (MCRP)
ASR and TTS vendor’s list of supported capabilities.

Developing applications that include Automatic Speech Recognition (ASR) is
generally more difficult than developing non-ASR applications or Cisco Unified
IP IVR scripts. To ensure a good user experience, Cisco provides consultancy
services in different forms, please contact your Cisco Account Team to obtain
more details on Development support plans.

Updating CRS 3.x VoiceXML Applications
All VoiceXML documents (text_file_document.vxml) and CRS scripts (Cisco
Unified CCX_script.aef) created with CRS Release 3.x will fail to load when you
attempt to open them in Release 4.0(x). To fix this problem you need to change
both the the VoiceXML document and how it is referenced in the CRS script:

 • Update the VoiceXML 1.0 document referenced in the CRS script to a
VoiceXML 2.0 document. For how to do this, see Converting Documents
from VoiceXML 1.0 to VoiceXML 2.0, page 15-3.

The CRS Voice Browser currently supports VoiceXML 2.0 (including DTMF
Browser and N-Best Recognition).

 • Update the Voice Browser step in the CRS script so that it links properly to
the VoiceXML document. For how to do this, see Converting Documents
from VoiceXML 1.0 to VoiceXML 2.0, page 15-3.

Converting Documents from VoiceXML 1.0 to VoiceXML 2.0
Convert your VoiceXML 1.0 documents to be compliant with VoiceXML 2.0. If
you can validate it with a VoiceXML 2.0 DTD, then it will be compliant.

For all the changes made to VoiceXML 1.0 in VoiceXML 2.0, see Appendix J of
the Voice Extensible Markup Language (VoiceXML) Version 2.0 specification at
http://www.w3.org/TR/voicexml20/.
15-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

http://www.w3.org/TR/voicexml20/

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Updating CRS 3.x VoiceXML Applications
Some example changes in Cisco’s implementation of VoiceXML 2.0. The
bracketed references see the sections in the VoiceXML 2.0 specification
containing the specified information:

 • The <VXML> element now requires the xmlns attribute, and the version
attribute for the <VXML> element must contain “2.0.” [VXML 1.1]

 • There are some grammar definition and syntax changes. The Speech
Recognition Grammar Specification (SRGS), the Speech Synthesis Markup
Language Specification (SSML) MRCP grammars, and the Cisco DTMF
RegEx specification replace the Nuance Grammar Specification Language
(GSL).

 • Time designations have changed. These are listed in the VoiceXML 2.0
specification. [VXML 6.5.2]

 • Session variables have changed. These are listed in the VoiceXML 2.0
specification. [VXML 5.1.4]

 • The <emp>, <div>, pros>, <sayas>, and <dtmf> elements are obsolete.
[VXML Appendix J]

 • Variables must be declared before being assigned [VXML 5.1.1].

 • The wait/transition state model has been implemented [VXML 4.1.8]

See VoiceXML Implementation for Cisco Voice Browser, page B-1, for a list of
all the features in the VoiceXML 2.0 specification that Cisco supports.

Converting VoiceXML CRS 3.x Scripts to CRS 4.x Scripts
To convert a VoiceXML CRS 3.x script to a CRS 4.x script, open the script in the
CRS Editor and update the Voice Browser step and the Create URL document step
so that the script correctly invokes the Voice Browser. These steps are described
in the Cisco Unified Contact Center Express Scripting and Development Series:
Volume 2, Cisco Unified Contact Center Express Editor Reference Guide.

In CRS 4.x:

 • The Voice Browser” step uses the URL Document parameter, rather than the
URI.

 • The Document variable can be initialized with the Create URL Document
parameter (as used in voicebrowser.aef), or it can be manipulated
dynamically at runtime.
15-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Updating CRS 3.x VoiceXML Applications
 • VXML input parameters are specified in the Create URL Document step.

Note These parameters are not usable within the VXML document directly.
Instead, they are passed to the server identified in the URL
Document. They are only used by that server if it supports dynamic
VOICEXML page generation (that is, by a JSP page).

 • VXML output parameters are specified in the <exit> Attributes tab of the
Voice Browser step.

Converting VoiceXML CRS 3.x or 4.x Scripts to CRS 5.x
Scripts

To convert a VoiceXML CRS 3.x or 4.x script to a CRS 5.x script, open the script
in the CRS Editor and update the Voice Browser step and the Create URL
document step so that the script correctly invokes the Voice Browser. These steps
are described in the Cisco Unified Contact Center Express Scripting and
Development Series: Volume 2, Cisco Unified Contact Center Express Editor
Reference Guide.

In CRS 5.x:

 • The Voice Browser” step uses the URL Document parameter, rather than the
URI.

 • The Document variable can be initialized with the Create URL Document
parameter (as used in voicebrowser.aef), or it can be manipulated
dynamically at runtime.

 • VXML input parameters are specified in the Create URL Document step.

Note These parameters are not usable within the VXML document directly.
Instead, they are passed to the server identified in the URL
Document. They are only used by that server if it supports dynamic
VOICEXML page generation (that is, by a JSP page).

 • VXML output parameters are specified in the <exit> Attributes tab of the
Voice Browser step.
15-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Designing Cisco Unified CCX VoiceXML Applications
Designing Cisco Unified CCX VoiceXML
Applications

To develop a Cisco Unified CCX VoiceXML application, complete the following
steps:

Step 1 Create a VoiceXML document (text_file.vxml) that can be validated with a
VoiceXML 2.0 DTD.

Step 2 Create a Cisco Unified CCX Editor script (Cisco Unified CCX_editor_file.aef)
that calls the VoiceXML document.

Note Both VoiceXML documents and Cisco Unified CCX Editor scripts can
use the CRTP protocol to fetch resources (documents, prompts and
grammars) from the Cisco Unified CCX Repository. See How and Why
To Use the CRTP Protocol, page 2-56.

Creating VoiceXML Documents
A VoiceXML document is an XML (eXtensible Markup Language) text file.
VoiceXML 2.0 is the version of VoiceXML that Cisco Unified CCX 4.0 supports.

You can use numerous tools to write VoiceXML, including simple text editors,
server scripting languages, and third-party VoiceXML editors.

This section covers:

 • Related Documentation, page 15-7

 • A Sample VoiceXML Document, page 15-8

 • Using Document Type Definitions, page 15-9

 • Using SRGS Grammar Expressions, page 15-10

 • Using Speech Recognition Input, page 15-10

 • Using DTMF Input, page 15-11
15-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
 • Using Text to Speech Output, page 15-15

 • Using the Voice Browser Cache, page 15-18

Related Documentation
See the following documents for further information on VoiceXML:

 • The Voice Extensible Markup Language (VoiceXML) Version 2.0
specification at http://www.w3.org/TR/voicexml20/ defines VoiceXML, the
Voice Extensible Markup Language.

 • The Speech Recognition Grammar Specification (SRGS) Version 1.0 at
http://www.w3.org/TR/2003/TR-speech-grammar/ defines a standard syntax
for representing grammars for use in speech recognition so that developers
can specify the words and patterns of words to be listened for by a speech
recognizer.

 • The Cisco Regular Expression (Regex) Grammar Specification at
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/
vxmlprg/refgde1.htm#1050172 defines the Cisco dual tone multiple
frequency (DTMF) grammar that you can use with VoiceXML.

 • The Speech Synthesis Markup Language (SSML) Version 1.0 specification at
http://www.w3.org/TR/speech-synthesis, defines a standard way to control
aspects of synthesized speech such as pronunciation, volume, pitch, rate, and
so on across different synthesis-capable platforms.

 • The Natural Language Semantics Markup Language (NLSML) for the Speech
Interface Framework specification at http://www.w3.org/TR/nl-spec/ defines
a standard way to enable access to the Web using spoken interaction.

 • The Semantic Interpretation for Speech Recognition (SI) specification at
http://www.w3.org/TR/semantic-interpretation/ defines the process of
Semantic Interpretation for Speech Recognition and the syntax and semantics
of interpretation tags that can be added to speech recognition grammars to
compute information to return to an application on the basis of rules and
tokens that were matched by the speech recognizer.

 • The VoiceXML 2.0 Implementation Report at
http://www.w3.org/Voice/2004/vxml-ir describes the requirements for a
VoceXML 2.0 Implementation Report and the process that the Voice Browser
Working Group follows in preparing the report.
15-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

http://www.w3.org/TR/voicexml20/
http://www.w3.org/TR/2003/PR-speech-grammar-20031218/
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/refgde1.htm#1050172
http://www.cisco.com/univercd/cc/td/doc/product/software/ios122/rel_docs/vxmlprg/refgde1.htm#1050172
http://www.w3.org/TR/speech-synthesis
http://www.w3.org/TR/nl-spec/
http://www.w3.org/TR/semantic-interpretation/
http://www.w3.org/Voice/2004/vxml-ir

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
 • The VoiceXML Forum at http://www.voicexml.org is an industry organization
chartered with establishing and promoting the Voice Extensible Markup
Language (VoiceXML) for accessing internet content and services through
voice and telephone.

A Sample VoiceXML Document
<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml" version="2.0">
 <form id="get_address">
 <field name="citystate">
 <grammar type="application/srgs+xml" src="citystate.grxml"/>
 <prompt>Say a city and state.</prompt>
 </field>

<field name="street">
 <grammar type="application/srgs+xml" src="citystate.grxml"/>
 <prompt> What street are you looking for? </prompt>
 </field>
 <filled>
 <prompt>
 You chose
 <value expr="street"/>
 in
 <value expr="citystate"/>
 </prompt>
 <exit/>
 </filled>
 </form>
</vxml>

In the preceding example:

 • The first two lines (the <?xml> and the <vxml> elements) are required for the
beginning of all VoiceXML 2.0 files.

 • The <form> element, similar to an HTML form, controls the interaction or
“dialog” with the user.

 • Form <field> elements specify the contents of a VoiceXML dialog unit.
Fields contain other elements, such as:

 – <prompt> elements that control the output of synthesized speech and
prerecorded audio and prompt a user for input.
15-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

http://www.voicexml.org

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
 – <grammar> elements that specify what user input is acceptable for a
field. In this case, the grammar element references the file that specifies
the grammar, the rules by which to recognize input. The user input is
stored in the variable that is named by the field.

 – <filled> elements that specify actions to take when a field is filled in; that
is, when the user has provided a valid value for the field.

Using Document Type Definitions
A document type definition (DTD) defines the validity of an XML document. See
Appendix B, “VoiceXML Implementation for Cisco Voice Browser,” for the DTD
defined for VoiceXML 2.0. You can instruct the parser to validate the document
by referencing the document in the document type declaration.

The Cisco Unified CCX Voice Browser includes a custom version of
voicexml.dtd with some minor enhancements. The simplest way to use
voicexml.dtd is to reference it with the URI (Uniform Resource Identifier)
“http://IPAdress:9080/SDocuments/voicexml.dtd”in the <!DOCTYPE> element
as in the following example:
<<?xml version="1.0" encoding="UTF-8"?>
<!DOCTYPE vxml SYSTEM
"http://10.78.94.224:9080/SDocuments/voicexml.dtd">
<vxml xmlns="http://www.w3.org/2001/vxml" version="2.0"?>

Note Do not use file protocol to access voicexml.dtd.

You can also deploy a DTD with your documents on the document server, by
providing the URI to access the file in the XML document type definition.

Using a DTD is optional. In the development phase, it can help you catch syntax
errors in VoiceXML documents. After you test the code and find no syntax errors,
you may choose not to use a DTD in the production phrase to maximize efficient
performance (by eliminating the need for parsing the DTD file itself and the
validation process).
15-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
Using SRGS Grammar Expressions
When using SRGS grammar expressions, you should be aware of the following:

 • Cisco Unified CCX 4.x VoiceXML documents use SRGS grammar
specifications and syntax rather than Nuance SGL grammar syntax.

 • If not supplied, a <grammar> element is filled in with appropriate default
values for the required attributes: root, version, xml:lang, xmlns.

 • The <rule> “id” attribute is generated automatically and referenced by the
“root” attribute of the <grammar> element

 • If this is an SRGS DTMF grammar, the “mode” attribute of the <grammar>
element must be supplied and it must be set to “dtmf.”

Using Speech Recognition Input
VoiceXML accepts speech or digit input, based on speech grammars and or
DTMF grammars that specify the input that is acceptable to the VoiceXML
Interpreter at a given time.

You define grammars using the <grammar> element. The example below shows
how to create an application that asks for and recognizes four words: coffee, tea,
milk, and nothing.

Example 15-1 Sample VoiceXML Script using Speech Recognition
<form>

<field name="choice">
<prompt>Would you like coffee, tea, milk, or nothing?</prompt>
<grammar xml:lang="en-US" type="application/srgs+xml
 version="1.0" mode="voice">

 <rule id="drinks" >
<one-of>

<item>coffee</item>
<item>tea</item>
<item>milk</item>
<item>nothing</item>

</one-of>
</rule>

</grammar>
</field>

<filled>
Just a second.
Your <value expr="choice"/> is ready.

 </filled>
15-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
</form>

In the preceding example, the <one-of> element defines a set of expressions
(voice replies) that are valid. The Voice Recognition engine fills in the field
choice when it recognizes a valid response according to the rules of the grammar.
In this example, the exchange might sound like this:
System: “Would you like some coffee, tea, milk, or nothing?”
Caller: “Hot tea.”
System: “Just a second. Your tea is ready.”

The Cisco Unified CCX Voice Browser supports SRGS and Cisco RegEx
grammars, which are powerful languages for specifying speech input.

Using DTMF Input
DTMF is a common form of caller input in IVR applications, and in many cases
it is a good idea to design applications that give callers the choice to use either
DTMF or speech input.

DTMF input is most commonly used for such purposes as menu navigation,
getting a digit string (such as an account number) from the caller, and recognizing
a digit pattern.

You can use one of the following methods to allow the script to determine when
the DTMF input from the caller is complete:

 • A caller enters a specific termination key; for example, the “#” key.

 • A specified number of seconds have passed without the caller entering a tone.

 • The caller enters a predefined number of tones.

You can use the following DTMF properties to specify when the sequence is
complete:

 • termchar—The terminating DTMF character for DTMF input recognition.

The default value is “#”. The value of empty string means no terminating
DTMF character is defined.

 • termtimeout—The terminating timeout to use when recognizing DTMF
input.

The default value is “4s”.
15-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
This section contains the following topics:

 • Using DTMF for Menu Navigation, page 15-12

 • Receiving Digit String Input, page 15-13

 • Using DTMF Grammar, page 15-14

Using DTMF for Menu Navigation

One of the most common uses of DTMF is to allow users to navigate a menu of
choices. You can use <menu> element to accomplish this navigation, as follows:

1. Use the <menu> element for the main prompt. The menu prompt has two
attributes: exact and approximate. Exact is the default and means the user
must match every word of the grammar fragment in order for a recognition
match to occur. Example 15-2 uses the default.

2. For each choice, insert a <choice> element.

3. Specify the DTMF key associated with the item and the next place to jump to
when the item is chosen.

You may also insert a grammar in the <choice> element. This insertion allows the
user to select the item either by pressing the DTMF key or by speaking the
grammar item.

As an example of a banking application, the script gives the caller the following
three choices, and then instructs the caller to press “*” when finished:

 • For checking account balance, press 1.

 • For savings account balance, press 2.

 • For credit card balance, press 3.

In this example, the caller presses 3. The system informs the caller “Sorry, you
don’t have a credit card account with us,” and again offers the caller the same
three choices. The caller presses “*”, the system says “Thank you. Good-bye!”
and ends the call.

Example 15-2 shows the scripting for the preceding banking application.

Example 15-2 Using DTMF

<menu id="main">
 <prompt>
 For checking account balance, press 1.
15-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
 For savings account balance, press 2.
 For credit card balance, press 3.
 Press * when you are finished.
 </prompt>
<!-- No termination character is necessary -->
<property name="termchar" value=""/>
<choice dtmf="1" next="CheckBalance.jsp">
 checking account
 </choice>
 <choice dtmf="2" next="SavingBalance.jsp">
 savings account
 </choice>
 <choice dtmf="3" next="#credit">
 credit card
 </choice>
 <choice dtmf="*" next="#exit">
 [finish goodbye bye]
 </choice>
</menu>
<form id="credit">
 <block>
 Sorry, you don't have a credit card account with us.
 <goto next="#main"/>
 </block>
</form>
<form id="exit">
 <block>
 Thank you. Good-bye!
 </block>
</form>

The preceding example:

Accepts both DTMF input and speech input. For example, rather than entering 2,
a caller can also say “savings account” to check the savings account balance.

In addition to the <menu> and <choice> elements, VoiceXML also provides the
<option> element, which you can use in a form for a similar purpose.

Receiving Digit String Input

You can use built-in “digits” grammar to accept digit strings such as credit card
account information. You use the type attribute in a <field> element to select the
built-in grammar.
15-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
Example 15-3 shows how to receive DTMF input for a credit card account
number.

Example 15-3 Receiving Digit String Input

<form>
 <field name="creditNumber" type="digits">

 Please enter your credit card number.
Press the pound key when finished.

 <filled>
 Your credit card number is
 <value expr="creditNumber" class="digits" mode="recorded"/>

<exit namelist="creditNumber"/>
</filled>

 </field>
</form>

Using DTMF Grammar

The most flexible way to accept DTMF input is to use DTMF grammars that
define how tones are interpreted.

To include DTMF tones in your grammar, use the format “dtmf-0” for each of the
tones 0 through 9. You can also use “dtmf-star” for the star (“*”) key,
“dtmf-pound” for the pound (“#”) key, and “dtmf-?” to indicate an unknown key.

However, if you specify mode = DTMF in the grammar element and then use an
item list as in Example 15-4, you can use only numbers for the DTMF tones.

Example 15-4 shows a sample grammar that allows the caller to enter digits from
the touch-tone pad. This example requests the user to use DTMF digits to enter
PIN (Personal Identification Number) information. The grammar can be
generated from the server from a user information database. It recognizes the key
sequence 4-3-2-1.

Example 15-4 Using DTMF Grammar

<form>
 <field name="getPin">

<grammar xml:lang="en-US" root = "pin" mode="dtmf">
 <rule id="pin" scope="public">

<one-of lang-list="en-US">
15-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
 <item> 4321 </item>
</one-of>

 </rule>
</grammar>
"Please enter your pin followed by the pound sign."

 <!-- The pin is 4321 -->

<nomatch>
 Your input is incorrect. Please enter again.
 </nomatch>

 <nomatch count="3">
 Sorry access is denied.
 <exit/>
 </nomatch>

 </field>

 <block>
 Thank you. Please wait while we access your account.
 </block>
</form>

Using Text to Speech Output
This section covers the following topics:

 • Understanding Provider Fallback for TTS, page 15-15

 • Understanding Where TTS Prompts are Played, page 15-16

 • Understanding Gender Fallback for MRCP TTS, page 15-17

Understanding Provider Fallback for TTS

The TTS prompt requests can originate from VXML documents. VXML
documents can use a property to specify a particular TTS provider. However,
users have the option of not using this property.
15-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
In response to a TTS prompt request, the Provider Fallback goes through the
following possible steps:

1. With a VXML document, the system first tries the provider explicitly chosen
(from the Cisco Unified CCX application or the VXML property). A provider
can satisfy the request if (a) it is in service AND (b) the language-gender
attributes requested by the prompt are supported by the provider.

Each provider has a fallback mechanism to match the language-gender
attributes. If the language specified is country specific such as en_US and the
provider does not support it, it then checks if the base language, for example,
'en' is supported. For a detailed description of how gender attributed is
matched please see Understanding Gender Fallback for MRCP TTS,
page 15-17.

2. If the explicitly specified provider fails to match the request, OR if no
provider is specified explicitly, the system uses the “Default TTS Provider”
configured on the system parameters Cisco Unified CCX Application
Administration web page.

3. If the System default provider fails to match the request, the system tries out
all the providers configured through the TTS Cisco Unified CCX Application
Administration web page. These providers are tried out in an indeterministic
order.

4. If all the configured TTS providers fail, the system falls back on the
CiscoSSMLLite provider. This provider however is only capable of playing
out wav file prompts specified through the “audio” element in SSML and
VXML. If the prompt request contains any text, an application exception is
thrown and the caller gets a system error.

Understanding Where TTS Prompts are Played

Which server plays a TTS prompt depends on (a) the configuration of TTS
providers and (b) the desired gender/locale/provider for a TTS prompt.

The following is the sequence used to determine which TTS provider plays a TTS
prompt:

1. An Overwritten provider in the TTS prompt.

2. A System default provider (as configured in the System Parameters through
the Cisco Unified CCX Administration web page).

3. All configured providers, one at a time, in an indeterministic order.
15-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
For a detailed description of how the provider selection and fallback works, see
Understanding Provider Fallback for TTS, page 15-15

If any one of these providers can serve the desired locale and gender of the TTS
prompt, then that provider plays the prompt. In most cases, the provider is the
MRCP TTS server.

There is also a lightweight TTS provider called Cisco LiteSSMLProcessor. This
provider can handle only TTS prompts with SSML text that contains only audio
elements referring to audio files. In this case, the TTS prompt is played by the
Cisco Unified CCX server.

The Cisco LiteSSMLProcessor gets used only under the following two
circumstances:

 • The text in the TTS prompt is SSML enabled with only audio elements
referring to audio files.

and

 • None of the providers in the preceding list can serve the TTS prompt request
or the overridden/system default provider has been set to Cisco
LiteSSMLProcessor.

Understanding Gender Fallback for MRCP TTS

Whenever a locale for an MRCP TTS server is configured in Cisco Unified CCX,
the genders available for that locale on that server are also specified. In addition,
for every TTS provider, a default gender is specified for each locale. This default
should correspond to a gender that is configured for that locale by the servers for
that TTS Provider.

When using a TTS prompt, a user has the option to either use the
com.cisco.tts.gender property or not specify any property, which causes the
default gender to be used.

The fallback mechanism that Cisco Unified CCX uses is as follows:

1. If a gender property has been specified, Cisco Unified CCX uses that gender.
If no TTS server is found for that gender, Cisco Unified CCX tries the default
gender if its value is different from the overridden gender. If no TTS server
is found for the default gender, then Cisco Unified CCX fails the request.
15-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
2. If a gender property has not been specified, Cisco Unified CCX uses the
default gender for the locale specified in the TTS prompt. If no TTS server is
found for the default gender, then Cisco Unified CCX tries Female, Male and
Neutral gender in that sequence until a TTS server is found. If none is found,
Cisco Unified CCX fails the request.

Using The CRTP Protocol
In a VoiceXML document on a Cisco Unified CCX system, you can fetch
resources from the Cisco Unified CCX Repository. The repository can be used to
manage documents, prompts, and grammars, To allow access to the resources in
the repository, you need to use a URL protocol provided by the Cisco Unified
CCX system, The Cisco Repository Transfer Protocol (CRTP). It is similar to
HTTP. However, in place of the Hostname and port number, the CRTP protocol
contains a repository identifier and a language specifier.

Example 15-5 Using CRTP Protocol

<field name="aNumber">
 <prompt>Press a number.</prompt>
 <grammar type="application/srgs+xml" mode="dtmf"
 src="crtp:/Grammars/number.grxml" />
</field>

This is a proprietary protocol, so no “non-Cisco” use agents are expected to
recognize it. Whenever a CRTP URL must be passed to a non-Cisco user agent, it
must first be converted to its HTTPO protocol equivalent. This is done by the
Cisco Unified CCX system. This conversion should only be done right before the
resource is needed to be fetched, as the conversion depends on the context at the
time of the fetch. See How and Why To Use the CRTP Protocol, page 2-56 for
more information on this protocol.

Using the Voice Browser Cache
Any document retrieved through a HTTP GET in a VoiceXML document may be
cached; for example, other VoiceXML documents, grammars, and audio files. The
voicexml.dtd file will not be cached because the XML parser loads DTDs on
every fetch.
15-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating VoiceXML Documents
When the cache is enabled, all HTTP responses with a code of 200 are stored in
the cache unless they exceed the size limit.

HTTP Cache keys are based on the URL. If the URL is a HTTP GET with values,
the values will be part of the cache key as well.

When a request is made for the same URL, the cache response is checked for
expiration. If it has not expired (based on the expires HTTP response header), a
conditional HTTP request is made using the last-modified and/or etag values from
the cached response.

Cache is controlled by the Web sender and by the set of vxml attributes containing
the maxage and maxstale strings in the VoiceXML document.

If none of these headers were present in the cached response, it is assumed that
the response is not cacheable.

The value of expires is subject to clock differences between computers.
Last-modified is unaffected as it is sent back to the server as is.

Cache replacement policy is LRU.

Dynamic web pages (JSP, ASP, PHP, cgi-bin, and so on) are cacheable provided
they are accessed via HTTP GET and they return the listed response header.

Contents cached based on HTTP headers use the following HTTP response
headers:

 • etag

 • last-modified

 • expires

Contents cached based on HTTP headers send the following HTTP request
headers:

 • if-none-match

 • if-last-modified
15-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
Creating Cisco Unified CCX Scripts that Run
VoiceXML Documents

The Cisco Unified CCX Voice Browser is fully integrated with the Cisco Unified
CCX Engine. You can use scripts designed in the Cisco Unified CCX Editor to
extend VoiceXML applications (documents) by providing Cisco Unified CCX
call control and resource management.

For example, you can use VoiceXML to build a speech dialog as a front end to
collect information from the caller. You can then pass this information to a Cisco
Unified CCX script, and when the agent receives the call, the information
collected by VoiceXML will be available.

This section covers:

 • Related Documentation, page 15-20

 • A Sample Voicebrower.aef Script, page 15-20

 • Creating a Script that Runs a VoiceXML Document, page 15-22

 • Specifying TTS Providers in a Cisco Unified CCX Script, page 15-28

Related Documentation
For complete descriptions of the Cisco Unified CCX steps used in creating Cisco
Unified CCX Editor scripts, see the Cisco Unified Contact Center Express
Scripting and Development Series: Volume 2, Cisco Unified Contact Center
Express Editor Reference Guide.

A Sample Voicebrower.aef Script
You can use the bundled voicebrowser.aef script as an example for creating scripts
that invoke a VoiceXML document. Figure 15-1 shows that script as it appears in
the Design pane of the Cisco Unified CCX Editor.
15-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
Figure 15-1 Voicebrowser.aef Script

The Cisco Unified CCX Voicebrowser.aef sample script does the following:

1. Accepts a call.

2. Creates a URL document.

3. Starts the Voice Browser.

4. Terminates the call.

5. Ends the script and releases system resources.

Use the Voice Browser step in the Media palette of the Cisco Unified CCX Editor
to invoke a VoiceXML application. This step can be used as many times in a script
as is necessary.
15-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
When creating a Cisco Unified CCX VoiceXML script, you can also execute other
steps in addition to VoiceXML. The purpose of this sample script is only to
illustrate how to create a Cisco Unified CCX script that runs a VoiceXML
document.

Creating a Script that Runs a VoiceXML Document
This section uses the sample voicebrowser.aef script described in the preceding
section to show to create a Cisco Unified CCX script that runs a VoiceXML
document.

This section covers:

 • Step 1: The Start Step (Creating a Script), page 15-22

 • Step 2: Create Two Voicebrowser Script Variables, page 15-23

 • Step 3: Enter the Accept Step, page 15-24

 • Step 4: Enter the Create URL Document Step, page 15-24

 • Step 5: Enter the Voice Browser Step, page 15-25

 • Step 6: Enter the Terminate Step, page 15-28

 • Step 7: Enter The End Step, page 15-28

Step 1: The Start Step (Creating a Script)

Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.

A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Cisco Unified CCX Editor places a Start step in the
Design pane of the Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called voicebrowser.aef.
15-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
Step 2: Create Two Voicebrowser Script Variables

Begin the Voicebrowser.aef script design process by using the Variable pane of the
Cisco Unified CCX Editor to define two script variables.

Figure 15-1 shows the variables of the Voicebrowser.aef script as they appear in
the Variable pane of the Cisco Unified CCX Editor window. Table 15-1 describes
them.

Table 15-1 Descriptions of the Variables in the Voicebrowser.aef Script

Variable Name
Variable
Type Value Function

DEFAULT_DOC_VER3
(the name is arbitrary)

Document DOC[] Specifies the VoiceXML Document that will
be used as a parameter in the Voice Browser
step. This variable is required.

uri
(the name is arbitrary)

String ""

(You need
to enter the
voiceXML
document
http
address
between
the quotes)

Specifies the URI address of the VoiceXML
document. The example in the previous figure
uses:
“http://www.mycompany.com/VoiceXmlDoc
ument.vxml”

This variable is optional but if you do not use
it, then each time in a script that you need to
reference the uri of the VoiceXML document,
you will need to specify it with the Create
URL Document step rather than just use the
Document variable.

This variable is used as a parameter in the
Create URL Document step where you assign
it to the document variable.

Step 2: Enter the Start Step

Begin to build your Voicebrowser.aef script by choosing File > New from the
Cisco Unified CCX Editor menu bar. The Cisco Unified CCX Editor places a Start
step in the Design pane of the Cisco Unified CCX Editor window. The Start Step
needs no configuration and has no customizer window.
15-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
Step 3: Enter the Accept Step

Continue to build the Voicebrowser.aef script by dragging an Accept step (from
the Contact palette in the Palette pane) to the Design pane of the Cisco Unified
CCX Editor. The script uses an Accept step to accept a contact.

Step 4: Enter the Create URL Document Step

In the Create URL Document step customizer window, in the separate selection
boxes, select the string variable uri and the document variable
DEFAULT_DOC_VER3 that you created and click OK. This assigns the URL
address in the string variable to the document variable.

This step defines the XML document variable, uri, to be used in your script for
specifying the VoiceXML document that you will run in the script.

The Create URL Document step does not issue a HTTP request. The request
occurs when the document variable is used by another step, such as the Send
Response step or the Send JSP step, or, as in our example script, the VoiceBrowser
step.
15-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
Figure 15-2 Create URL Document Customizer Window

In this example, parameters are not used. If you use parameters, they are passed
to the web server where the VXML document is located for use by the web server.

Step 5: Enter the Voice Browser Step

In the VoiceBrowser step, in the Contact selection box, select the triggering
contact that will run the VoiceXML document. Then, in the VXML Document
selection box, select the VXML document and click OK.

The VoiceBrowser step assigns the trigger to run the VoiceXML document at the
URL specified by the VXML Document variable. When a caller phones that
trigger number, the caller accesses the VoiceXML programming in the VoiceXML
document.
15-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
Figure 15-3 shows the General tab of the Voice Browser customizer window
configured with the example VXML document variable. You can use the
Expression Editor button next to the VXML Document select list to include the
VXML document in an expression in the Cisco Unified CCX VoiceXML script.

Figure 15-3 Voice Browser Customizer Window—General Tab

Figure 15-4 shows the <exit> Attributes tab of the Voice Browser customizer
window.

The sample script voicebrowser.aef does not use this tab.

Use the <exit> Attributes tab to return information from the Voice Browser step.
For example, the script in Example 15-3 on page 15-14 returns the credit card
number collected. Using the data in that example, you could pass the credit card
information to a script variable. To do that, you would first have to create a script
15-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
variable in the Cisco Unified CCX Editor and then, in the <exit> Attributes
<namelist> tab of the Voice Browser step customizer window, you would add the
mapping of the VoiceXML “creditNumber” to the “creditNumber” variable.

Figure 15-4 Voice Browser Customizer Window—<exit > Attributes Tab

Figure 15-5 shows Prompt tab of the Voice Browser customizer window.

The sample script voicebrowser.aef does not use this tab.

Use this tab if you do not want the Cisco Unified CCX script to continue if there
are errors when the VoiceXML document is run. The default is for the script to
continue.
15-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
Figure 15-5 Voice Browser Customizer Window— Prompt Tab

Step 6: Enter the Terminate Step

Close the sample script Voicebrowser.aef with a Terminate step (from the Contact
palette), which ends the call.

Step 7: Enter The End Step

Conclude the Voicebrowser.aef script with an End step (from the General palette).

The End step ends the script and releases all system resources.

Specifying TTS Providers in a Cisco Unified CCX Script
In addition to the supported TTS providers, the Cisco Unified CCX
Administration interface also allows the creation of new providers. Anytime a
new provider is added, Cisco Unified CCX updates the editor machines with the
new TTS provider information. This is done by synchronizing a file between the
Cisco Unified CCX server and the editor machines.
15-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Designing International Cisco Unified CCX VoiceXML Applications
Designing International Cisco Unified CCX
VoiceXML Applications

The Cisco Unified CCX Voice Browser can generate TTS prompts and recognize
speech in selected languages. In addition, the Voice Browser localizes built-in
grammars such as date and time. The script automatically activates the grammar
for specific languages based on the language context of the call.

For a list of built-in grammar support, see Built-in Type Implementation,
page B-12 of Appendix B, “VoiceXML Implementation for Cisco Voice
Browser.”

You can select a language for an application in one of several ways:

 • Configure the language of the application in the Cisco Unified CCX
Administration web interface. This method is the most convenient for
applications that use a single language. (For more information on language
configuration, see the Cisco Unified Contact Center Express Administration
Guide.)

 • Use the Set Contact Info in the Cisco Unified CCX script before invoking the
Voice Browser step, in order to make language information available to the
script.

 • Use the xml:lang attribute on the <vxml>, <grammar>, or <prompt> element.
With this method, scripts can use multiple languages.

 – To specify the language for a VoiceXML document, use the xml:lang
attribute in the <vxml> element.

 – To specify the language for individual prompt or grammar, set the
xml:lang attribute in the <prompt> or <grammar> element.

The following examples illustrate the use of the xml:lang attribute.
15-29
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Designing International Cisco Unified CCX VoiceXML Applications
Example 15-6 is a main menu that requests users to select the language,
prompting users in both English and Spanish. The xml:lang attributes in the
<prompt> elements specify the language to use for each prompt.

Example 15-6 mainmenu.vxml

<?xml version="1.0" encoding="UTF-8"?>
<vxml xmlns="http://www.w3.org/2001/vxml" version="2.0">
<form>
 <field name="language">
 <!-- read in English -->
 <prompt xml:lang="en">
 For English, press 1.
 </prompt>
 <!-- read in Spanish -->
 <prompt xml:lang="es-MX">
 Para Español, oprima 2.
 </prompt>

<grammar xml:lang="en-US" type="application/srgs+xml
 version="1.0" mode="dtmf">

 <rule id="choice" >
<one-of>

<item>1</item>
<item>2</item>

</one-of>
</rule>

</grammar>
 <filled>
 <if cond="language=='1'">
 <goto next="info_en.vxml"/>
 <elseif cond="language=='2'"/>
 <goto next="info_es.vxml"/>
 </if>
 </filled>
 </field>
</form>
</vxml>

In Example 15-7, if the user selects Spanish, the script executes the document
info_es.vxml. The xml:lang attribute of the <vxml> element specifies the Spanish
language for the entire document.
15-30
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Designing International Cisco Unified CCX VoiceXML Applications
Example 15-7 info_es.vxml

<?xml version="1.0" encoding="ISO-8859-1"?>
<vxml xmlns="http://www.w3.org/2001/vxml"version="2.0 "xml:lang="es-M>

<form>

<field name="q">
 <prompt>
 ¿Desea escuchar las noticias o el tiempo?
 </prompt>

<grammar xml type="application/srgs+xml
 version="1.0" mode="voice">

 <rule id="choice" >
<one-of>

<item>las noticias</item>
<item>el tiempo</item>

</one-of>
</rule>

</grammar>
<filled>

 <submit next=”getInfo.jsp”/>
 </filled>
 </field>
</form>
</vxml>

Note When you create non-English XML files, you must accurately set the character
encoding. XML uses Unicode (UTF-8) by default, but you can use other encoding
methods. For example, many Western European language text editors use
ISO-8859-1 (latin-1) encoding by default. In this case, you must set the encoding
attribute of the XML declaration correctly, as shown in the example above.

Although you may specify xml:lang in <grammar>, note that Cisco Unified CCX
does not support recognition of multiple languages at the same time. If the
<grammar> elements specify conflicting languages, the last one specified will
take precedence.

See Using VXML to Implement a Language Not Available in Cisco Unified CCX,
page 4-5 for further information.
15-31
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 15 Designing Cisco Unified CCX VoiceXML Applications
Cisco Unified CCX VoiceXML Application Troubleshooting Tips
Cisco Unified CCX VoiceXML Application
Troubleshooting Tips

The following are helpful tips when troubleshooting your voiceXML application:

 • Check the Cisco Unified CCX subsystems in service: CMT, JTAPI, MRCP
ASR&TTS, Voice Browser.

 • Test the URI in the Web browser.

 • Check the Provider selection.

 • Validate files: VXML, grammar, audio.

 • Check file fetching locations.

 • Use a DTD to check for the correct syntax.

 • Do performance tuning: exclude the DTD and use caching facilities
(VXML, HTTP)

 • In the Cisco Unified CCX system, trace the contact flow:

 – The SS_VB subsystem is used to control tracing for the Voicebrowser,
and the “Debugging” level provides debug output.

 – Other related subsystems to check:

 • SS_MRCP_TTS

 • SS_MRCP_ASR

 • SS_CMT

 • Check the log file
15-32
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
C H A P T E R 16

Designing Scripts for Cisco Unified
IP IVR

You can use the steps of the Cisco Unified CCX Editor to design scripts that take
advantage of the Cisco Unified Contact Center Enterprise (CCE) solution.

This chapter describes the steps used to create scripts that interact with the Cisco
Unified Intelligent Call Management Enterprise (ICME) subsystem of the Cisco
Unified CCX system.

This section contains the following topics:

 • The Service Control Interface, page 16-1

 • Call Variables, page 16-3

 • ICM Script Types, page 16-7

 • Sample VRU Script Templates, page 16-10

The Service Control Interface
The Service Control interface allows the Cisco Unified ICME software to provide
call-processing instructions to the Cisco Unified CCX system. It also provides the
Cisco Unified ICME software with event reports indicating changes in call state.
16-1
arted with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
The Service Control Interface
The Service Control interface supports the following four label types:

 • Normal—The Normal label is a character string that encodes instructions for
routing the call. It contains either a directory number to which the Cisco
Unified CCX system routes the call or the name of a user prompt that
represents an announcement.

 • Busy—The Busy label indicates that the caller receives a busy treatment.

 • Ring No Answer—The Ring No Answer (RNA) label indicates that the caller
receives an RNA treatment.

 • Default Label—The Default label indicates that the Cisco Unified CCX
system runs the default script or runs the system default treatment if no
default script is configured.

In addition to these label types the Cisco Unified IP IVR product supports the
following special extensions as part of the Normal label:

 • Extensions starting with “#” or “*”

These extensions trigger a network take back and transfer. For the redirect to
be successful, the script out-pulses the specified string as is and then monitors
the call for a hang-up event, for a maximum of 5 seconds.

You can use the “,” character to insert a 1 second pause.

 • Extensions ending with “.wav”

These extensions trigger a network announcement type of redirect, in which
the script simulates a ring-back tone and then plays back the specified .wav
file 4 times, and then finally simulates a fastbusy tone. The transfer is
successful if at any time the caller hangs up or if the script reaches the end of
the fastbusy tone and disconnects the call.

 • Extensions equal to “PROBLEMS”

These extensions trigger a network announcement type of transfer (see
above) with a system problem announcement.

 • Extensions equal to “BUSY”, “RNA”, “FASTBUSY”, or “DIALTONE”

These extensions cause the script to generate the specified audio treatment
before terminating the call. The transfer is successful if at any time the caller
hangs up or the script reaches the end of the audio treatment. The script then
reports the call as disconnected rather than as redirected.
16-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Call Variables
Call Variables
This section contains the following topics:

 • Using Call Variables, page 16-3

 • Using Expanded Call Variables, page 16-3

 • Using Error Variables, page 16-4

 • Using the Parameter Separator, page 16-4

 • Configuring Encoding and Decoding Types, page 16-5

Using Call Variables
The Cisco Unified ICME software supports several Call Variables. The Cisco
Unified ICME System, the Enterprise Server, and the CiscoUnified CCX system
use these strings to pass values to each other. You can use the following variables
in your scripts:

 • VRU Script Name

 • ConfigParam

 • Call.CallingLineID

 • Call.CallerEnteredDigits

 • Call.PeripheralVariable1 to Call.PeripheralVariable10

 • Call.AccountNumber

Using Expanded Call Variables
The Cisco Unified ICME, the Enterprise Server, and the Cisco Unified CCX
system also pass expanded call variables to each other, but you must use the Cisco
Unified CCX Editor to define or enable these variables individually.
16-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Call Variables
Note If you are using Cisco Unified CCX, your variables must also be defined through
the Cisco Finesse Administration.

See the Cisco Unified Contact Center Express Scripting and Development Series:
Volume 2, Editor Step Reference Guide and the Cisco Contact Center Express
Administration Guide for more information about Call variables and
ICME-related topics.

See Get Enterprise Call Info Step for more information about Call variables and
ICME-related topics.

Using Error Variables
If a VRU (Voice Response Unit) script runs without any errors, the system sets
the ResultCode field of the run_script_result message to true. You can change the
result using the Set ICM Result step (from the ICM palette).

Note For more information, see “Call Contact Step Descriptions” in the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 2, Editor Step
Reference Guide.

Using the Parameter Separator
You can send multiple values—or tokens—within one variable, so you can avoid
using many variables at the same time.

The parameter separator is a character that defines the boundary between the
different tokens in one variable. The token numbering begins with 0.

Note You specify this separator on the Cisco Unified CCX Administrator’s System
Parameters web page.
16-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Call Variables
For example, if the parameter separator is “|”, you can send an expanded call
variable as
true | 4 | 4/3/2000

where the value of token number 0 is “true”, token number 1 is “4”, and token
number 2 is “4/3/2000”.

The following variables can have multiple tokens separated by the parameter
separator:

 • Peripheral (1-10)

 • Expanded Call (ECC)

 • ConfigParam

 • VRU Script Name

Note The VRU Script Name variable holds the name of a VRU script to run when the
Cisco Unified CCX system receives a Run Script request from the Cisco ICME
software. The Cisco Unified CCX system reads only the first token (token number
0) as VRU Script Name; the rest of the tokens are passed on (with the script name
- token #0) to be used as regular variable tokens.

The Get/Set Enterprise Call Info steps of the Call Contact palette in the Cisco
Unified CCX Editor allow you to set and read different tokens in the variables
passed between the Cisco Unified CCX system and the Cisco Unified ICME
Server.

Note For more information, see “Call Contact Step Descriptions” in the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 2, Editor Step
Reference Guide.

Configuring Encoding and Decoding Types
When the Cisco Unified CCX system receives variables from the Cisco
Unified ICME software or Enterprise Server, the variables do not have an
associated type (such as Integer or Float). To use these variables in Cisco Unified
ICME VRU or Cisco Unified CCX scripts, the Cisco Unified CCX system first
16-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Call Variables
decodes them to one of the available types. When the script sends variables back
to the Cisco Unified ICME Server, the Cisco Unified CCX system then encodes
them into a form the Cisco Unified ICME Server can use, depending on the type
of the local Cisco Unified CCX script variable.

Table 16-1 lists the encoding types that the Cisco Unified CCX system supports.

Note The Input format is the data decoded from the Cisco Unified ICME Server
variables to the Cisco Unified CCX script local variables. The Output format is
the data encoded from the Cisco Unified CCX script local variables to the Cisco
Unified ICME Server variables.

Table 16-1 Encoding Types That Cisco Unified CCX Supports

Encoding Type Input Format Example Input Output Format

Integer—32-bit
signed integer

The Cisco Unified CCX Editor
supports three formats:

 • Decimal—a sequence of digits
without a leading 0. Digits can
range from 0 to 9.

 • Hexadecimal—in the form
0xDigits, where Digits can
range from 0 to 9, a to f, and A
to F.

 • Octal—in the form 0Digits,
where Digits can range from 0
to 7.

Decimal:

 • 25

 • -34

 • 900

Hexadecimal:

 • 0x1e

 • 0x8A5

 • 0x33b

Octal:

 • 033

 • 0177

Decimal digits from
0 to 9 with no
leading 0

Long—64-bit
signed integer.
16-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
ICM Script Types
ICM Script Types
The Cisco Unified CCX system runs three different types of ICM scripts:

 • Initial Scripts, page 16-8

 • Default Scripts, page 16-8

 • VRU Scripts, page 16-9

Float—32-bit
floating number

[-]Digits.DigitsExponentTrailer

where:

 • Digits are digits from 0 to 9.

 • Exponent is an optional
exponent with a leading e or E.

 • Trailer is one of f, F, d, or D to
specify a float or a double. The
trailer is optional.

3.1415927f
6.02e23F
25
-4.2323E5f

Same as input

Double—64-bit
floating number

0.843
1.871E3d
.23e-123
-3.4e34

Same as input

Boolean To designate this
non-case-sensitive type:

 • True—Use 1, t, y, true, or yes.

 • False—Use 0, f, n, false, or no.

Yes
F
0
n

Either true or false

String Type requires no conversion. Hello world Same as input

Date Use the format mm/dd/yyyy where
mm is the month, dd is the day, and
yyyy is the year.

10/22/1999
3/30/2000

Same as input

Time Use the format Hh:MmTod

where Hh is the hour, Mm is the
minute, and Tod is am or pm. This
type is not case-sensitive.

12:20am
09:05PM

Same as input

Table 16-1 Encoding Types That Cisco Unified CCX Supports (continued)

Encoding Type Input Format Example Input Output Format
16-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
ICM Script Types
Initial Scripts
The Cisco Unified CCX system runs initial scripts when it receives a call on a
JTAPI (Java Telephony Application Programming Interface) trigger associated
with a post-route application. You set the initial script when you configure a Cisco
Unified ICME post-route application. (For more information, see the Cisco
Unified Contact Center Express Application Administration Guide.)

If you leave the Initial Script field empty, no initial script runs.

Note Because initial scripts are run on the Cisco Unified CCX system before the system
notifies the Cisco Unified ICME about the call, you can use the Get Enterprise
Call Info step or the Set Enterprise Call Info step, but not the Set ICM Result step.

Default Scripts
The Cisco Unified CCX system runs the default script whenever the Cisco
Unified ICME software sends a default label, when the Cisco Unified CCX
system times out waiting for the Cisco Unified ICME to provide instructions, or
when communication with the Cisco Unified ICME software is lost.

Note Because default scripts can run without access to the Cisco Unified ICME
software, you should never use any ICM step in a default script.

You set the default script when you configure the Cisco Unified ICME translation
route or post-route applications. (For more information, see the Cisco Contact
Center Express Administrator Guide.)

If you leave the Default Scripts field blank, the Cisco Unified CCX system runs
the system default message, which announces that the system is experiencing
technical difficulties.
16-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
ICM Script Types
VRU Scripts
Cisco VRU script design does not handle complete calls, but provides different
call-handling instructions to be executed sequentially by the Cisco Unified CCX
server. For example, the VRU scripts may play a prompt or acquire dual tone
multi-frequency (DTMF) values.

The VRU scripts run when the Cisco Unified ICME software sends a Run VRU
Script request to the Cisco Cisco Unified CCX system using a Run VRU Script
node in an ICM script. Before the Cisco Unified ICME software can call a VRU
script, you must configure and upload the script to the Repository. (For details,
see the Script Management information in the Cisco Unified Contact Center
Express Administration Guide.)

Note Because the VRU scripts run only when the Cisco Cisco Unified CCX system is
in communication with the Cisco Unified ICME, you can use any ICM step in a
VRU script.

PreConnect scripts and VRU scripts that run when Cisco Unified ICME software
sends a connect request to the Cisco Unified CCX system before the Cisco
Unified CCX system routes the call. When the Cisco Unified CCX system
receives the connect request, it checks the Expanded Call Context variable. If the
variable is empty, the Cisco Unified CCX system routes the call to the label sent
by the Cisco Unified ICME. If the VRU Script Name variable is not blank, the
Cisco Unified CCX system simulates a Run VRU Script request, using the first
token of the variable as the file name of the VRU script to run. In addition, the
Cisco Unified CCX system sends the ConfigParam variable and other tokens in
the VRU Script Name variable to the PreConnect script.

If the PreConnect script returns a result of false, the Cisco Unified CCX system
handles it as a failure-to-connect error, and does not attempt to route to the
requested destination.

You must enable the VRU Script Name expanded call variable to use this feature.
If you want to send values using the ConfigParam variable, you must enable the
ConfigParam expanded call variable. For more information, see the “Using
Expanded Call Variables” section on page 16-3.
16-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Sample VRU Script Templates
Sample VRU Script Templates
The Cisco Unified CCX system ships with the following three VRU sample script
templates:

 • Basic Queuing (BasicQ.aef), page 16-10

 • Visible Queuing (VisibleQ.aef), page 16-11

 • Collect Digits (CollectDigits.aef), page 16-12

Basic Queuing (BasicQ.aef)
The BasicQ script template (BasicQ.aef) does not use any ICM steps. It simply
plays several prompts (and puts the call on hold), looping through them until an
agent phone becomes free and the Cisco Unified ICME can route the call to the
agent.

This script has no variables defined.

The Cisco Unified CCX system accepts the call with the Accept step. Next, it
plays the ICMStayOnline.wav file using the Play Prompt step, then puts the call
on hold for 30 seconds using the Call Hold and Delay steps.

The script uses the Call UnHold step to take the call off hold, plays the
ICMWait4NextAvail.wav file, and then puts the call back on hold for another 60
seconds. This sequence repeats until a connect request is sent to connect the call
to an available agent.
16-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Sample VRU Script Templates
Figure 16-1 shows BasicQ.aef as it appears in the Design pane of the Cisco
Unified CCX Editor.

Figure 16-1 BasicQ.aef Script in the Cisco Unified CCX Editor Design Pane

Visible Queuing (VisibleQ.aef)
The VisibleQ script template (VisibleQ.aef) uses the GetEnterpriseCallInfo step
to retrieve the expected wait time from the Cisco Cisco Unified ICME and to relay
that information to the caller.

Before accepting the call, the GetEnterpriseCallInfo step retrieves information for
Cisco Cisco Unified ICME. The script copies the value of the expanded call
variable user.expected.wait.time to the local variable WaitTime as an Integer.

Then, the Accept step accepts the call. The script plays several messages. It starts
by playing ICMVisibleQAnn1.wav. It then plays the variable WaitTime, the
ICMSecond.wav file, and ICMVisibleQAnn2.wav file.

The script then puts the call on hold for 30 seconds, takes the call off hold, plays
the ICMWait4NextAvail.wav prompt, and puts the call back on hold for another
60 seconds. This sequence loops until an agent is free to take the call, as in the
BasicQ script.
16-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Sample VRU Script Templates
Figure 16-2 shows VisibleQ script as it appears in the Design pane of the Cisco
Unified CCX Editor.

Figure 16-2 VisibleQ.aef Script in the Cisco Unified CCX Editor Design Pane

Collect Digits (CollectDigits.aef)
The CollectDigits script template, CollectDigits.aef, uses the Set ICM Data step
to collect the caller account numbers, and send them back to the Cisco Unified
ICME system.
16-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Sample VRU Script Templates
Figure 16-3 shows the CollectDigits script as it appears in the Design pane of the
Cisco Unified CCX Editor.

Figure 16-3 CollectDigits.aef Script in the Cisco Unified CCX Editor Design Pane

First the Accept step accepts the call, and then the script uses the Get Digit String
step to ask the caller to enter an account number, which is assigned to Result Digit
String acctno.

The Set Enterprise Call Info step stores the result in Field Name
Call.CallerEnteredDigits field so that it can be returned back to the Cisco
Unified ICME system for further processing.
16-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 16 Designing Scripts for Cisco Unified IP IVR
Sample VRU Script Templates
16-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
C H A P T E R 17

Designing Cisco Unified CCX
Scripts

Cisco Unified Contact Center Express (CCX) is an automatic call distributor
(ACD) for enterprise organizations.

You can use the Cisco Unified CCX Editor to design scripts that take advantage
of Cisco Unified CCX capability.

This chapter describes the design of such a script, SessionEnabled.aef, and also
serves as a good demonstration of the use of the steps from the Session palette for
session management and the use of a default script that executes if an error occurs
in the main script.

This section contains the following topics:

 • A Sample Cisco Unified CCX Script Template, page 17-2

 • The Start Step (Creating a Script), page 17-2

 • Cisco Unified CCX Script Variables, page 17-3

 • The Accept Step, page 17-6

 • The Get Contact Info Step, page 17-6

 • The Get Session Info Step, page 17-6

 • The If Steps, page 17-7

 • Recording a Name, page 17-24

 • The Select Resource Step, page 17-26

 • Using Default Scripts, page 17-32
17-1
arted with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
A Sample Cisco Unified CCX Script Template
A Sample Cisco Unified CCX Script Template
The sample Cisco Unified CCX script template performs the following functions:

1. Accepts a call.

2. Asks the caller to enter an account number.

3. Records the caller’s name.

4. Does one of the following:

 • Connects the caller to an agent

 • Queues the call and sets a priority, based on whether or not the caller has
already entered an account number on a previous attempt to connect
during the same session, and/or if the main script has already failed and
the caller has been re-routed back to the main script.

Figure 17-1 shows the top-level view of the sample Cisco Unified CCX script in
the Design pane of the Cisco Unified CCX Editor.

Figure 17-1 Cisco Unified CCX Sample Script Design Pane—Top-level View

The Start Step (Creating a Script)
Begin to build the sample script by choosing File > New from the Cisco Unified
CCX Editor menu bar. The Templates folder displays. Select the blank script and
click OK.
17-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Cisco Unified CCX Script Variables
A blank script containing a Start and End step opens in the Design pane of the
Cisco Unified CCX Editor window.

The Start step needs no configuration and has no customizer window. At this time,
you might also want to give your new script a name and save it by selecting File
> Save from the menu bar.

Our example script is called SessionEnabled.aef.

Cisco Unified CCX Script Variables
The designer begins the script design process by using the Variable pane of the
Cisco Unified CCX Editor to define script variables.

Figure 17-2 shows the variables of the sample Cisco Unified CCX script as they
appear in the Variable pane of the Cisco Unified CCX Editor.

Figure 17-2 Cisco Unified CCX Sample Script Variable Pane

Table 17-1 describes the variables used in the Cisco Unified CCX sample script.
17-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Cisco Unified CCX Script Variables
Table 17-1 Variable Descriptions for the Sample Cisco Unified CCX Script

Variable Name
Variable
Type Value Function

CSQ String "" Stores Contact Service Queue
information from which to find a
resource. (See The Select Resource Step,
page 17-26.)

The designer marks this variable as a
parameter to allow the administrator the
option to change the value of this
variable.

For more information, see the Cisco
Unified Contact Center Express
Administration Guide.

DelayWhileQueued Integer 30 Length of time the script will delay before
sending the call back through the queue
loop. (See The Queued Output Branch,
page 17-30.)

The designer marks this variable as a
parameter to allow the administrator the
option to change the value of this
variable.

For more information, see the Cisco
Unified Contact Center Express
Administration Guide.

WelcomePrompt Prompt P[CDWelcome.wav Welcomes the caller. (See The Play
Prompt Step, page 17-11.)

The designer marks this variable as a
parameter to allow the administrator the
option to change the value of this
variable.

For more information, see the Cisco
Unified Contact Center Express
Administration Guide.
17-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Cisco Unified CCX Script Variables
accountNum String "" Stores the account number entered by the
caller. (See The Play Prompt Step,
page 17-11.)

failureCount Integer 0 Stores the number of times a call has
failed. (See The Session Steps,
page 17-14)

language Language English
(United States)
(en_US)

Stores the language selection made by the
caller. (See The Third If Step, page 17-9.)

name Document null Stores the spoken name of the caller. (See
Recording a Name, page 17-24)

prompted Boolean false Stores information to determine whether
or not the caller has heard
WelcomePrompt. (See The First If Step,
page 17-9.)

queued Boolean false Stores the information used to determine
whether or not the call has been queued.
This information will be useful in the
default script to determine whether or not
the main script failed while in or outside
of queue. (See The Connected Output
Branch, page 17-28 and The Queued
Output Branch, page 17-30.)

resourceID String "" Stores the Resource ID of the chosen
agent. (See The Select Resource Step,
page 17-26.)

session Session null Stores session information for the call.
(See The Get Contact Info Step,
page 17-6.)

session2 Session null Stores previous session information
based on the accountNum variable. (See
The Session Steps, page 17-14.)

Table 17-1 Variable Descriptions for the Sample Cisco Unified CCX Script (continued)

Variable Name
Variable
Type Value Function
17-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The Accept Step
The Accept Step
The designer continues to build the sample script by dragging an Accept step
(from the Contact palette in the Palette pane) to the Design pane of the Cisco
Unified CCX Editor window, as shown in Figure 17-1.

The script uses an Accept step to accept a contact, in this case a telephone call.

The Get Contact Info Step
The designer continues to build the sample script by adding a Get Contact Info
step, which determines whether or not contact information already exists for this
caller (based on a previous call).

The Get Contact Info step extracts information from the Session object and stores
it in a Session variable named session.

The Get Session Info Step
The designer continues to build the sample script by adding a Get Session Info
step, which evaluates the value of session, attempting to retrieve previous
information collected from the caller, who may have been disconnected during a
previous call or transferred back into the Cisco Unified CCX queue by an agent.
A caller can be transferred back into the queue if the script fails, in which case the
Cisco Cisco Unified CCX system falls back to the default script (see Using
Default Scripts, page 17-32), or if an agent routes the call back to the route point.
17-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Figure 17-3 shows the configured Context tab of the Get Session Info customizer
window.

Figure 17-3 Get Session Info Customizer Window—Configured Context Tab

Note This chapter describes the variables listed in the Context tab of the Get Session
Info customizer window as they are populated by subsequent steps in the script.
If this call is the first time the caller has called, the session variable is empty and
the prompted variable is null.

The If Steps
The designer continues the sample script by adding a series of If steps to test to
find out if a caller has already entered information.

If the caller has made a previous call within the configured session timeout, which
is typically 30 minutes, and has already entered information, then the script can
retrieve this information, saving the caller from the inconvenience of re-entering
it. In this case, the script collects the account number of the caller and then
attempts to retrieve the session that corresponded with that previous call.
17-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
If an agent transferred the call back into the queue managed by this script, then
the session that stores all the collected information is still associated with the call.
The series of If steps at the beginning of the script verifies this fact, after having
retrieved this information from the session using the Get Session Info step.

Figure 17-4 shows the scripting under the first three If steps in the beginning of
the sample Cisco Unified CCX script.

Figure 17-4 If Steps

This section contains the following steps:

 • The First If Step, page 17-9

 • The Second If Step, page 17-9

 • The Third If Step, page 17-9

 • The Fourth If Step, page 17-10

 • The Play Prompt Step, page 17-11

 • The Get Digit String Step, page 17-11

 • The Session Steps, page 17-14

 • Choosing a Language, page 17-21
17-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
The First If Step
The designer adds the first If step to evaluate the expression, prompted==null; or,
the value of the prompted variable (which was obtained from the session) is equal
to null.

The script uses the Boolean prompted variable to determine whether or not the
caller has heard the WelcomePrompt prompt (which plays later in the script).

If the expression is true, then the Set step under the True output branch has not
executed yet, because when it does execute, it sets the value of prompted to false.
(See Figure 17-4.)

Note A false value, when tested by a subsequent If step, tells the script that the caller
has already entered an account number, and the script falls through to a Select
Resource step to attempt to connect to an agent.

The Second If Step
The designer adds a second If step to evaluate the expression, failureCount==null;
or, the value of the failureCount variable (which was obtained from the session)
is equal to null.

The script uses the failureCount Integer variable to determine how many times
the call has failed. If the expression is true, this tells the script that this is the first
time for this call, and the Set step initializes the value of failureCount to 0. (See
Figure 17-4.) This information will be useful later in the script to determine
priority of queueing and in the associated default script to determine if the call has
failed more then once in the main script.

If this expression is false, then the value of failureCount is not changed.

The Third If Step
The designer adds a third If step to evaluate the expression, language!=null; or,
the value of the language variable (which was obtained from the session) is not
equal to null.
17-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Later in the script, the script gives the caller the choice to set the value of the
language variable to either American English or North American Spanish. If the
expression is true, the language variable has been set (and therefore, this is not the
first pass for this caller), and the Set Contact Info step under the True output
branch updates the language context of the call to the language selected by the
caller in a previous attempt.

If the expression is false, the language preference has not been determined yet,
and its value remains unchanged.

The Fourth If Step
The designer adds a fourth If step to evaluate the expression, prompted==false;
or, the value of the prompted variable is false.

As mentioned above (see The First If Step, page 17-9), if this expression is true,
this is the first pass of the caller, and the script continues to the subsequent steps
that prompt the caller to enter an account number, choose a language for the call,
and record a name.

Figure 17-5 shows the scripting under the True output branch of this If step.

Figure 17-5 Steps Under the True Output Branch of the Fourth If Step
17-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
If this expression is false, the steps under the True output branch of this If step
have already been executed on a previous attempt, and the script can send the
caller directly to the Select Resource step to be connected to an agent or placed in
queue.

The True output branch of the fourth If step contains the following steps:

 • The Play Prompt Step, page 17-11

 • The Get Digit String Step, page 17-11

 • The Session Steps, page 17-14

 • Choosing a Language, page 17-21

 • Recording a Name, page 17-24

The Play Prompt Step
The Play Prompt step under the True output branch of If step plays back the
prompt WelcomePrompt, which welcomes the caller.

The Get Digit String Step
After this Play Prompt step executes, the Get Digit String step prompts the caller
to enter an account number and then receives caller input.

The designer configures the Get Digit String customizer window as follows:

 • General tab

 – Contact—Triggering Contact

The contact that triggered the script remains the contact for this step.

 – Interruptible—Yes

External events can interrupt the execution of this step.

 – Result Digit String—accountNum

The accountNum variable stores the digits entered by the caller (and is
used by the subsequent Session steps).
17-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
 • Prompt tab

 – Prompt—P[EnterAccountNum]

This prompt asks the caller to enter an account number.

Barge In—Yes

The caller can enter an account number without first having to listen to
the playback of the entire prompt.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence, or waits for caller input if the last prompt has
been played.

 • Input tab

 – Initial Timeout (in sec)—5

The system waits 5 seconds for initial input from the caller before
executing the Timeout output branch (after the maximum number of
retries has been reached).

 – Interdigit Timeout (in sec)—3

The system waits 3 seconds for the caller to enter the next digit, after
receiving initial input from the caller, before executing the Timeout
output branch (after the maximum number of retries has been reached).

(Does not apply for ASR channels.)

 – Maximum Retries—3

The step makes 3 retries to receive valid input before executing the
Unsuccessful output branch.

 – Flush Input Buffer—No

The system saves previously entered input while the caller types ahead.

 – Clear Input Buffer on Retry—Yes

The script clears the input buffer, erasing previously-entered digits
whenever the step makes a new attempt at collecting caller input.
17-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
 • Filter tab

 – Input Length—10

The minimum number of digits required before the step returns
automatically is 10. (This minimum number applies only to non-ASR
channels; however, with ASR channels no more digits than specified will
be returned.)

 – Digits Filter

All the numeric options are checked. The alphabetical options and “*”
and “#” and not selected.

The step treats the numbers from 0 to 9 as valid entries, and treats the
keys “*” and “#” and the letters A through D as invalid characters to
collect.

 – Terminating Digit—#

The key the caller can use to indicate completion of input.

 – Cancel Digit—*

The key the caller can use to start over. (The cancel key works only until
the script reaches the maximum number of retries.)

As shown in Figure 17-6, The Get Digit String step has three output branches.

 • Successful—If the Successful output branch executes, the script uses a series
of Session steps as described in the next section.

 • Timeout—If the Timeout output branch executes, a Set step sets the
accountNum to null, meaning that the account number was not received, and
so the script treats the call as new.

 • Unsuccessful—If the Unsuccessful output branch executes, a Set step sets the
accountNum to null, meaning that the account number was not received, and
so the script treats the call as new.
17-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Figure 17-6 Get Digit String Step—Output Branches

The Session Steps
This section describes the session management tasks accomplished by the
scripting under the Successful output branch of the Get Digit String step.

The script determines whether or not the caller has made a recent call and
previously entered all the necessary information, in which case a session may
already exist. The script uses the account number to map the current call to any
previous session information. The subsequent steps attempt to retrieve the
previous session and if found, associate this new call contact with the original
session.
17-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Figure 17-7 shows the scripting under the Successful output branch of the Get
Digit String step.

Figure 17-7 Get Digit String Step—Successful Output Branch

The Get Session step under the Annotate step attempts to get previous session
information based on the accountNum variable, and to store it in the session2
variable. (This information is useful to the subsequent If step, which tests to
determine whether or not session information existed for the previous call.)

Figure 17-8 shows the context tab of the configured Get Session customizer
window.
17-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Figure 17-8 Configured Get Session Customizer Window

The If step under the Get Session step evaluates the expression session2!=null; or,
the session2 variable is not null.

If this expression is true, session information does exist for the previous call, and
the script uses the following steps under the True output branch of the If step (see
Figure 17-8) in order to re-associate the current call to this older session:

 • Set step— Sets the value of the session variable to equal the session2
variable.

The session variable is used by subsequent steps in the script so that from this
step on, the script uses only the previous session information.

 • Set Contact Info step—Associates the new call to the old session and deletes
the temporary blank session that the script automatically associated with the
new call.

 • Get Session Info step—Uses the session variable to retrieve values for the
failureCount and language variables (used by subsequent If steps).

 • If step—Evaluates the expression failureCount==null; or, the value of the
failureCount variable is equal to null.

 – If the True output branch executes and failureCount is empty, the call
has not failed before this step, and a Set step initializes the value to 0.

 – If the False output branch executes and failureCount has already been
assigned a value, then this value is left unchanged and is subsequently
used to determine the queuing priority to assign to this call.
17-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
If the expression session2!=null is false, then session information no longer
exists, and the Session Mapping step adds new mapping for this session.

The script then continues with the temporary session object that the script
originally associated with this call, and then re-populates the information by
collecting it from the caller. The script maps the new session using the account
number so that the script can retrieve it later for another call from the same
customer.

Figure 17-9 shows the configured Session Mapping customizer window.

Figure 17-9 Configured Session Mapping Customizer Window

As shown in Figure 17-10, after the steps under the Get Digit String step execute,
a Set step sets the value of the prompted variable to true.
17-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Figure 17-10 Set Step Scripting

Under the Set step, a Set Session Info step adds context information for this
session, in order to record the account number, the current failure count and the
fact that the caller has already been prompted.

The special context attributes “_ccdrVar1” and “_ccdrVar2” store the account
number and the failure count to make these values available to historical reports
for this particular call.
17-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Figure 17-11 shows the configured Context tab of the Set Session Info customizer
window.

Figure 17-11 Set Session Info Customizer Window—Configured Context Tab

The Set Session Info step adds the context information described in Table 17-2.

Table 17-2 Set Session Info Properties

Attribute Value Description

Prompted prompted Stores the value that indicates whether or
not the caller has previously heard the
welcoming prompt.

AccountNum accountNum Caller account number

_ccdrVar1 accountNum Places the specified variable values in the
Contact Call Detail Record (CCDR) for
this call. (You can write a custom report
to display these values.)
17-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
_ccdrVar2 failureCount Places the specified variable values in the
Contact Call Detail Record (CCDR) for
this call. (You can write a custom report
to display these values.)

FailureCount failureCount Stores the value that indicates how many
times the call has failed, in order to set
queueing priority (or in the default script,
to decide if the script attempts to queue
the caller again by re-routing the call
back to the main script or announces that
“we are experiencing problems” and
requests the caller to call back later.

Table 17-2 Set Session Info Properties (continued)

Attribute Value Description
17-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Choosing a Language
The next steps in the Cisco Unified CCX sample script determine whether or not
a language has been previously set, and if not, to give the caller the chance to
choose a language.

Figure 17-12 shows the scripting under the If steps that allow the caller to choose
between two languages for the context of the call.

Figure 17-12 Steps for Choosing a Language Under the If Step

The first If step evaluates the expression language==null; or, the value of the
variable language is equal to null.

If this expression is true, no language has been set (and this is the first pass
through these steps). The Menu step then offers the caller a choice of two
languages.

The designer configures the Menu step as follows:

 • General tab

 – Contact—Triggering Contact

The contact that triggered the script remains the contact for this step.

 – Interruptible—Yes

External events can interrupt the execution of this step.
17-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
 • Prompt tab

 – Prompt—P[SelectLanguage]

This system prompt asks the caller to choose a language.

 – Barge In—Yes

The caller can choose a language without first having to listen to the
playback of the entire prompt.

 – Continue on Prompt Errors—Yes

In the event of a prompt error, the script continues to play back the next
prompt in the sequence, or waits for caller input if the last prompt has
been played.

 • Input tab

 – Timeout (in sec)—3

The script executes the Timeout output branch if no input is received
within 3 seconds and the script has reached the maximum number of
retries.

 – Maximum Retries—3

The step makes 3 attempts to receive valid input before executing the
Unsuccessful output branch.

 – Flush Input Buffer—No

The system does not erase previously entered input before capturing new
caller input.

 • Filter tab

 – Add as connection options: American English and North American
Spanish.

The Menu step in this script has the following output branches (see Figure 17-12):

 • American English—If the caller chooses this choice, a Set step sets the
language variable to en_US, or American English.

 • North American Spanish—If the caller chooses this choice, a Set step sets
the language variable to es_US, or North American Spanish.
17-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
 • Timeout—If this output branch executes, the script falls through to the next
If step in the script without setting a value for the language variable. The
script then continues with the language the designer configured for this
application.

 • Unsuccessful—If this output branch executes, the script falls through to the
next If step in the script without setting a value for the language variable. The
script then continues with the language the designer configured for this
application.

After the Menu step executes, a Set Session Info step adds information to the
session variable, as shown in Figure 17-11.

Figure 17-13 Set Session Info Customizer Window-Context Tab

The designer configures the Attribute list in the Context tab of the Set Session
Info customizer window as follows:

 • _ccdrVar3—language

 • Language—language

The next If step (see Figure 17-12) updates the language of the call based on caller
preference. This step is useful in the event subsequent prompting or session
information from a previous call changed the language.

This If step evaluates the expression language!=null; or, the value of the variable
language is not equal to null.
17-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
If this expression is true, the caller has chosen a language. In this case, the Set
Contact Info step then makes the information in the language variable available
to the rest of the script.

Note The script could also modify the value of the CSQ variable to account for the
language chosen by the caller. For example, the system may contain one CSQ for
English-speaking callers and another CSQ for Spanish speakers.

Recording a Name
Another If step evaluates the expression, name==null; or, the value of the name
variable obtained from the session is equal to null.

As shown in Figure 17-14, if this expression is true, the caller has not previously
recorded a name, and so the Recording step prompts the caller to do so.

Figure 17-14 Recording Step Scripting

If the Recording step is successful, the Set Session Info step adds this value of the
name variable to the session so that it may be used again later; for example, to
provide a more personal service.
17-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The If Steps
Figure 17-15 shows the configured Context tab of the Set Session Info customizer
window.

Figure 17-15 Configured Set Session Info Customizer Window—Context Tab
17-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The Select Resource Step
The Select Resource Step
The designer continues to build the sample script by adding a Select Resource
step, which queues a call to a specific set of agents, based on the configuration in
the Cisco Unified CCX Administration web interface.

Figure 17-16 shows the configured Select Resource customizer window.

Figure 17-16 Configured Select Resource Customizer Window

The designer configures the Select Resource customizer window as follows:

 • Call Contact—Triggering Contact

The step connects the call that triggered the script to the available resource.

 • Routing Target Type—Contact Service Queue

Variable indicating the routing method. The call will be routed to an available
agent in the specified CSQ.
17-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The Select Resource Step
Note If you set this field to Resource, the CSQ Target field is renamed to
Resource Target. Resource Routing Target Type is only available for
Cisco Unified CCX Enhanced Edition. If you use Resource Routing
Target Type with Cisco Unified CCX Standard edition, Cisco Unified
CCX Engine will be unable to load the script.

 • CSQ Target—CSQ

The CSQ String variable stores Contact Service Queue information from
which to find a resource.

 • Connect—Yes

The call automatically connects the call to the available resource the instant
the resource becomes available.

Note If No is selected, the step chooses the resource, if available, but does
not yet connect it. In this situation, the designer can add additional
script steps to the Selected output branch before connecting the call
to the resource. If the resource is unavailable, the step queues the call.

 • Timeout—12

The step waits 12 seconds before the script retrieves the contact back into the
queue.

 • Resource Selected

This is an optional user string variable identifying the chosen agent. This is
left blank in the example application.

For more information about the Select Resource step, see the “ACD Step
Descriptions,” in the Cisco Unified Contact Center Express Scripting and
Development Series: Volume 1, Script Reference Guide.

Note For more information on configuring agents, see the Cisco Unified Contact
Center Express Administration Guide.

The Select Resource step has two output branches, Connected and Queued, which
are described in the following sections.
17-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The Select Resource Step
The Connected Output Branch
When the script connects the call to an agent, the steps under the Connected
output branch of the Select Resource step modify variable values and session
information in order to help set priorities should the call later need to be queued.

Figure 17-17 shows the scripting under the Connected output branch of the Select
Resource step.

Figure 17-17 Select Resource Step Scripting—Connected Output Branch

The following steps execute under the Connected output branch:

 • Set step—Sets the value of the queued variable to false.

This value indicates that the call has not been queued.

 • Set step—Sets the value of the variable failureCount to 0.

The failureCount variable stores the information on how many times the call
has failed.

 • Set Session Info step—Updates the session variable to include the new value
for the failureCount variable.
17-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The Select Resource Step
Figure 17-18 shows the configured Set Session Info customizer window.

Figure 17-18 Set Session Info Customizer Window—Context Tab
17-29
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The Select Resource Step
The Queued Output Branch
As shown in Figure 17-19, if the script has queued the call, a series of steps under
the Queued output branch of the Select Resource step modify priority settings,
depending on how many times the call has looped through these queue steps.

Figure 17-19 Select Resource Step Scripting—Queued Output Branch

The Set step under the Queued output branch sets the value of the queued variable
to true.

After the Set step, a series of If steps and Set Priority steps modify call priority
based on the following variables:

 • accountNum

 – If the expression accountNum!=null is true, the caller has already entered
an account number, and so a Set Priority step increases the priority of the
call by 1.
17-30
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
The Select Resource Step
This allows the script to give more priority to a customer who has
previously entered an account number.

 – If the expression accountNum!=null is false, the caller has not entered an
account number, and so a Set Priority step decreases the priority of the
call by 1.

 • failureCount

 – If the expression failureCount > 0 is true, this is means that the call has
already failed, and so a Set Priority step increases the priority of the call
by 1.

By increasing the priority of this caller, the script attempts to reduce the
time in queue that the caller will have to spend the second time in queue.

 – If the expression failureCount > 0 is false, this is means that the call has
not already failed, and the script does not modify the priority.

After these If steps, the designer establishes a loop by using a Label step named
queueLoop, followed by a Play Prompt step, a Call Hold step, a Delay step, and
finally a Goto step, which directs the script back to the queueLoop Label.

The Play Prompt step informs the caller that the call has been placed on hold, the
Call Hold step places the call on hold, and the Delay step delays the call based on
the length of time stored in the DelayWhileQueued variable (which in this script
is 30 seconds).

The designer configures the Delay step to be interruptible in the event of an agent
becoming available, at which point the script connects the call based on the
information in the Select Resource step.
17-31
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Using Default Scripts
Using Default Scripts
A default script provides a final feedback to the contact regarding a system
problem (and does not continue a service or restart a service).

The Cisco Cisco Unified CCX system automatically invokes a default script if the
main script:

 • Cannot be loaded.

 • Terminates abnormally because of a system or script error.

All script variables from the main script can initialize the default script variables,
if the designer defines them using the same name and type.

This section contains the following sections:

 • Variables for a Default Cisco Unified CCX Script, page 17-32

 • Writing a Default Script, page 17-34

Variables for a Default Cisco Unified CCX Script
Figure 17-20 shows the Variable pane of a default Cisco Unified CCX script.

Figure 17-20 Variable Pane of the Default Cisco Unified CCX Script
17-32
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Using Default Scripts
Table 17-3 describes the variables used in the example default Cisco Unified CCX
script.

Table 17-3 Variable Descriptions for the Example Default Cisco Unified CCX Script

Variable
Name

Variable
Type Value Function Correspondence

CSQ String — Stores Contact Service Queue
information from which to find a
resource.

(See The Select Resource Step,
page 17-26.)

This variable is populated
with the corresponding
value of the variable with
the same name from the
main Cisco Unified CCX
script.

session Session null Stores session information for
the call.

(See The Get Contact Info Step,
page 17-6.)

This variable is populated
with the corresponding
value of the variable with
the same name from the
main Cisco Unified CCX
script.

failureCount Integer 0 Stores the number of times a call
has failed.

(See The Session Steps,
page 17-14)

This variable is populated
with the corresponding
value of the variable with
the same name from the
main Cisco Unified CCX
script.

accountNum String — Stores the account number
entered by the caller.

(See The Play Prompt Step,
page 17-11.)

This variable is populated
with the corresponding
value of the variable with
the same name from the
main Cisco Unified CCX
script.

name Document null Stores the spoken name of the
caller.

(See Recording a Name,
page 17-24)

This variable is populated
with the corresponding
value of the variable with
the same name from the
main Cisco Unified CCX
script.
17-33
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Using Default Scripts
Writing a Default Script
The following example describes a sample Cisco Unified CCX default script
using the variables described in the previous section.

The default script performs the following function:

 • If it is the first time the call has failed, the script prompts the caller (with their
name, if available), and asks the caller to stay on the line while the script
makes another attempt to connect to an agent by transferring the caller back
to the route point originally configured for the application.

In this case, the session remains associated with the new incoming call
received by the main Cisco Unified CCX script.

 • If this is the second time the call has failed, the script redirects the caller to
an announcement indicating that the call cannot be connected, and then asks
the caller to call back later.

active Boolean true Stores information to determine
whether or not the call is active.

(See Using Default Scripts,
page 17-32.)

—

queued Boolean false Stores the information used to
determine whether or not the call
has been queued.

(See The Connected Output
Branch, page 17-28 and The
Queued Output Branch,
page 17-30.)

This variable is populated
with the corresponding
value of the variable with
the same name from the
main Cisco Unified CCX
script.

extn String — Stores the extension used by the
Call Redirect step to attempt to
re-queue the caller.

(See Using Default Scripts,
page 17-32.)

—

Table 17-3 Variable Descriptions for the Example Default Cisco Unified CCX Script (continued)

Variable
Name

Variable
Type Value Function Correspondence
17-34
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Using Default Scripts
Figure 17-21 shows the top level of the example Cisco Unified CCX default script
as it appears in the Design pane.

Figure 17-21 Cisco Unified CCX Default Script—Top Level

The Get Contact Info step determines whether or not the call is active (if the call
is no longer active, then it means that the caller has hung up).

As shown in Figure 17-22, the If step underneath the Get Contact Info step
evaluates this information, and if the call is not active, an End step underneath the
True output branch of this If step ends the call.

Figure 17-22 Cisco Unified CCX Default Script—Inactive Call

If the call is active, then the next If step determines whether or not the call is in
queue. If the call is in queue, a Dequeue step dequeues the call, and a Call Unhold
step takes the call off hold.

Note It is important to remember that the script defines the queued variable with the
same type and name as in the main Cisco Unified CCX script, so that its value is
populated with the last value of the corresponding variable in the Cisco Unified
CCX script.
17-35
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Using Default Scripts
If the call is active, then an Accept step accepts the call.

This is done to make sure that the call is accepted. If the Cisco Unified CCX script
had failed before the Accept step, the call would still be ringing and the script
would not be able to provide any feedback to the caller as to the error that was
encountered.

Figure 17-23 shows the scripting of these steps.

Figure 17-23 Cisco Unified CCX Default Script—Queued Status

As shown in Figure 17-24, since one of the main functions of this script is to
determine the number of times the call has failed, the designer uses an Increment
step to increase the value of the failureCount variable by 1.

Figure 17-24 Cisco Unified CCX Default Script—Session and Name Status

The If step under the Increment step tests the value of the session variable. If the
value of this variable is not null, there is session information associated with the
call that needs to be updated by the Set Session Info step, which updates value of
the failureCount variable.

The next If step tests for the value of the name variable. If the caller has recorded
a name into this variable in the main Cisco Unified CCX script, then a Play
Prompt step plays this name, followed by a short silence.
17-36
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Using Default Scripts
As shown in Figure 17-25, the next steps determine which of two prompts the
caller hears after the short silence, depending on whether the call has failed once
or twice.

Figure 17-25 Cisco Unified CCX Default Script—Prompts

If the value of failureCount is 1, then the Play Prompt plays a prompt explaining
that there were problems in connecting, and asking the caller to stay on the line
while another attempt is made to connect to an agent. The Call Redirect step then
attempts to connect the caller to the extension the caller entered, using the extn
variable. If this is successful, an End step ends the script.

If the value of failureCount is not 1, it must be 2, in which case the Set step sets
the value of the extn variable to a user prompt that the script uses to announce that
the call could not be connected and asking the caller to call back later. The Call
Redirect step redirects the caller to this announcement, and an End step ends the
script.
17-37
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 17 Designing Cisco Unified CCX Scripts
Using Default Scripts
17-38
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
C H A P T E R 18

Designing Cisco Unified Gateway
Scripts

You can design Cisco Unified CCX scripts to interact with Cisco Unified ICM
Enterprise (ICME) scripts in a Cisco Unified Contact Center Express (CCX)
system integrated with a Cisco Unified ICME system through the Cisco Unified
Gateway.

In such an integrated system, the Cisco Unified CCX software is linked as an
ACD to the Cisco Unified ICME software.

This chapter contains the following topics:

 • Scripting on a Cisco Unified Gateway System, page 18-2

 • Using Variables, page 18-3

 – Using Cisco Pre-Defined Enterprise Call Variables, page 18-4

 – Using Enterprise Expanded Call Context (ECC) Variables, page 18-5

 – Using Variables Multiple Times, page 18-8

 • Example Cisco Unified Gateway Post-Routing Scripts, page 18-9

 – A Sample Cisco Unified CCX Script that Selects a CSQ, page 18-11

 – A Sample Cisco Unified CCX Script that Selects an Agent, page 18-17

 – A Sample Cisco Unified CCX Script that Selects a Route Point,
page 18-24

 • A Summary Process for Defining Enterprise Variables, page 18-31

For further information on designing Cisco Unified Gateway scripts, see the
following:
18-1
arted with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Scripting on a Cisco Unified Gateway System
 • Cisco IPCC Gateway Deployment Guide

 • ICM Scripting and Media Routing Guide Cisco ICM/IPCC Enterprise &
Hosted Editions

 • SS7 Gateway Configuration Tool User Guide for Cisco ICM Enterprise &
Hosted Editions

Scripting on a Cisco Unified Gateway System
The Cisco Unified CCX Editor contains three steps that specifically interface with
the Cisco Unified Gateway:

 • Get Enterprise Call Info / Set Enterprise Call Info (Call Contact palette).

Use these steps to retrieve or send data from one part of your system to
another. In an Cisco Unified Gateway deployment this enables getting/setting
data from Cisco Unified CCX to the Cisco Finesse Desktop.

Note This step should be placed in a CRS 4.0 script before the call gets
connected to an agent. This means the step in the script should be
placed before the Request Route or Select Resource Step.

 • Request Route (ACD palette).

Use the Request Route step to request a call routing location from Cisco
Unified ICME software. A Cisco Unified CCX script can then use that
location to redirect a call. The Request Route step has two output branches:

 – Selected. The Request Route step successfully returned a routing
destination from Cisco Unified ICME software.

 – Failed. The Request Route step failed to return a routing destination from
Cisco Unified ICME software.

See the Cisco Unified Contact Center Express Scripting and Development Series:
Volume 2, Editor Step Reference Guide for descriptions of the preceding steps.
18-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Using Variables
Using Variables
In Cisco Unified CCX scripts that interact with Cisco Unified ICME scripts
through the Cisco Unified Gateway, you can use three types of variables:

 • Local variables that you define in the Cisco Unified CCX script in the
Variable pane of the Cisco Unified CCX Editor.

 • Cisco predefined enterprise call variables that you can select in the General
tab of the customization window of the Set and Get Enterprise Call Info steps

 • Enterprise ECC variables that you can define in the Expanded Call Variable
tab of the Set and Get Enterprise Call Info steps when you need more
variables than are available in the predefined call variable list.

Cisco Unified CCX uses Enterprise Call Variables and Enterprise Expanded Call
Context Variables when passing data between the integrated systems that make up
a Cisco Unified Gateway system: the Cisco Unified CCX system.

This means that you must use the Set Enterprise Call Info and Get Enterprise Call
Info steps to take data stored in a local Cisco Unified CCX script variable or for
use in a Cisco Unified ICME script.

Defining Local Cisco Unified CCX Script Variables
Begin the Cisco Unified Gateway script design process first by using the Variable
pane of the Cisco Unified CCX Editor to define your local variables for your
Cisco Unified CCX script.

For information about defining variables in Cisco Unified CCX scripts, see
Defining, Using, and Updating Script Variables, page 2-31. For example Cisco
Unified CCX script variables used in a Cisco Unified CCX Cisco Unified
Gateway script, see Script Variables Used in the PostRouteSimple.aef Script,
page 18-25.
18-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Using Variables
Using Cisco Pre-Defined Enterprise Call Variables
In addition to the script variables that you can define in the Variable pane of the
Cisco Unified CCX Editor window, you can use the following Cisco predefined
strings as enterprise call variables in Cisco Unified CCX in the Set Enterprise Call
Info and Get Enterprise Call Info steps to pass information between the Cisco
Unified ICME system and the Cisco Unified CCX system:

 • VRU Script Name

 • ConfigParam

 • Call.CallingLineID

 • Call.CallerEnteredDigits

 • Call.PeripheralVariable1 to Call.PeripheralVariable10
This populates the fields "customCallVar1" through "customCallVar10" in
the ContactCallDetail records of the db_cra database.

 • Call.AccountNumber
The Add button opens the Add Field window and permits you to apply the
value (Values) of a local variable to the pre-defined Cisco call variable
(Names). Tokens permit multiple values to be assigned and are only used in
a Cisco Unified ICME environment.

These enterprise call variables are all written to the db_cra database.

Note These enterprise call variables are available from a list in the General tab of the
Customization window only in the Set Enterprise Call Info and Get Enterprise
Call Info steps. In the Set Enterprise Call Info and Get Enterprise Call Info steps,
you assign the values of local script variables to the enterprise script variables.

The Cisco Unified ICME Server, the Cisco Unified CCX system, and the Cisco
Finesse Desktop support these call variables for passing data among themselves.

If you need more call variables than those predefined in the General tab, use ECC
variables.

Note While the Cisco pre-defined enterprise call variables are all written to the db_cra
database and thus can be used in reporting, the ECC call variables are not written
to the db_cra dabase and cannot be used in Cisco Unified CCX reporting.
18-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Using Variables
Using Enterprise Expanded Call Context (ECC) Variables
The Cisco Cisco Unified ICME Server, the Cisco Cisco Unified CCX system, and
the Cisco Finesse Desktop can also pass ECC variables to each other.

Enterprise ECC data fields are used by all applications in the Cisco Unified CCX
Cluster. There can be as many as 200 user-defined fields defined in the Field List
(index numbers 0-199) of expanded call variables. These field values do not
appear in the ContactCallDetail records as there are no fields reserved for them.

Cisco Unified CCX has some pre-defined ECC variables. For a list of the Cisco
Unified CCX system default ECC variables, see Cisco Unified Contact Center
Express Scripting and Development Series: Volume 2, Editor Step Reference
Guide.

Note Every enterprise ECC variable must be separately defined on all parts of the
system that sends and receives the variable data: the Cisco Unified CCX Editor in
Cisco Unified CCX and the Cisco Finesse Desktop.

Defining ECC Variables in the Cisco Finesse Administration
To define an ECC variable in the Cisco Finesse Administration, select Enterprise
Data > Field List.

When creating a new Field, a unique Index number (Index) between 0-199 is
assigned. The Field Name (Field Name) is the name of the field called by the
layout list and is case sensitive. The Display Name (Display Name) is the name
(Field) that will show on the agent desktop with the value of the field.

See the Cisco Finesse Administration Guide for more information on defining
ECC variables in the Cisco Finesse Administration.

Defining ECC Variables in the Cisco Unified CCX Editor
To define an ECC variable in the Cisco Unified CCX Editor, do the following.
18-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Using Variables
Procedure

Step 1 From the Cisco Unified CCX Editor menu bar, choose Settings > Expanded Call
Variables.

The Expanded Call Variables window appears.

Figure 18-1 Expanded Call Variables Window

Step 2 In the tool bar, click the Add New Variable icon.

The Edit Expanded Call Variable dialog box appears.

Figure 18-2 Edit Expanded Call Variable Dialog Box

Step 3 In the Name text field, enter the ECC variable name as defined in the Cisco
Unified ICME configuration (or the Cisco Finesse Administration using Cisco
Unified CCX).

Step 4 In the Type drop-down menu, choose the type of expanded call variable (scalar or
array).

Step 5 In the Description text field, enter a description of the variable.
18-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Using Variables
Step 6 Click OK.

The Edit Expanded Call Variable dialog box closes, and the variable name, type,
and description appear under their respective columns in the Cisco Unified ICME
Expanded Call Variables window (or the Cisco Finesse Administration using
Cisco Unified CCX).

Step 7 Click the dialog box’s Close (X) button.

The Expanded Call Variables window closes, and the ECC variable is now
available to your script. It will be listed in the Enterprise Call Info step’s
drop-down list as ---name--, where name is the value you entered in the Variable
Name field.

Configuring ECC Variables in a Cisco Unified CCX Script

Use the Expanded Call Variables tab of the Set and Get Enterprise Call Info step
property windows to configure ECC variables in Cisco Unified CCX scripts. The
Add button in the customization window opens the Add ECC Variable window so
you can apply the value (Values) of a local variable to a user-defined Expanded
Call Variable (Names).

Note See the “Cisco Contact Center Express Administration Guide” and the Cisco
Unified ICME Software IPCC Installation and Configuration Guide for
information on configuring Cisco Unified ICME software for Cisco Unified CCX
and for defining and configuring ECC variables in Cisco Unified ICME software.

Defining ECC Variables for a Post Call Treatment Script
Customize a Cisco Unified CCX Script for the post call treatment to be played for
the customer after the agent ends the call. Follow the procedure to define an ECC
Variable to achieve the post call treatment.

Step 1 From the Cisco Unified CCX Editor application, open an existing icd.aef script.

Step 2 From the Call Contact palette, select Set Enterprise Call Info.

Step 3 Drag and drop the selected step in the script before the Select Resource step.
18-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Using Variables
Step 4 Define a variable for the post call treatment by name PostCallTreatment and of
type Scalar as per the steps provided in the section, Defining ECC Variables in
the Cisco Unified CCX Editor, page 18-5.

Note The name of the variable must be PostCallTreatment. It is case-sensitive.

Step 5 For the new variable PostCallTreatment set the type as int from the drop down
list available and enter a number value in the Value field.

Step 6 Select the Final checkbox.

Step 7 Add the new ECC Variable created to the Set Enterprise Call Info step.

a. Right click on the Set Enterprise Call Info step and then click Properties.

b. In the Expanded Call Variables tab, Click Add.

c. Select the field values of the ECC Variable PostCallTreatment as defined
earlier.

d. Click OK >Apply > OK.

Step 8 Ensure the ECC variable name defined for the post call treatment is listed against
the selected step.

Using Variables Multiple Times

Note When an enterprise call variable or an enterprise ECC variable is used multiple
times in the step, the result will be indeterminate in the following cases:

 • If an enterprise call variable is set multiple times with the same token.

 • If an enterprise ECC variable of type scalar is set multiple times with the
same token.

 • If an array element of an enterprise ECC variable of type array is set multiple
times with the same token.
18-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Example Cisco Unified Gateway Post-Routing
Scripts

In Cisco Unified Gateway deployments where the Cisco Unified CCX system is
connected to a Cisco Unified ICME system as the child system, the Cisco Unified
CCX system can use the Cisco Unified ICME system for post routing. Post
routing is typically used to enable the Cisco Unified ICME system to determine
the best routing solution based on the current situation at the contact center.

The following are three sample post-routing scripts that illustrate three different
ways of post routing through the Cisco Unified Gateway. In each of these
examples, the script accepts the call from the Cisco Unified CallManager in the
Cisco Unified CCX system and then queries the Cisco Unified ICME system
through the Request Route step. The Cisco Unified CCX system then routes the
call based on the return value of the Request Route step supplied by the Cisco
Unified ICME system.

In the first sample script, the call is routed to a CSQ. In the second sample script,
the call is routed to an agent. And in the third sample script, the call is routed to
a route point.

These are the sample scripts:

 • PostRouteSelectCSQ.aef:
The Request Route step returns a label corresponding to a CSQ which is used
in the Select Resource step.

 • PostRouteSelectAgent.aef:
The Request Route step returns a label corresponding to an agent extension
which is used in the Select Resource step.

 • PostRouteSelectSimple.aef:
The Request Route step returns a label corresponding to a route point which
is used in the Call Redirect step.

Each of three sample Cisco Unified CCX scripts presume a Cisco Unified ICME
script designed to interact with the Cisco Unified CCX script, depending on what
Cisco Unified CCX resource is wanted: a CSQ, an agent, or a route point.

Note An important point from these examples is that the Cisco Unified ICME and Cisco
Unified CCX script writers need to work together during both design and
implementation to ensure that the correct type of information is returned by the
18-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Cisco Unified ICME script through the Cisco Unified CCX Request Route step
and is used properly by the Cisco Unified CCX script to route the call
appropriately.
18-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
A Sample Cisco Unified CCX Script that Selects a CSQ
Figure 18-3 displays the sample PostRouteSelectCSQ script as it appears in the
Cisco Unified CCX Editor window.

Figure 18-3 PostRouteSelectCSQ.aef Script—Select CSQ
18-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Script Variables Used in the PostRouteSelectCSQ.aef Script

Table 18-1 describes the variables used in the PostRouteSelectCSQ.aef sample
script.

Table 18-1 PostRouteSelectCSQ.aef Variable Descriptions

Variable Name
Variabl
e Type Initialized Value Function

DelayWhileQueued int 30 Stores the number of seconds to delay
in the queue before prompting the call
again.

Used in the Queued section of the
script.

QueuePrompt Prompt SP[ICD\ICDQueue.wav] Gives the caller a message while the
caller is in the queue waiting for the
call to be answered.

Used in the Queued branch of the
Select Resource step.

WelcomePrompt Prompt SP[ICD\ICDWelcome.wav] Stores the message the caller hears
when the system answers the call.

Used in the opening prompt of the
script.

routeSelect String "" Stores the CSQ name to be used in the
script.

Returned by the Request Route step
and passed into the Select Resource
step.
18-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Script Flow for the PostRouteSelectCSQ.aef Script

1. The script receives the call from the Cisco Unified CallManager.

Figure 18-4 Configured General tab of the Accept Step

2. The script plays a welcome message to the caller.

Figure 18-5 Configured Prompt tab of the Play Prompt Step
18-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
3. In the Request Route step, the script requests a route label from the Cisco
Unified ICME system for a CSQ in the Cisco Unified CCX system.

Figure 18-6 Configured General tab of the Request Route Step

4. The Set Enterprise Call Info step puts the label contained in the routeSelect
variable into the enterprise call variable, call.PeripheralVariable2. In this
case, the label is a CSQ identifier. This variable can be displayed on the Cisco
Finesse Desktop.

Figure 18-7 Configured General tab of the Set Enterprise Call Info Step

No enterprise Extended Call Variables are used in this script.
18-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
5. If the route request fails, the script selects a default CSQ.

Figure 18-8 Configured General tab of the Set Step

Figure 18-9 Configured General tab of the Select Resource Step
18-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
6. If the call is not answered before the time limit, a prompt is played, and the
call is put in the queue to repeat the process until the call is answered or
droped by the caller.

Figure 18-10 Configured Prompt tab of the Play Prompt Step

In the General tab of the Play Prompt Step:

 – Triggering Contact is selected as the contact

 – Interruptible option is Yes. This means that as soon as the call is
answered, this queue prompt will be interrupted.

In the Input tab of the Play Prompt Step:

 – Flush Input Buffer option is No

Figure 18-11 Configured General tab of the Delay Step
18-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
A Sample Cisco Unified CCX Script that Selects an Agent

Figure 18-12 PostRouteSelectAgent.aef Script—Select Agent
18-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Script Variables Used in the PostRouteSelectAgent.aef Script

Table 18-2 describes the variables used in the PostRouteSeclectAgent.aef sample
script displayed in Figure 18-12.

Table 18-2 PostRouteSelectAgent.aef Variable Descriptions

Variable Name
Variable
Type Initialized Value Function

CSQ String "Should be initialized to
a default CSQ name"

Used to route to a catch-all CSQ in case
of failure within the script.

Used in the Set Enterprise Call Info step
and in the Select Resource step.

DelayWhileQueued int 30 Stores the number of seconds to delay in
the queue before prompting the call
again.

Used in the Queued section of the script.

PromptOne Prompt P[gen\number\One.wav] Stores the message the caller hears when
the call is answered.

Used in the opening Play Prompt step.

QueuePrompt Prompt SP[ICD\ICDQueue.wav] Stores a message for the caller to be
played when the call is in queue waiting
to be answered.

Used in the Queued branch of the Select
Resource step.
18-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Script Flow for the PostRouteSelectAgent.aef Script

1. The script accepts the call from the Cisco Unified CallManager.

Figure 18-13 Configured General tab of the Accept Step

2. The caller is welcomed.

RouteSelectAgent String "" Stores the agent identifier that is received
from the Cisco Unified ICME system.

Returned by the Request Route step and
passed to the Get User step.

SelectedAgent User null Stores the Agent User information
corresponding to the routeSelectAgent
string selected by the Cisco Unified
ICME system.

A user object returned from the Get User
step and passed into the Select Resource
step.

Table 18-2 PostRouteSelectAgent.aef Variable Descriptions (continued)

Variable Name
Variable
Type Initialized Value Function
18-19
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Figure 18-14 Configured Prompt tab of the Play Prompt Step

In the General tab of the Play Prompt Step:

 – Triggering Contact is selected as the contact

 – Interruptible option is Yes

In the Input tab of the Play Prompt Step:

 – Flush Input Buffer option is Yes

3. In the Request Route step, the script requests a route label for an agent from
the Cisco Unified ICME system.

Figure 18-15 Configured General tab of the Request Route Step

The agent identifier returned by the Cisco Unified ICME software is put in
the local routeSelectAgent Cisco Unified CCX script variable.
18-20
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Note In this script, if the Cisco Unified ICME script returns a CSQ or a
route point, rather than a string identifying the agent, the script will
fail.

4. In the Get User step, the Cisco Unified CCX script returns a user object
corresponding to the input agent identifer named in the RouteSelectAgent
variable, which is stored in the SelectedAgent variable.

Figure 18-16 Configured General tab of the Get User Step

5. In the Select Resource step, the script rings the phone number identified by
the agent ID in the SelectedAgent variable.
18-21
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Figure 18-17 Configured General tab of the Select Resource Step

Note For agent based routing to succeed, the state of the selected agent must be ready.
The Select Resource step will fail if the selected agent is in any state other than
ready. The Cisco Unified ICME system can determine the current state of an
agent, although there is no guarantee that the agent state will not change between
when the Cisco Unified ICME system returns information and the Cisco Unified
CCX script routes the call based on that information. Despite that, depending on
the design of the script, the time between the two should be extremely small,
making it unlikely that this will occur.
18-22
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
6. If the call is not answered, then the script plays a prompt.

Figure 18-18 Configured Prompt tab of the Second Play Prompt Step

In the General tab of the Play Prompt Step:

 – Triggering Contact is selected as the contact

 – Interruptible option is Yes

In the Input tab of the Play Prompt Step:

 – Flush Input Buffer option is No

7. The script will ring for the time set in the DelayWhileQueued variable, play
a prompt to tell the caller to please wait, and then ring again.

Figure 18-19 Configured General tab of the Delay Step
18-23
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
A Sample Cisco Unified CCX Script that Selects a Route Point

Figure 18-20 PostRouteSimple.aef Script — Select Route Redirect
18-24
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Script Variables Used in the PostRouteSimple.aef Script

Table 18-3 describes the variables used in the PostRouteSimple.aef sample script
as displayed in Figure 18-20.

Table 18-3 PostRouteSimple.aef Variable Descriptions

Variable Name
Variable
Type Initialized Value Function

CSQ String "Should be initialized to a
default CSQ name"

Used to route a catch-all CSQ in
case of failure within the script.

Used in the Set Enterprise Call Info
step and in the Select Resource
step.

DelayWhileQueued int 30 Stores the number of seconds to
delay in the queue before playing
the prompt message again.

Used in the Queued section of the
script.

QueuePrompt Prompt SP[ICD\ICDQueue.wav] Stores a message to be played while
the call is in the queue waiting to be
answered.

Used in the Queued branch of the
Select Resource step.

WelcomePrompt Prompt SP[ICD\ICDWelcome.wav] Stores the message the caller hears
when the system first answers the
call.

Used in the opening prompt of the
script.

RouteSelect String "" Stores the route identifier received
from the Cisco Unified ICME
system.

Returned by the Request Route step
and passed into the Call Redirect
step.
18-25
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
Script Flow for the PostRouteSimple.aef Script

1. The Cisco Unified CCX script accepts the call from the Cisco Unified
CallManager.

2. The Set Enterprise Call Info step put the value contained in the local CSQ
variable into the Enterprise call.PeripheralVariable5. This means that value
can then be used in the Cisco Finesse Desktop software or in a Cisco Unified
ICME script. This might be used, for example, to display the current CSQ on
the Agent Desktop.

Figure 18-21 Configured General tab of the Set Enterprise Call Info Step

Expanded Call Variables are not used in this sample script.
18-26
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
3. The Request Route step requests a label from the Cisco Unified ICME system
which the Cisco Unified ICME system sends back and which is stored in the
RouteSelect variable. In this example, the returned value is a route point
rather than an agent or CSQ identifier. For example: extension 13526.

Figure 18-22 Configured General tab of the Request Route Step

4. The Set Enterprise Call Info step puts the route point contained in the
routeSelect variable into the enterprise call variable,
call.PeripheralVariable2. This variable can be used to display the phone
number on the Cisco Finesse Desktop.

Figure 18-23 Configured General tab of the Second Set Enterprise Call Info Step

Expanded Call Variables are not used in this script.
18-27
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
5. The Cisco Unified CCX script, in the Call Redirect step, redirects the call to
the selected route point and is stored in the string variable routeSelect.

Figure 18-24 Configured General tab of the Call Redirect Step

Note The Redirect step essentially places a new call—terminating the
original call. This results in a double-counting for statistics regarding
the Connected state.
18-28
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
6. In the case of failure from the Request Route step or the Call Redirect step,
the script is designed to route the call through the Select Resource step to the
default CSQ specified in the CSQ variable.

Figure 18-25 Configured General tab of the Select Resource Step

If no resource is available in the default CSQ, then the call stays queued until
a resource becomes available or the call is dropped by the caller.

Figure 18-26 Configured Prompt tab of the Play Prompt Step

In the General tab of the Play Prompt Step:
18-29
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
Example Cisco Unified Gateway Post-Routing Scripts
 – Triggering Contact is selected as the contact

 – Interruptible option is Yes. This means that as soon as the call is
answered, this queue prompt will be interrupted.

In the Input tab of the Play Prompt Step:

 – Flush Input Buffer option is No

Figure 18-27 Configured General tab of the Delay Step
18-30
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
A Summary Process for Defining Enterprise Variables
A Summary Process for Defining Enterprise
Variables

The following steps summarize the process for defining enterprise variables in the
Cisco Unified CCX system. See the Cisco Unified ICME documentation for how
to define ECC variables in Cisco Unified ICME software.

Step 1 Create an ECC variable in the Cisco Finesse Administration (Enterprise Data
Configuration > Enterprise Data > Field List).
18-31
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
A Summary Process for Defining Enterprise Variables
Step 2 Create a new layout using the Cisco Finesse Administration and add fields to the
layout (Enterprise Data Configuration > Enterprise Data).

Step 3 Configure the Set Enterprise Call Info (Expanded Call Variables tab) step in your
Cisco Unified CCX script to set values for the ECC Variables.
18-32
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
A Summary Process for Defining Enterprise Variables
Step 4 Configure the Set Enterprise Call Info (Expanded Call Variables tab) step in your
Cisco Unified CCX script to use a custom layout that was created in Step 2.

Step 5 Configure the Set Enterprise Call Info (General tab) step using in your Cisco
Unified CCX script to set values for the Cisco predefined Call Peripheral
Variables.
18-33
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
A Summary Process for Defining Enterprise Variables
Step 6 Check your list of Call Peripheral Variables in the Set Enterprise Call Info step.

Step 7 Check your list of ECC Variables in the Set Enterprise Call Info step.
18-34
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
A Summary Process for Defining Enterprise Variables
Step 8 Check the values set in the Set Enterprise Call Info step displayed on the Cisco
Finesse Desktop.
18-35
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 18 Designing Cisco Unified Gateway Scripts
A Summary Process for Defining Enterprise Variables
18-36
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
C H A P T E R 19

Designing a Generic Recognition
Script

This chapter contains the following:

 • About the Generic Recognition Steps, page 19-1

 • N-Best Recognition and Multiple Interpretations, page 19-2

 • The Script Flow for a Generic Recognition Script, page 19-3

 • An Example Script, GenericRecoExample.aef, page 19-7

About the Generic Recognition Steps
The Generic Recognition step is used when something more complex than a
selection menu is needed in a speech dialog. The Generic Recognition step allows
the application designer to use an arbitrarily complex Speech Recognition
Grammar. These grammars can be used to build mixed initiative dialogs. They can
be ambiguous. They can assign meaning to the results returned using semantic
interpretation. They can allow multiple results to be returned.

The result returned by a recognition using this step is stored in an opaque data
object that is associated with a name that is assigned in this step. The information
in this result object can be extracted using two other steps: Get Recognition Result
Info Step and Get Recognition Interpretation Step. These two steps along with the
Generic Recognition Step are designed to work together.

The Generic Recognition steps are available from the Cisco Unified CCX Step
Editor Media palette.
19-1
arted with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
N-Best Recognition and Multiple Interpretations
Figure 19-1 Cisco Unified CCX Step Editor Media palette

For how the Generic Recognition set of steps work together in a script and for the
descriptions of these steps, see the Cisco Unified Contact Center Express
Scripting and Development Series: Volume 2, Editor Step Reference Guide.

N-Best Recognition and Multiple Interpretations
The Generic Recognition set of steps improve speech recognition by providing
multiple recognition results enabled by N-Best Recognition and multiple
interpretations. It also can assign meaning to the utterance through the use of
semantic interpretation:

 • N-Best Recognition, page 19-2

 • Multiple Interpretations, page 19-3

N-Best Recognition
N-Best Recognition allows the Speech Recognizer to return more than one result
if there are several branches in the grammar that sound like the utterance. This
allows the application to choose the best result based on additional criteria.
19-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
The Script Flow for a Generic Recognition Script
In some advanced voice applications, a single result may not be sufficient. For
example, an airline reservation application might ask the user for destination and
departure cities. The speech-recognition engine might not be able to distinguish
between the two possible utterances that can sound the same or similar like
"Austin" and "Boston." Ideally, the application would obtain both these possible
results so that it could prompt for clarification, "Did you mean Austin, Texas; or
Boston, Massachusetts?"

Using N-best recognition, the speech-recognition engine returns a list of different
possible utterances whose confidence levels are high enough for consideration.

Multiple Interpretations
In some applications, a single recognized utterance may have multiple
interpretations. The same utterance can appear in more than one place in the
grammar. For example, Austin could be interpreted as Austin, Texas or Austin,
California.

The Generic Recognition set of steps uses these two recognition features (N-Best
Recognition and Multiple Interpretations) together to provide better speech
recognition flexibility when needed.

When these preceding two features are combined, if the user says something that
sounds like either "Austin" or "Boston," the speech-recognition engine would find
two possible results, "Austin" and "Boston." The first of these results would have
two possible interpretations: "Austin, Texas" and "Austin, California." A
sophisticated application could then prompt the user, "Did you mean Austin,
Texas; Austin, California; or Boston, Massachusetts?"

The Script Flow for a Generic Recognition Script
The following is an example of how n-best recognition and multiple
interpretations can be done using a grammar and a script:

 • An Example Grammar Used With Generic Recognition, page 19-4

 • An Example Script Algorithm Used With Generic Recognition, page 19-5
19-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
The Script Flow for a Generic Recognition Script
An Example Grammar Used With Generic Recognition
The example grammar is an SRGS grammar. Note that there are three items that
sound very similar - "cisco", "tisco" and "misco". Also note that there are two
items with the same word, "cisco", but different values for the security tag,
"cisco1" and "cisco2".

<?xml version="1.0" encoding="ISO-8859-1"?>
<grammar xml:lang="en-US" version="1.0"
 xmlns="http://www.w3.org/2001/06/grammar"
 root="Securities">
 <rule id="Securities" scope="public">
 <ruleref uri="#Names"/>
 </rule>
 <rule id="Names">
 <one-of>
 <item>
 <item> cisco </item>
 <tag>security=" cisco1"</tag>
 </item>
 <item>
 <item> cisco </item>
 <tag>security=" cisco2"</tag>
 </item>
 <item>
 <item> tisco </item>
 <tag>security=" tisco"</tag>
 </item>
 <item>
 <item> misco </item>
 <tag>security="misco"</tag>
 </item>
 <item>
 <item> microsoft </item>
 <tag>security="microsoft"</tag>
 </item>
 </one-of>
 </rule>
</grammar>
19-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
The Script Flow for a Generic Recognition Script
An Example Script Algorithm Used With Generic
Recognition

Note This algorithm does not describe all the input and output parameters, only the
ones relevant to demonstrate n-best recognition.

Step 1 Use the Generic Recognition step.

Input:
UserGrammar (for example, An Example Grammar Used With Generic
Recognition, page 19-4)

Output:
resultData (a private variable that contains the recognition result)
resultCount (the number of results in the resultData)

Step 2 Set integer i = 0. This variable is used to index into the resultData and varies from
0 to one less than the number of results obtained in step 1.

Step 3 While (i < resultCount)

a. Use Get Recognition Result Info step

b. Input:
ResultData (data from step 1)
i (used to index into the ResultData.

c. Output:
Utterance (text representing what was spoken),
ConfLevel (indicates how closely this recognition matches the spoken word)
interpCount (indicates number of interpretations in the result)

d. Set integer j = 0. This variable is used to index into the result to retrieve the
interpretations

e. while (j<interpCount)
(1) Use Get Recognition Interpretation Step
(2) Input:
 resultData (data from step 1)
 i (used to index into resultData)
 j (interpretation index)
(3) Output:
19-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
The Script Flow for a Generic Recognition Script
 If slots are defined in the grammar, their values get stored
 in the specified variables
(4) Set j = j+1

f. Set i = i+1

Step 4 End

With the example grammar and example script logic as described in this section
and the preceding one, if a customer says "cisco", the customer may get back a
recognition result containing three results: "cisco", "tisco" and "misco"
respectively. Each of these results represents a different utterance and can have a
different confidence level.

Note The output can vary depending on how the utterance (the word) was spoken and
the value of the confidence level configured in the Generic Recognition step.
19-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
An Example Script, GenericRecoExample.aef
Figure 19-2 displays an example script, GenericRecoExample.aef, as it appears in
the Cisco Unified CCX Editor window. This script uses the generic recognition
steps and the preceding algorithm. The example is displayed with unexpanded
code branches so you can see the layout of the whole on one page. The code is
expanded in later examples so you can see all the steps.

Figure 19-2 Example Generic Recognition Script
19-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Script Variables Used in the Example Generic Recognition
Script

Table 19-1 lists the variables, with the exception of the prompt variables, that are
specific to the generic recognition steps.

Table 19-1 GenericRecoExample.aef Generic Recognition Variable Descriptions

Variable Name
Variabl
e Type Initialized Value Function/Description

rule_Name_or_Context String "Securities\securities" The name of the grammar file to be used
in the recognition.

confLevel int The confidence threshold. This
determines how closely a result must
match the utterance before it is returned
by the recognizer.

interpIndex int 0 The index used to select the
interpretation in the currently selected
result.

maxResult int 5 Contains the maximum number of
results that can be returned by the
recognition.

numinterp int 0 Contains the number of interpretations
in the currently selected result.

resultCount int number of results The number of results in the result
collection returned by the recognition.

resultIndex int 0 Used to select the specific result from
the result collection.

securitySlotValue String " " A string variable to receive the value
from the slot named "security". This is
the name of a stock.

utterance String " " A string variable to receive the utterance
for each result.
19-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Getting a Collection of Results
Figure 19-3 shows the opening set of steps in the example script. These steps get
the utterance "results." This is where the user’s input is first returned.

This part of the script illustrates Step 1 and Step 2 of the preceding algorithm (An
Example Script Algorithm Used With Generic Recognition, page 19-5).

Note For descriptions of each step used in the example script, see the Cisco Unified
Contact Center Express Scripting and Development Series: Volume 2, Editor Step
Reference Guide. The purpose of this chapter is just to highlight some of these
steps and to illustrate how they are used rather than to explain each step in detail.

Figure 19-3 The Opening Set of Steps in the Example Generic Recognition Script
19-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Figure 19-4 Generic Recognition Step, Example General Tab Customization Window

Figure 19-5 Generic Recognition Step, Example Prompt Tab Customization Window
19-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Figure 19-6 Generic Recognition Step, Example Input Tab Customization Window

Figure 19-7 Generic Recognition Step, Example Filter Tab Customization Window
19-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Getting All the Information for All the Results
The next series of steps in the example script is Step 3 of the algorithm (An
Example Script Algorithm Used With Generic Recognition, page 19-5).

Use the Get Recognition Result Info step to:

 • Extract the Results from the recognition performed in the Generic
Recognition step. There may be more than one result. The Result Index is
used to select the desired result. The range is 0 (zero) to one less than the
number of results. Each result will contain one or more interpretations.

 • Extract the number of interpretations for a result.

 • Extract the confidence level for each result.

 • Extract the string which represents the actual utterance that was recognized
for each result.

Figure 19-8 Getting All the Recognition Information
19-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Figure 19-9 Generic Recognition Result Info Step, Example General Tab Customization Window

Getting Interpretations for Each Result and Prompting with
Each

The final set of steps in this example uses the Get Recognition Interpretation step
to get each interpretation for each result and to play the prompt for each
interpretation. This represents the inner loop in Step 3 of the algorithm (An
Example Script Algorithm Used With Generic Recognition, page 19-5).
19-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Figure 19-10 Playing Prompts for Each Interpretation
19-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
Figure 19-11 Get Recognition Interpretation Step Customization Window

The script needs to be aware of the grammar being used. The sample script
described here reads only values for slots named security, symbol and digitstring.

If the grammar does not contain these slot names, empty values are returned.

If the grammar contains additional slot names that the script wants to retrieve, the
script will need to be modified.
19-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Chapter 19 Designing a Generic Recognition Script
An Example Script, GenericRecoExample.aef
19-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting Sta
C H A P T E R 20

Uninstallation of Unified CCX
Editor

Note The Unified CCX Editor uninstallation should not be done through the Add
Remove programs window.

To uninstall the Cisco Unified CCX Editor program, run the
UninstallCiscoUnifiedCCXEditor.exe and do the following:

Step 1 In the maintenance window, select the "remove" radio button and click next

Step 2 In the "remove program" dialog-box, click the "remove" button. This will begin
the uninstallation procedure of the Cisco Unified CCX Editor application.
20-1
rted with Scripts, Release 11.0(1)

Chapter 20 Uninstallation of Unified CCX Editor
20-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting St
A P P E N D I X A

A Sample VoiceXML Log File

This appendix includes the following topics:

 • A Brief Description of a VoiceXML Log File, page A-1

 • Excerpts from the Sample VoiceXML Log File, page A-2

 • Sample VoiceXML Log File Selection, page A-3

Note This is a sample voice XML log file with SS_VB debug turned on. Your log file
contents may vary depending on your system configuration, scripts, and caller
interactions.

A Brief Description of a VoiceXML Log File
Each line in a Voice XML log file contains a system message. Each log line is
numbered sequentially and consists of:

 • Line number

 • Date and Time of event

 • Task Message abbreviation and ID number

 • Brief description of the event
A-1
arted with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Excerpts from the Sample VoiceXML Log File
Note For easier reference, the lines in the sample log file that are listed in Table A-1 are
displayed in BLUE in the log file.

Clicking on the number in the table brings you to that line in the log file.

Clicking on the number beginning that line in the log file brings you to its
explanation in this table.

Excerpts from the Sample VoiceXML Log File
Table A-1 Some Items to Notice in the Sample Log File

Line
Number Message Event

615109 Instantiating new
WFMRCPDialogServicesAdapterImpl

The start of the MRCP(ASR)
Voice Browser

615120 Invoke:
http://mediaserver/vxmldocs/AA.vxml

The URL for the Voice Browser

615126 WFCallControlImpl.getOriginator() = 2011 The caller ID

615127 WFCallControlImpl.getLocalUri() = 1002 The dialed number

615186 handlMenuElement(): adding dtmf choice
grammar string = one

Managing a VXML menu

615233 <speak version="1.0"
xmlns="http://www.w3.org/2001/10/synthes
is "> Welcome to the automated
attendant. To enter the phone number of
the person you are trying to reach, say
or press 1. To enter the name of the
person you are trying to reach, say or
press 2. To transfer to the operator,
say or press 0. </speak>

The first prompt to the caller
A-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
Sample VoiceXML Log File Selection
615109: Jun 01 08:25:21.912 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 VoiceBrowserDialogImpl:
Instantiating new WFMRCPDialogServicesAdapterImpl

615110: Jun 01 08:25:22.131 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Here is the
DefaultCompilationConfig set in the JVM en_US

615111: Jun 01 08:25:22.131 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
DefaultCompilationConfig will be set to en_US
615112: Jun 01 08:25:22.131 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
DefaultCompilationConfig is now set to JVM en_US

615113: Jun 01 08:25:22.178 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 VBContext: Constructing
615114: Jun 01 08:25:22.350 EDT %MIVR-SS_VB-7-UNK:HttpCache trace disabled (from
voicebrowser.properties)

615115: Jun 01 08:25:22.381 EDT %MIVR-SS_VB-7-UNK:HttpCache enabled size: 25000000

615116: Jun 01 08:25:22.381 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VBProperties::Constructing
615117: Jun 01 08:25:22.381 EDT %MIVR-SS_VB-7-UNK:Task:43000009351

VBProperties.initDefaultProperties()

615118: Jun 01 08:25:22.397 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VBProperties::Initializing
615119: Jun 01 08:25:22.397 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Here creating

currentPathURI=file:C:/Program Files/wfavvid_1001/

615120: Jun 01 08:25:22.397 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Invoke:
http://mediaserver/vxmldocs/AA.vxml

615121: Jun 01 08:25:22.412 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 JsScript - optimization

615243 Heard: 'one' The first heard caller resonse =
“one”

Table A-1 Some Items to Notice in the Sample Log File

Line
Number Message Event
A-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
level: -1
615122: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterLevel:
SESSION_LEVEL

615123: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:WFCallControlImpl.getAai() = null
615124: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:WFCallControlImpl.getLocalUri() = 1002
615125: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:WFCallControlImpl.getRemoteUri() = 2011

615126: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:WFCallControlImpl.getOriginator() = 2011
615127: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:WFCallControlImpl.getLocalUri() = 1002

615128: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:WFCallControlImpl.getProtocolName() =
QBE

615129: Jun 01 08:25:22.506 EDT %MIVR-SS_VB-7-UNK:WFCallControlImpl.getProtocolVersion() =
Cisco Jtapi version 2.1(3.3) Release

615130: Jun 01 08:25:22.584 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0

615131: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 VBContext::pushLang
language = en_US

615132: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 VBContext::pushLang
Adding new language : en_US

615133: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615134: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property:
name='bargein' value='true'

615135: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0

615136: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property: resulting
value is 'true'
615137: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615138: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property:

name='timeout' value='5000'
615139: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615140: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property: resulting

value is '5000'
615141: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615142: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property:
A-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
name='com.cisco.tts.gender' value='female'
615143: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615144: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property: resulting

value is 'female'
615145: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615146: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property:

name='termchar' value='#'
615147: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615148: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property: resulting

value is '#'
615149: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615150: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property:

name='termtimeout' value='4000'
615151: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615152: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property: resulting

value is '4000'

615153: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0

615155: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0

615156: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Set property: resulting
value is '32'

615157: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VoiceBrowser.invokeApplication(level:0): [URI=http://mediaserver/vxmldocs/AA.vxml
fragment=null]

615158: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterScope: application

615159: Jun 01 08:25:22.600 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterLevel:
APPLICATION_LEVEL

615160: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse() start = 1117628722631

615161: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadAndParse(), req.getMethod() =

615162: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadAndParse(), add thread (TimeoutThread_1117628722631_1) to Map
A-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
615163: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse(): the total number of fetching threads = 0

615164: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse(): calling aThread (TimeoutThread_1117628722631_1) start().

615165: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse(): fetching (http://mediaserver/vxmldocs/AA.vxml) timeout
attribute=0

615166: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse().aThread.run() thread (TimeoutThread_1117628722631_1) start =
1117628722631 state=STARTED

615167: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse().aThread.run() thread (TimeoutThread_1117628722631_1) set
VxmlDocument's state to DONE, state=DONE

615168: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse().aThread.run() (done) thread (TimeoutThread_1117628722631_1)
end=1117628722631, time=0

615169: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse(): after join(), state=DONE time=1117628722631 fetching took=0

615171: Jun 01 08:25:22.631 EDT %MIVR-SS_VB-7-UNK:Task:43000009351

VXMLDocumnet.loadAndParse(), now parse a Document from req.getDocObj()
615172: Jun 01 08:25:22.740 EDT %MIVR-SS_VB-7-UNK:xmlParser statistics: created=1
discarded=0 maxsize=-1

615174: Jun 01 08:25:22.803 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 [Error] AA.vxml (line:8

column:18) Document is invalid: no grammar found.
615175: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 XML DocumentType:
name=null public id=null system id=null

615176: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:xmlParser statistics: created=1

discarded=0 maxsize=50
615177: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VXMLDocumnet.loadbAndParse() end = 1117628722818 time = 187
A-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
615178: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 exitLevel:
APPLICATION_LEVEL
615179: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->0
615180: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 exitScope: application

615181: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterScope: application
615182: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterLevel:
APPLICATION_LEVEL

615183: Jun 01 08:25:22.818 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterScope: document

615184: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterLevel:
DOCUMENT_LEVEL
615185: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 traverseDocument:

http://mediaserver/vxmldocs/AA.vxml base=http://mediaserver/vxmldocs/AA.vxml

615186: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
PormItemTraverser:handlMenuElement(): adding dtmf choice grammar string = one

615187: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): choice grammar string = one
615188: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 0->2
615189: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2

615190: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615191: Jun 01 08:25:22.834 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VBGrammaraHandler::addInLineGrammar() grammar = [grammar: null] Type = 1

615192: Jun 01 08:25:22.850 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 handleGrammarElement :
value of grammar string = null
615193: Jun 01 08:25:22.850 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615194: Jun 01 08:25:22.850 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2

615195: Jun 01 08:25:22.850 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615196: Jun 01 08:25:22.850 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VBGrammaraHandler::addInLineGrammar() grammar = [grammar: null] Type = 1

615197: Jun 01 08:25:22.850 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 handleGrammarElement :

value of grammar string = null
615198: Jun 01 08:25:22.850 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): adding dtmf choice grammar string = 2
A-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
615199: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): choice grammar string = 2
615200: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615201: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2

615202: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615203: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VBGrammaraHandler::addInLineGrammar() grammar = [grammar: null] Type = 1

615204: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 handleGrammarElement :
value of grammar string = null
615205: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615206: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2

615207: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615208: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VBGrammaraHandler::addInLineGrammar() grammar = [grammar: null] Type = 1

615209: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 handleGrammarElement :

value of grammar string = null
615210: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): adding dtmf choice grammar string = 0

615211: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): choice grammar string = 0
615212: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2

615213: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615214: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615215: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351

VBGrammaraHandler::addInLineGrammar() grammar = [grammar: null] Type = 1

615216: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 handleGrammarElement :
value of grammar string = null
615217: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615218: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615219: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615220: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351

VBGrammaraHandler::addInLineGrammar() grammar = [grammar: null] Type = 1
A-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
615221: Jun 01 08:25:22.865 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 handleGrammarElement :
value of grammar string = null
615222: Jun 01 08:25:22.881 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->2
615223: Jun 01 08:25:22.912 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterLevel:

DIALOG_LEVEL
615224: Jun 01 08:25:22.912 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 traverseDialog: id=aa
615225: Jun 01 08:25:22.912 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterScope: dialog
615226: Jun 01 08:25:22.928 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 enterLevel: FIELD_LEVEL
615227: Jun 01 08:25:22.928 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 DialogTraverser:

traverseDialog(): -- Beginning Select Phase

615228: Jun 01 08:25:22.928 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 DialogTraverser:
traverseDialog(): Selected element = menu name =
615229: Jun 01 08:25:22.928 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 DialogTraverser:

traverseDialog(): -- Beginning Collect Phase
615230: Jun 01 08:25:22.928 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 2->4
615231: Jun 01 08:25:22.928 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 4->4
615232: Jun 01 08:25:22.928 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 4->4

615233: Jun 01 08:25:22.943 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Setting gender as
female for prompt = TTS:Dom[<?xml version="1.0"?>

<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis">

Welcome to the automated attendant.
 To enter the phone number of the person you are trying to reach, say or press 1.
 To enter the name of the person you are trying to reach, say or press 2.
 To transfer to the operator, say or press 0.

</speak>
]

615234: Jun 01 08:25:22.975 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Play: TTS:Dom[<?xml
version="1.0"?>
<speak version="1.0" xmlns="http://www.w3.org/2001/10/synthesis">
 Welcome to the automated attendant.
 To enter the phone number of the person you are trying to reach, say or press 1.
 To enter the name of the person you are trying to reach, say or press 2.
 To transfer to the operator, say or press 0.
</speak>

]
615235: Jun 01 08:25:22.975 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): adding dtmf choice grammar string = one

615236: Jun 01 08:25:22.990 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
A-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix A A Sample VoiceXML Log File
Sample VoiceXML Log File Selection
FormItemTraverser:handlMenuElement(): choice grammar string = one
615237: Jun 01 08:25:22.990 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): adding dtmf choice grammar string = 2

615238: Jun 01 08:25:22.990 EDT %MIVR-SS_VB-7-UNK:Task:43000009351

FormItemTraverser:handlMenuElement(): choice grammar string = 2
615239: Jun 01 08:25:22.990 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): adding dtmf choice grammar string = 0

615240: Jun 01 08:25:22.990 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
FormItemTraverser:handlMenuElement(): choice grammar string = 0
615241: Jun 01 08:25:22.990 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Listen:
615242: Jun 01 08:25:39.288 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 goToLevel:: 4->4

615243: Jun 01 08:25:39.288 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 Heard: 'one'

615244: Jun 01 08:25:39.288 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 playAndRecognize
returns: one

615245: Jun 01 08:25:39.288 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VoiceDomParser:handleMenuElement: utterance = one

615246: Jun 01 08:25:39.288 EDT %MIVR-SS_VB-7-UNK:Task:43000009351 DialogTraverser:
traverseDialog(): -- Beginning Process phase

615247: Jun 01 08:25:39.288 EDT %MIVR-SS_VB-7-UNK:Task:43000009351
VBResultProcessor.processNlsmlResult(): gmParentName=choice, id=, name=, type=, slot=,
result=<?xml version='1.0'?><result><interpretation
grammar="session:choice1@document.grammar" confidence="94"><input
mode="speech">one</input><instance><SWI_literal>one</SWI_literal><SWI_grammarName>session:
choice1@document.grammar</SWI_grammarName><SWI_meaning>{SWI_literal:one}</SWI_meaning></in
stance></interpretation></result>
A-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting S
A P P E N D I X B

VoiceXML Implementation for
Cisco Voice Browser

This appendix includes the following topics:

 • VoiceXML 2.0 Element Implementation, page B-2

 • VoiceXML Properties Implementation, page B-10

 • Standard Session Variables Implementation, page B-11

 • Built-in Type Implementation, page B-12

 • The <value> Data Format, page B-14
B-1
tarted with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
VoiceXML 2.0 Element Implementation
Table B-1 describes the Cisco Unified CCX implementation of VoiceXML 2.0
elements. It contains:

 • The list of all the elements defined in the W3C Voice Extensible Markup
Language (VoiceXML) Version 2.0.

 • The elements in the Speech Synthesis Markup Language Version 1.0
specification that Cisco Unified CCX supports. SML elements are available
in VoiceXML 2.0.

 • The elements in the Speech Recognition Grammar Specification (SRGS)
Version 1.0 that Cisco Unified CCX supports. SRGS elements are available
in VoiceXML 2.0.

Note At run time, the system ignores unsupported or unimplemented attributes.

Table B-1 VoiceXML 2.0 Element Implementation

Element Attributes Notes

<assign> name
expr

Fully supported by the Cisco Unified CCX implementation.

<audio> src
fetchtimeout
fetchint
maxage
maxstale
expr

The following attributes are not supported:

 • fetchint

 • The <audio expr> tag when nested in a <prompt> tag.

The following audio file formats are supported:

 • audio/wav

The following codec is supported for each file format:

 • G.711 ULAW

<block> name
expr
cond

Fully supported by the Cisco Unified CCX implementation.

<break> strength
time

Fully supported by the Cisco Unified CCX implementation.
B-2
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

http://www.w3.org/TR/2004/REC-voicexml20-20040316/
SSML(TTS): http://www.w3.org/TR/speech-synthesis
SSML(TTS): http://www.w3.org/TR/speech-synthesis
http://www.w3.org/TR/2003/PR-speech-grammar-20031218/
http://www.w3.org/TR/2003/PR-speech-grammar-20031218/

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
<catch> event
count
cond

Fully supported by the Cisco Unified CCX implementation.

<choice> dtmf
accept
next
expr
event
eventexpr
message
messageexpr
fetchaudio
fetchint
fetchtimeout
maxage
maxstale

The following attributes are not supported:

 • fetchint

Note The <choice> element’s dtmf attribute can be set
only to dtmf=”*”, dtmf=”#”, or dtmf=”0” if it is
being used in conjunction with a <menu> element
and the dtmf attribute is set to dtmf=”true”.

<clear> namelist Fully supported by the Cisco Unified CCX implementation.

<desc> xml:lang Not supported by the Cisco Unified CCX implementation.

<disconnect> no attributes Fully supported by the Cisco Unified CCX implementation.

<else> no attributes Fully supported by the Cisco Unified CCX implementation.

<elseif> cond Fully supported by the Cisco Unified CCX implementation.

<emphasis> level Fully supported by the Cisco Unified CCX implementation.

<enumerate> no attributes Fully supported by the Cisco Unified CCX implementation.

<error> count
cond

Fully supported by the Cisco Unified CCX implementation.

<example> no attributes Fully supported by the Cisco Unified CCX implementation.

<exit> expr
namelist

Fully supported by the Cisco Unified CCX implementation.

Parameters are returned to variables configured in the Voice
Browser step.

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-3
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
<field> name
expr
cond
type
slot
modal

Fully supported by the Cisco Unified CCX implementation.

<filled> mode
namelist

Fully supported by the Cisco Unified CCX implementation.

<form> id
scope

Fully supported by the Cisco Unified CCX implementation.

<goto> next
expr
nextitem
expritem
fetchaudio
fetchint
fetchtimeout
maxage
maxstale

The following attributes are not supported:

 • fetchint

<grammar> xml:lang
src
scope
type
fetchint
fetchtimeout
maxsize
maxstate
mode
root
tag-format
version
weight
xml:base

The following attributes are not supported:

 • fetchint

<help> count
cond

Fully supported by the Cisco Unified CCX implementation.

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-4
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
<if> cond Fully supported by the Cisco Unified CCX implementation.

<initial> name
expr
cond

Fully supported by the Cisco Unified CCX implementation.

<item> tag
weight

Fully supported by the Cisco Unified CCX implementation.

<lexicon> type
uri

Not supported by the Cisco Unified CCX implementation.

<link> next
dtmf
expr
event
eventexpr
fetchaudio
fetchint
fetchtimeout
maxsize
maxstate
message
messageexpr

The following attributes are not supported:

 • fetchint

<log> label
expr

Fully supported by the Cisco Unified CCX implementation.

<mark> name Not supported by the Cisco Unified CCX implementation.

<menu> id
scope
dtmf
accept

Fully supported by the Cisco Unified CCX implementation.

Note If the <menu> element dtmf attribute is set to
dtmf=”true”, then the <choice> element dtmf
attribute can be set to only one of the following:
dtmf=”*”, dtmf=”#”, and dtmf=”0”.

<meta> name
content
http-equiv

Fully supported by the Cisco Unified CCX implementation.

http-equiv may contain Date and Expires properties

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-5
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
<metadata> creator
rights
subject

Fully supported by the Cisco Unified CCX implementation.

<noinput> count
cond

Fully supported by the Cisco Unified CCX implementation.

<nomatch> count
cond

Fully supported by the Cisco Unified CCX implementation.

<object> name
expr
cond
classid
codebase
codetype
data
type
archive
fetchint
fetchtimeout
maxage
maxstale

No platform object is supported in the Cisco Unified CCX
implementation.

<one-of> tag Fully supported by the Cisco Unified CCX implementation.

<option> dtmf
accept
value

Fully supported by the Cisco Unified CCX implementation.

<p> XML:lang Fully supported by the Cisco Unified CCX implementation.

<param> name
expr
value
valuetype
type

Fully supported by the Cisco Unified CCX implementation.

<phoneme> alphabet
ph

Fully supported by the Cisco Unified CCX implementation.

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-6
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
<prompt> bargein
bargeintype
cond
count
timeout
xml:lang
xml:base

For bargein, only “speech” is supported.

<property> name
value

Supported in the Cisco Unified CCX implementation.

See VoiceXML Properties Implementation, page B-10 for
the list of properties supported.

<prosody> pitch
contour
range
rate
duration
volume

Not supported by the Cisco Unified CCX implementation.

<record> name
expr
cond
modal
beep
maxtime
finalsilence
dtmfterm
type

The following attributes are not supported:

 • finalsilence

 • type (accepts only the default format)

Voice recording supports the following codec:

 • G711_ULAW format

Simultaneous recognition and recording is not supported.

Note Note that the record variable should be used only for
submitting the audio using the <submit> element.
Use of the variable in other ECMAScript expression
is not supported.

<reprompt> no attributes Fully supported by the Cisco Unified CCX implementation.

<return> event
eventexpr
message
messageexpr
namelist

Fully supported by the Cisco Unified CCX implementation.

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-7
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
<rule> ID
scope

Fully supported by the Cisco Unified CCX implementation.

<ruleref> tag
uri

Fully supported by the Cisco Unified CCX implementation.

<s> no attributes Fully supported by the Cisco Unified CCX implementation.

<say-as> phon
sub
class

Fully supported by the Cisco Unified CCX implementation.

<script> src
charset
fetchint
fetchtimeout
maxage
maxstale

The following attributes are not supported:

 • fetchint

<sub> alias Not supported by the Cisco Unified CCX implementation.

<subdialog> name
expr
cond
namelist
src
srcexp
method
enctype
fetchaudio
fetchtimeout
fetchint
maxage
maxstale

The following attributes are not supported:

 • fetchint

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-8
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML 2.0 Element Implementation
<submit> next
expr
namelist
method
enctype
fetchaudio
fetchint
fetchtimeout
maxage
maxstale

The following attributes are not supported:

 • fetchint

<tag> no attributes Contains a TAG-CONTENT string for semantic
interpretation by MRCP.

Support varies by MRCP provider.

<throw> even
eventexpr
message
messageexpr

Fully supported by the Cisco Unified CCX implementation.

<token> xml:lang Fully supported by the Cisco Unified CCX implementation.

<transfer> aai
aaiexpr
bridge
cond
connecttimeout
dest
destexpr
expr
maxtime
name
transferaudio

The following attributes are not supported:

 • bridge (only blind transfer is supported)

 • connecttimeout

 • transferaudio, aai, aaiexpr

The dest attribute supports both the phone: URL syntax used
in VoiceXML 1.0 and the tel: URL syntax required by
VoiceXML 2.0. The tel: URL syntax is described in
[RFC2806].

<value> expr Fully supported by the Cisco Unified CCX implementation.

<var> expr
name

Fully supported by the Cisco Unified CCX implementation.

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-9
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
VoiceXML Properties Implementation
VoiceXML Properties Implementation
The table below lists standard VoiceXML 2.0 properties supported in Cisco
Unified CCX implementation.

Table B-2 Supported Standard VoiceXML 2.0 Properties

Property Name Description

bargein Specifies whether or not barge-in to voice prompts is allowed.
Allowed values are "true" and "false". Default value is "true".

fetchtimeout Sets the timeout for fetching the content from the web. The default
value is "4s".

timeout The time after which a noinput event is thrown by the platform. The
default value is "5s".

termchar Specifies the termination keys to be used in a particular DTMF
recognition. More than one key can be specified. The default value
is “#”. Use blank “ ” to represent no termination key. (Recognition
ends with timeout.)

termtimeout Specifies the timeout in seconds for DTMF recognition. The default
value is "4s".

<voice> xml:lang
gender
age
variant
name

Not supported by the Cisco Unified CCX implementation.

<vxml> application
version
xmlns
xml:base
xml:lang

Fully supported by Cisco's Cisco Unified CCX
implementation.

The version attribute must contain the value "2.0".

Table B-1 VoiceXML 2.0 Element Implementation (continued)

Element Attributes Notes
B-10
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
Standard Session Variables Implementation
Table B-3 lists other proprietary properties supported.

Table B-3 Supported Cisco Proprietary Properties

Property Name Description

com.cisco.tts.gender Select male or female voice for Text-to-Speech prompts. The
allowed values are "male" and "female" (default).

com.cisco.tts.provider Override the default TTS provider, default = “name”

Standard Session Variables Implementation
The table below lists supported standard session variables.

Table B-4 Supported Standard VoiceVML 2.0 Session Variables

Variable Description

session.connection.ani Automatic Number Identification (ANI). This variable
provides the calling party number.

session.connection.dnis Dialed Number Identification Service (DNIS). This variable
provides the number that the caller dialed.

session.connection.iidigits Not supported.

session.connection.rdnis Redirect Dialed Number Information Service (RDNIS). This
variable provides the number from which a call diversion or
transfer was invoked.

(This variable is undefined if the number is unavailable.)

Example: Suppose person A subscribes to a voice messaging
service, and forwards all calls to a voice server. Person B then
calls A and gets routed to the voice server. A VoiceXML
application on the voice server sees RDNIS as A’s number,
DNIS as the number of the voice server, and ANI as B’s
number.

session.connection.local.uri A URI which addresses the local interpreter context device.

session.connection.remote.uri A URI which addresses the remote caller device.
B-11
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
Built-in Type Implementation
Built-in Type Implementation
Supported built-in types are listed below:

 • Boolean

 • date

 • digits

 • currency

 • number

 • phone

session.connection.protocol.name The connection protocol. The name also represents the
subobject name for protocol specific information. For instance,
if session.connection.protocol.name is 'q931',
session.connection.protocol.q931.uui might specify the
user-to-user information property of the connection.

session.connection.protocol.version The version of the connection protocol.

session.connection.redirect An array representing the connection redirection paths. The
first element is the original called number, the last element is
the last redirected number. Each element of the array contains
a uri, pi (presentation information), si (screening information),
and reason property. The reason property can be either
"unknown", "user busy", "no reply", "deflection during
alerting", "deflection immediate response", "mobile subscriber
not reachable".

session.connection.originator Directly references either the local or remote property (For
instance, the following ECMAScript would return true if the
remote party initiated the connection: var caller_initiate =
connection.originator == connection.remote).

session.cisco.asravailable Cisco Proprietary. Read Only. Indicates whether or not the ASR
server is available.

Table B-4 Supported Standard VoiceVML 2.0 Session Variables (continued)

Variable Description
B-12
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
Built-in Type Implementation
 • time (Time designations for properties and attributes is “s” or “ms,” except
maxage, maxstale, (and audio/document/grammar/script variants).

Some deviations are listed as follows:

 • Number built-in grammar does not support decimal numbers. It accepts
number from 0 to 999,999.

 • Phone built-in grammar does not support extension recognition.

 • Parameterization of built-in types is not implemented.

Built-in grammar files are in the directory <install_directory>\grammars\system\.

See your MRCP vendor for the maximum number of digits that your Digit
grammar accepts.

Grammars of the languages are filed in the respective directories designated by
the locales.

Note Any modification to these files demands a through knowledge of SRGS and
SSML MRCP grammar syntax and is done at the customer’s risk.

Table B-5 TTS/SSML/Audio Built-In Type Summary

VXML <prompt>
(VXML 2.0 Appendix
P)

SSML <say-as> element (SSML S 2.1.4) Mapping from VXML to
SSML

interpret-as Format
(optional field)

Number Number ordinal Format field not used

Number cardinal Format field not used
Phone Number telephone Format field is used
Date Date mdy Format field not used
Digits Digits Format field not used

Ordinal, Cardinal,
Letters, Words

Not mapped

Boolean, currency,
Time

No mapping – Unchanged from
VXML 1
B-13
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
The <value> Data Format
The <value> Data Format
The <value> data format can be used to format text, such as dates and times, into
spoken form. The expr attribute can specify an ECMAScript Date object or a
string. If it is a string, the Cisco Unified CCX Voice Browser attempts to parse it
into a machine format.

The table below lists the formats used to parse the string. The format is language
dependent. If the string cannot be parsed, the <value> data format is ignored.

Table B-6 <value> Data Format

Language code Date format Time format

de-DE EEEE, d. MMMM yyyy

d. MMMM yyyy

dd.MM.yyyy

dd.MM.yy

H.mm' Uhr 'z

HH:mm:ss z

HH:mm:ss

HH:mm

en-CA EEEE, MMMM d, yyyy

MMMM d, yyyy

d-MMM-yy

dd/MM/yy

h:mm:ss 'o''clock' a z

h:mm:ss z a

h:mm:ss a

h:mm a

en-GB dd MMMM yyyy

dd MMMM yyyy

dd-MMM-yy

dd/MM/yy

HH:mm:ss 'o''clock' z

HH:mm:ss z

HH:mm:ss

HH:mm

en-US EEEE, MMMM d, yyyy

MMMM d, yyyy

MMM d, yyyy

M/d/yy

h:mm:ss a z

h:mm:ss a z

h:mm:ss a

h:mm a
B-14
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
The <value> Data Format
The table below lists the legend of the format. The information is based on Sun
JDK’s java.text.SimpleDateFormat documentation.

es-CO EEEE d' de 'MMMM' de 'yyyy

d' de 'MMMM' de 'yyyy

d/MM/yyyy

d/MM/yy

hh:mm:ss a z

hh:mm:ss a z

hh:mm:ss a

hh:mm a

es-MX EEEE d' de 'MMMM' de 'yyyy

d' de 'MMMM' de 'yyyy

d/MM/yyyy

d/MM/yy

hh:mm:ss a z

hh:mm:ss a z

hh:mm:ss a

hh:mm a

fr-CA EEEE d MMMM yyyy

d MMMM yyyy

yy-MM-dd

yy-MM-dd

H' h 'mm z

HH:mm:ss z

HH:mm:ss

HH:mm

fr-FR EEEE d MMMM yyyy

d MMMM yyyy

d MMM yy

dd/MM/yy

HH' h 'mm z

HH:mm:ss z

HH:mm:ss

HH:mm

Table B-6 <value> Data Format (continued)

Table B-7 Format Legend

Symbol Meaning Presentation Example

 G era designator (Text) AD

 y year (Number) 2005

 M month in year (Text & Number) July & 07

 d day in month (Number) 10

 h hour in am/pm (1~12) (Number) 12
B-15
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
The <value> Data Format
The count of pattern letters determines the format:

 • Text

 – 4 or more pattern letters—Use full form.

 – Fewer than 4 pattern letters—Use short or abbreviated form if one exists.

 • Number

 – The minimum number of digits.

Shorter numbers are zero-padded to this amount. Year is handled
specially; that is, if the count of 'y' is 2, the Year will be truncated to 2
digits.

 H hour in day (0~23) (Number) 0

 m minute in hour (Number) 30

 s second in minute (Number) 55

 S millisecond (Number) 978

 E day in week (Text) Tuesday

 D day in year (Number) 189

 F day of week in month (Number) 2 (2nd Wed in July)

 w week in year (Number) 27

 W week in month (Number) 2

 a am/pm marker (Text) PM

 k hour in day (1~24) (Number) 24

 K hour in am/pm (0~11) (Number) 0

 z time zone (Text) Pacific Standard Time

 ' escape for text (Delimiter)

 '' single quote (Literal) '

Table B-7 Format Legend (continued)

Symbol Meaning Presentation Example
B-16
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
The <value> Data Format
 • Text & Number

 – 3 or over—Use text.

 – Fewer than 3—Use number.

Any characters in the pattern that are not in the ranges of ['a'...'z'] and ['A'...'Z']
will be treated as quoted text. For instance, characters like ':', '.', ' ', '#' and '@' will
appear in the resulting time text even they are not enclosed within single quotes.
B-17
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Appendix B VoiceXML Implementation for Cisco Voice Browser
The <value> Data Format
B-18
Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)

Cisco Unified Contact Center Express Getting S
I N D E X
A

Accept step

using in a basic Unified CCX script 6-5

Annotate step

using 14-10

ASR

enabled scripts 4-4

supported media 5-8

Authenticate User step

using in a basic script 7-32

B

BasicQ script (BasicQ.aef) 16-10

BigDecimal

variables 2-42

BigInteger

variables 2-42

Boolean

variables 2-40

Break option, in debug menu 2-10

breakpoints, inserting 2-11

broadcast.aef 8-2
built-in variable data types

basic 2-37

Byte

variables 2-38

C

Call Hold step

using in a Unified CCX script 17-31

Call Redirect step

and error output branches 2-55

using in a Unified IP IVR script 12-41,
12-69, 12-75

Call Subflow step

using 8-13

call variables 16-3, 18-4

changing the order of steps 2-26

Character

variables 2-40

Cisco IP Auto-Attendant 12-3

Cisco Unified CCX Editor

creating a script 2-25

Design pane 2-27

File menu 2-8
IN-1
tarted with Scripts, Release 11.0(1)

Index
how to start 1-1

overview 2-1

Clear All Breakpoints option, in Debug
menu 2-11

Close option, in File menu 2-8

CollectDigits script (CollectDigits.aef) 16-12

compound

grammar

about 5-10

indexing 5-10

Contact management, overview 5-1

Contact variable 2-38

Continue On Prompt Errors option 2-53

Copy option, in Edit menu 2-9

Create Conditional Prompt step

using in a Unified IP IVR script 12-12

Create Container Prompt step

using in a Unified IP IVR script 12-14

Create File Document step

using 14-8

using in a web-enabled script 9-10

Create Generated Prompt step

using in a Unified IP IVR script 12-35,
12-57

Create TTS Prompt step

using 14-5, 14-9

Create XML Document step

using in a web-enabled client script 10-9

creating a script 2-25

Currency
IN-2
Cisco Unified Contact Center Express Getting S
variables 2-40

customizers, defined 2-28

Cut option, in Edit menu 2-9

D

Database steps

using in scripts 11-1

Date

variables 2-42

DB Get step

in a database script 11-9

DB Read step

in a database script 11-6

DB Release step

in a database script 11-16

DB Write step

in a database script 11-13

debugging

non-reactive 2-52

reactive 2-49

Debug menu 2-10

Debug menu options

Break 2-10

Clear All Breakpoints 2-11

Disable Breakpoint 2-11

Enable Breakpoint 2-11

End 2-10

Insert Breakpoint 2-11
tarted with Scripts, Release 11.0(1)

Index
Pending Response 2-11

Reactive Application 2-11

Start 2-10

Step Over 2-10

Validate 2-10

decoding ICME variables 16-5

decoding ICM variables 2-44

default scripts, overview 5-19

defining variables 2-32

Delay step

using in a basic Unified CCX script 6-12

using in a Unified CCX script 17-31

Delete option, in Edit menu 2-9

Design pane 2-27

Disable Breakpoint, in Debug menu 2-11

displaying step properties 2-28

Document

variables 2-41

double

variables 2-43

DTMF

suported media 5-8

using DTMF grammar 15-14

using DTMF input 15-11

dynamic web pages

creating 9-4
Cisco Unified Contact Center Express
E

Edit menu options

Copy 2-9

Cut 2-9

Delete 2-9

Expand All 2-9

Find 2-9

Find Label 2-9

Find Next 2-9

Paste 2-9

Redo 2-9

Undo 2-9

Edit Variable

properties 2-33

Enable Breakpoint option, in Debug menu 2-11

encoding ICME variables 16-5

encoding ICM variables 2-44

End option, in Debug menu 2-10

error output branches 2-55

error variables 16-4

Expand All option, in Edit menu 2-9

Expanded Call Variables 2-35, 18-5

in Settings menu 2-15

Explicit Confirmation step

using in a Unified IP IVR script 12-62

exporting variables 2-43

Expression Editor

All Variables selection box 3-3

pop-up menu 3-7
IN-3
Getting Started with Scripts, Release 11.0(1)

Index
tabbed toolbar 3-7

using 3-2

expressions

expession panel 2-45

licensing 3-9

Extract XML Document step

using in a web-enabled client script 10-10

F

File menu options

Close 2-8

New 2-8

Open 2-8

Print 2-9

Properties 2-9

Save 2-9

Save As 2-9

Find Label option, in Edit menu 2-9

Find Next option, in Edit menu 2-9

Find option, in Edit menu 2-9

float

variables 2-41

G

Generic Recognition

about 19-1

script algorithm 19-5
IN-4
Cisco Unified Contact Center Express Getting S
Generic Recognition step

using 19-7

Get Contact Info step, using 17-6

Get Digit String step

using in a basic script 7-25

using in a Unified IP IVR script 12-29

Get Digit String step, using 17-11

Get HTTP Contact Info step

using in a web-enabled script 9-8

Get Recognition Result Info step

using 19-12

Get Session Info step, using 17-6, 17-16

Get Session step, using 17-15

Get User Info step

using in a Unified IP IVR script 12-53

Goto step

using in a basic Unified CCX script 6-14

using in a Unified CCX script 17-31

grammar

templates 5-9

variables 2-39

grammars

automatic conversion 5-8

file grammar formats 5-7

overview 5-4

passing grammars to steps 5-9

search algorithm 5-6

system 5-5

user 5-5
tarted with Scripts, Release 11.0(1)

Index
H

Http Forward Step

in a contact neutral script 13-13

I

icd.aef

overview 6-2

ICME

call variables 16-3, 18-4

default scripts 16-8

error variables 16-4

Expanded Call Variables 2-35, 18-5

predefined call variables 2-36, 18-6

VRU scripts 16-9

ICM variables

decoding/encoding 2-44

If step

using in a multiple contact script 8-15

Implicit Confirmation step

using in a Unified IP IVR script 12-38,
12-54

Increment step

using in a Unified IP IVR script 12-40,
12-66, 12-72

Insert Breakpoint option, in Debug menu 2-11

Integer (int)

variables 2-41

Iterator variables 2-40
Cisco Unified Contact Center Express
J

Java

licensing 3-9

K

Keyword Transform Document step

using in a web-enabled script 9-11

L

Label step

using in a basic script 7-11

using in a basic Unified CCX script 6-10

using in a Unified IP IVR script 12-18

language

variables 2-40

licensing, expressions 3-9

locallizing scripts 4-1

long

variables 2-43

M

mapping identifiers

using 5-3

media

media-less calls 5-25

media neutrality 5-26
IN-5
Getting Started with Scripts, Release 11.0(1)

Index
overview 5-24

Menu step

using 14-11

using in a basic script 7-40

MRCP

language packs 4-5

N

Name to User step

using in a basic script 7-11

using in a Unified IP IVR script 12-48

N-Best Recognition 19-2

New option, in File menu 2-8

New Variable

dialog box 2-32

non-reactive debugging 2-52

O

Open option, in File menu 2-8

outbound calls, placing 8-21

P

Palette pane

definition 2-18

tips for using 2-24

passing grammars to steps 5-9
IN-6
Cisco Unified Contact Center Express Getting S
Paste option, in Edit menu 2-9

Pending Response option, in Debug menu 2-11

peripheral variables 16-3, 18-4

Place Call step

using 8-21

Play Prompt step

using in a multiple contact script 8-19

using in a Unified IP IVR script 12-16

predefined call variables 2-36, 18-6

Print option, in File Mmenu 2-9

Prompt

variables 2-39

prompts

how to configure 5-16

how to create or customize 5-15

how to record 5-15

overview 5-11

search algorithm 5-13

user 5-12

properties, displaying step 2-28

Properties option, in File menu 2-9

R

Reactive Application option, in Debug
menu 2-11

reactive debugging 2-49

Recording step

using in a basic script 7-37

using in a multiple contact script 8-8
tarted with Scripts, Release 11.0(1)

Index
Recording step, using 17-24

Redo option, in Edit menu 2-9

remote method invocation 2-10

removing or showing

Expression Editor toolbar 3-8

Request Route step 18-14

S

Sample Scripts

BasicQ.aef 16-10

CollectDigits.aef 16-12

Unified Gateway scripts 18-3

VisibleQ.aef 16-11

voicebrowser.aef 15-20

Sample scripts

broadcast.aef (for multiple contacts) 8-2

hello.aef (web-enabled script) 9-1

SNU.aef (basic script) 7-2

Save As option, in File menu 2-9

Save option, in File menu 2-9

script interruption, overview 5-22

Script Variables 18-3

Select Resouce step

using in a basic Unified CCX script 6-7

Select Resouce step, using 17-26

Send Http Response step

using in a web-enabled script 9-14

Service Control interface, Unified ICME 16-1
Cisco Unified Contact Center Express
Session

variables 2-39

session management, overview 5-3

session management steps, using 17-14

Session Mapping step, using 17-17

session objects, using 5-4

Set Contact Info step, using 17-16

Set Enterprise Call Info step 18-14

Set Priority step, using 17-30

Set Session Info step, using 17-24

Set step

using in a multiple contact script 8-12, 8-15

using in a Unified IP IVR script 12-23

Settings menu 2-11

Settings menu options

Expanded Call Variables 2-15

Short

variables 2-38

Simple Recognition step

using in a Unified IP IVR script 12-24

speech recognition, using 15-10

spoken name

how to upload 5-18

Start option, in Debug menu 2-10

Start step

using in a basic script 6-2

static web pages

creating 9-3

Step Over option, in Debug menu 2-10
IN-7
Getting Started with Scripts, Release 11.0(1)

Index
String

variables 2-41

subflows, calling 8-13

Switch step

using in a Unified IP IVR script 12-22

Synchronize License 2-14

T

The Set step

using in a Unified IP IVR script 12-48

Time

variables 2-42

toolbar 2-16

TTS

enabled scripts 4-4

language packs 4-5

U

Undo option, in Edit Mmenu 2-9

Unified CCX Editor

Overview 1-1

Unified CCX script

example 6-2

User variables 2-38
IN-8
Cisco Unified Contact Center Express Getting S
V

Validate option, in Debug menu 2-10

variables

BigDecimal 2-42

BigInteger 2-42

Boolean 2-40

built-in data types

basic 2-37

byte 2-38

call 16-3, 18-4

char 2-40

Contact 2-38

Currency 2-40

Date 2-42

defining 2-32

Document 2-41

double 2-43

error 16-4

exporting 2-43

float 2-41

for Unified gateway scripts 18-3

Grammar 2-39

ICME call 2-36, 18-6

ICME Expanded Call Varibles 2-35, 18-5

in broadcast.aef 8-4

in icd.aef script 6-3

in SNU script 7-4

int 2-41

Iterator 2-40
tarted with Scripts, Release 11.0(1)

Index
language 2-40

long 2-43

Prompt 2-39

properties 2-33

Session 2-39

Short 2-38

String 2-41

Time 2-42

user 2-38

VisibleQ script (VisibleQ.aef) 16-11

Voice Browser

architecture 5-30

development tools 5-32

overview 5-28

VoiceXML

built-in type implementation B-12

element implementation B-2

international applications 15-29

overview 5-29

passing parameters 15-26

properties implementation B-10

standard session variables
implementation B-11

VoiceXML Sample Document 15-8

VRU scripts 16-9, 16-10, 16-11, 16-12

W

web-enabled client application, creating 10-1

web-enabled scripts 9-1
Cisco Unified Contact Center Express
web server script

creating 9-1
IN-9
Getting Started with Scripts, Release 11.0(1)

Index
IN-10
Cisco Unified Contact Center Express Getting S
tarted with Scripts, Release 11.0(1)

	Cisco Unified Contact Center Express Getting Started with Scripts, Release 11.0(1)
	Contents
	Preface
	Audience
	Organization
	Related Documentation
	Glossary
	Conventions
	Obtaining Documentation, Obtaining Support, and Security Guidelines
	Documentation Feedback

	Installing and Starting the Cisco Unified CCX Editor
	Starting the Cisco Unified CCX Editor
	Prerequisites for a Separate Installation
	Downloading the Cisco Unified CCX Editor for a Separate Installation
	Installing the Cisco Unified CCX Editor

	How To Use the Cisco Unified CCX Editor
	About the Cisco Unified CCX Editor
	An Example Cisco Unified CCX Editor Window
	Cisco Unified CCX Editor Window with a Sample Script

	About the Cisco Unified CCX Editor Status Bar
	Menu Bar Function Descriptions
	The File Menu
	The Edit Menu
	The Tools Menu
	The Debug Menu
	The Window Menu
	The Settings Menu
	The Help Menu

	Tool Bar Function Descriptions
	About the Cisco Unified CCX Editor Step Palettes
	The Editor Palettes Available in Each Cisco Unified CCX Product
	The Steps in Each Cisco Unified CCX Editor Palette
	How To Use the Cisco Unified CCX Editor Palettes

	How to Create and Customize a Cisco Unified CCX Editor Script
	Creating a Script
	Customizing a Step

	Defining, Using, and Updating Script Variables
	How to Reorganize the Display of Script Variables in the Editor
	How To Define Local Script Variables in the Cisco Unified CCX Editor
	How To Map a Script Variable to a Subscript Variable
	Using Enterprise Expanded Call Context (ECC) Variables
	How To Define ECC Variables in the Cisco Unified CCX Editor
	The Types of Local Variables Available in the Cisco Unified CCX Editor
	How and Why To Export Variables
	How and When To Configure the Encoding and Decoding of Variable Types
	Using Multiple Values in a Variable

	Validating and Debugging Your Script
	How to Validate Your Script
	How to Debug Your Script
	Using BreakPoints
	Using Reactive and Active Debugging
	Using Reactive Debugging
	Using Non-Reactive Debugging

	How To Handle Basic Script Errors
	Using the “Continue on Prompt Errors” Option
	Enabling the ”Continue On Prompt Errors“ Option
	Script Execution When Enabling the ”Continue On Prompt Errors“ Option
	Script Execution When Disabling the ”Continue On Prompt Errors“ Option

	Using Error Output Branches

	How and Why To Use the CRTP Protocol
	CRTP URI Protocol Syntax
	Example CRTP URI Specifications

	How To Use Cisco Unified CCX Script Templates
	The Script Templates Installed with the Cisco Unified CCX Editor
	How do I find the script templates installed with the Cisco Unified CCX Editor?
	Default Script Template Descriptions
	How to Create Your Own Script Template
	How to Create Your Own Script Template Directory
	Where Sample Prompts for Your Scripts Are Stored

	The Cisco Unified CCX Edition Script Web Repository
	The Cisco Unified CCX Script Web Repository Location
	How do I add my favorite Cisco Unified CCX script to the Web repository?

	Obtaining Technical Assistance

	Using Expressions and the Expression Editor
	How to Access the Cisco Unified CCX Expression Editor
	How to Use the Expression Editor
	How To Enter Expressions in the Expression Editor

	About the Expression Editor Toolbar
	Toolbar Tabs
	A Pop-Up Menu
	Showing or Hiding the Expression Editor Toolbar

	About the Expression Editor Syntax Buttons
	About Expression and Java Licensing

	Localizing Cisco Unified CCX Scripts
	Installing Language Groups
	When Do You Need a Language Group?
	Changing a Cisco Unified CCX Installed Language
	Language Restrictions
	Creating a Custom Country-Specific Language
	Using VXML to Implement a Language Not Available in Cisco Unified CCX

	Advanced Scripting Techniques
	Managing Contacts in Your Scripts
	Managing Sessions in Your Scripts
	Using Mapping Identifiers
	Using Session Objects

	Using Grammars in Your Scripts
	About Grammars
	Grammar Search Algorithm
	File Grammar Formats
	The SRGS File Grammar Format
	The Digit File Grammar Format
	The GSL File Grammar Format (deprecated)

	Automatic Conversion
	Passing Grammars to Steps
	Grammar Template
	Compound Grammar
	Compound Grammar Indexing

	Using Prompts in your Scripts
	About Prompts
	Prompt Types You Can Create
	The Prompt Search Algorithm
	About Prompt Templates
	How To Create or Customize a Prompt
	Recording the Welcome Prompt
	Configuring the Welcome Prompt
	Uploading a Spoken Name

	Advanced Error Handling
	Using the On Exception Goto Step
	Using Default Scripts

	About Script Interruption
	Using Different Media in your Scripts
	About Media
	Media-Less Calls
	Media Neutrality
	Media Steps
	Name To User Step
	Recording Step
	Explicit Confirmation Step
	Implicit Confirmation Step
	Simple Recognition Step

	Using a Voice Browser in Your Scripts
	Understanding VoiceXML
	Voice Browser Architecture
	Voice Browser Development Tools

	A Script for Incrementing the Current Date
	A Script Example Showing Timeout or Retry Logic

	The Basic Cisco Unified CCX Script
	The Example Cisco Unified CCX Basic Script Template
	The Start Step (Creating a Script)
	Script Variables for icd.aef
	The Accept Step
	The Play Prompt Step
	The Select Resource Step
	The Connected Output Branch
	The Queued Output Branch
	The Label Step
	The Play Prompt Step
	The Delay Step

	The Goto Step

	The End Step

	Designing a Basic Script
	An Example Basic Script
	The Start Step (Creating a Script)
	SNU Script Template Variables
	The Accept Step
	The Play Prompt Step
	The Label Step (GetUser)
	The Name To User Step
	The Successful Output Branch
	The Get User Info Step
	The If Step
	The True Output Branch
	The False Output Branch

	The Label Step (GetPin)

	The Timeout Output Branch
	The Unsuccessful Output Branch

	The Get Digit String Step
	Configuring the Get Digit String Step
	The Successful Output Branch
	The Timeout Output Branch
	The True Output Branch
	The False Output Branch

	The Unsuccessful Output Branch

	The Authenticate User Step
	The Success Output Branch
	The Unsuccessful Output Branch
	The True Output Branch
	The False Output Branch

	The Recording Step
	The Successful Output Branch
	The Unsuccessful Output Branch

	The Menu Step
	The Key 1 Output Branch
	The Key 2 Output Branch
	The True Output Branch
	The False Output Branch

	The Timeout and Unsuccessful Output Branches

	The Closing Steps of the SNU.aef Script
	The Set Contact Info Step
	The Set Step
	.The Play Prompt Step
	The Terminate Step
	.The End Step

	Working with Multiple Contacts
	An Example Script Template with Multiple Contacts
	The Start Step (Creating a Script)
	Script Variables for broadcast.aef
	The Annotate Step
	The Accept Step
	The Get Contact Info Step
	The Recording Step
	The Successful Output Branch
	The Unsuccessful Output Branch
	The Play Prompt Step
	The Terminate Step
	The End Step

	The Play Prompt Step
	The Set numbersToCall Step
	The Call Subflow Step
	The Set numCalls Step
	The Label Step (Call Loop)
	The If Step
	If True Output Branch
	If False Output Branch

	The Set Steps
	The First Set Step
	The Second Set Step

	The Play Prompt Step
	The Call Hold Step
	The Place Call Step
	The Successful Output Branch
	The On Exception Goto Step
	The Set Contact Info Step
	The Play Prompt Step
	The Terminate Step
	The Set Contact Info Set
	The Label Step (LABEL0)
	The On Exception Goto Step (Clear Exception)
	The Call Unhold Step
	The Play Prompt Step

	The Other Output Branches

	The Increment Step (i)
	The Goto Step (Call Loop)
	The Terminate Step
	The Set Contact Info Step
	The End Step

	Designing a Web-Enabled Script
	An Example Web-Enabled Script Template
	Creating Server Script Web Pages
	Creating a Static Web Page
	Creating a Dynamic Web Page

	Creating the hello.aef Script
	The Start Step
	Web-enabled Script Variables
	The Get Http Contact Info Step
	The Create File Document Step
	The Keyword Transform Document Step
	The Send Http Response Step
	The End Step

	Managing the hello.aef Script
	Uploading the hello.aef Script
	Creating the Application for hello.aef Script
	Creating the HTTP Trigger
	Testing the script

	Designing a Web-Enabled Client Script
	Example Web-Enabled Client Script Template
	Analyzing the Data Source
	Creating the getQuoteClient.aef Script
	The Start Step (Creating a Script)
	Defining the Client Script Variables
	The Accept Step
	The Create URL Document Step
	The Create XML Document Step
	The Get XML Document Data Step
	The Create Generated Prompt Step
	Create Container Prompt Step
	The Play Prompt Step
	The Terminate Step
	The End Step

	Designing a Database Script
	An Example Database Script Template
	The Start Step (Creating a Script)
	Database Script Variables
	The Accept Step
	The Play Prompt Step
	The DB Read Step
	The Successful Output Branch
	The Connection Not Available Output Branch
	The SQL Error Output Branch

	The Label Step (Physician Loop)
	The DB Get Step
	The Successful Output Branch
	The Play Prompt Step
	The Goto Step (Physician Loop)

	The No Data Output Branch
	The DB Write Step
	The DB Release Step
	The Terminate Step
	The End Step

	The SQL Error Output Branch

	The End Step

	Designing a Cisco Unified IP IVR Script
	The Sample AutoAttendant (aa.aef) Script Template
	The Start Step (Creating a Script)
	The aa.aef Script Variables
	The Getting the Contact Information and Setting Up the Prompts
	Accept
	Get Contact Info
	The First Create Conditional Prompt Step
	The Second Create Conditional Prompt Step
	The First Create Container Prompt Step
	The Third Create Conditional Prompt Step
	The Play Prompt Step
	The Label Step (MainMenu)

	Determining if the System is ASR Enabled
	If ASR
	The True Output Branch
	The False Output Branch
	The Switch Step

	Creating and Setting an Error Message Prompt
	The Second Create Container Prompt Step
	The Set Step

	Recognizing Input
	The DialByExtn Output Branch of the Simple Recognition Step
	The Label Step
	The Create Container Prompt Step
	The Set Step
	The Get Digit String Step

	The Successful Output Branch (of Get Digit String)
	Transferring the Call if Recognition Is Successful
	The True Recognition Branch
	Setting the Retry Message
	Configuring the Number of Retries
	The Retry Branch

	The False Recognition Branch

	Confirming the Caller Input
	Localizing the Prompt Language
	Completing the Input Confirmation
	The Caller Does Not Give Confirmation
	Configuring the Retries
	The Caller With Retries Gives Confirmation
	The Play Prompt Step
	The Increment Step

	The Caller Does Not Give Confirmation
	The Extension is Confirmed as Correct

	Transferring the Call
	Successfully Transferring the Call
	The Set Contact Info Step
	The End Step

	Receiving a Busy Signal
	Registering an Invalid Transfer Extension
	Unsuccessfully Transferring the Call
	The If Step
	The True Output Branch
	The False Output Branch

	The DialByName Output Branch of the Simple Recognition Step
	The Label Step
	The Create Container Prompt Step
	The Set Step
	The Name To User Step
	The Successfully Receiving Caller Input
	The Get User Info Step
	The If Step
	The Implicit Confirmation Step

	The No Output Branch of the Simple Recognition Step
	Get User Info Step
	The First Create Generated Prompt Step
	The Second Create Generated Prompt Step
	The First Create Conditional Prompt Step
	The If Step
	True Branch—Create Language Prompt
	False Branch—Set Prompt

	The Create Container Prompt Step
	The Set Step
	The Explicit Confirmation Step
	The If Step
	The True Output Branch
	The False Output Branch

	The Yes Output Branch
	The Label Step
	The First If Step

	The Call Redirect Step
	The Successful Output Branch
	The Busy Output Branch
	The Invalid Output Branch
	The Unsuccessful Output Branch
	The Second If Step

	The Operator Output Branch of the Simple Recognition Step
	The Label Step (Xfer Operator)
	The Call Redirect Step
	The Successful Output Branch
	The Busy Output Branch
	The Invalid Output Branch
	The Unsuccessful Output Branch
	The If Step
	The True Output Branch
	The False Output Branch

	The Concluding Steps of the Script
	The Play Prompt Step
	The Call Redirect Step
	The If Step
	The Play Prompt Step
	The Terminate Step
	The End Step

	Designing Contact-Neutral Scripts
	An Example Contact Neutral (Phone or HTTP) Script Template
	The Start Step (Creating a Script)
	Contact-Neutral Script Variables
	The Accept Step
	The Get Contact Info Step
	The Switch Step
	The HttpContact Output Branch of the Switch Step
	The Get Http Contact Info Step
	The Place Call Step
	The Successful Output Branch
	The Http Forward Step
	The Set Contact Info Steps
	The Get Contact Info Step
	The Goto Step

	The Other Output Branches
	The Send Http Response Step
	The End Step

	The CallContact Branch of the Switch Step
	The Get Trigger Info Step

	The Default Branch of the Switch Step
	The End Step

	Designing a Script with Text-To-Speech (TTS)
	An Example Text-To-Speech (TTS) Script
	The Start Step (Creating a Script)
	TTS Script Variables
	The Accept Step
	The Set Contact Info Step
	The First Create TTS Prompt Step
	The Play Prompt Step
	The Create File Document Step
	The Second Create TTS Prompt Step
	The Annotate Step
	The Menu Step
	The Terminate Step
	The End Step

	Designing Cisco Unified CCX VoiceXML Applications
	Understanding the Terminology
	A Prerequisite and a Recommendation
	Updating CRS 3.x VoiceXML Applications
	Converting Documents from VoiceXML 1.0 to VoiceXML 2.0
	Converting VoiceXML CRS 3.x Scripts to CRS 4.x Scripts
	Converting VoiceXML CRS 3.x or 4.x Scripts to CRS 5.x Scripts

	Designing Cisco Unified CCX VoiceXML Applications
	Creating VoiceXML Documents
	Related Documentation
	A Sample VoiceXML Document
	Using Document Type Definitions
	Using SRGS Grammar Expressions
	Using Speech Recognition Input
	Using DTMF Input
	Using DTMF for Menu Navigation
	Receiving Digit String Input
	Using DTMF Grammar

	Using Text to Speech Output
	Understanding Provider Fallback for TTS
	Understanding Where TTS Prompts are Played
	Understanding Gender Fallback for MRCP TTS

	Using The CRTP Protocol
	Using the Voice Browser Cache

	Creating Cisco Unified CCX Scripts that Run VoiceXML Documents
	Related Documentation
	A Sample Voicebrower.aef Script
	Creating a Script that Runs a VoiceXML Document
	Step 1: The Start Step (Creating a Script)
	Step 2: Create Two Voicebrowser Script Variables
	Step 2: Enter the Start Step
	Step 3: Enter the Accept Step
	Step 4: Enter the Create URL Document Step
	Step 5: Enter the Voice Browser Step
	Step 6: Enter the Terminate Step
	Step 7: Enter The End Step

	Specifying TTS Providers in a Cisco Unified CCX Script

	Designing International Cisco Unified CCX VoiceXML Applications
	Cisco Unified CCX VoiceXML Application Troubleshooting Tips

	Designing Scripts for Cisco Unified IP IVR
	The Service Control Interface
	Call Variables
	Using Call Variables
	Using Expanded Call Variables
	Using Error Variables
	Using the Parameter Separator
	Configuring Encoding and Decoding Types

	ICM Script Types
	Initial Scripts
	Default Scripts
	VRU Scripts

	Sample VRU Script Templates
	Basic Queuing (BasicQ.aef)
	Visible Queuing (VisibleQ.aef)
	Collect Digits (CollectDigits.aef)

	Designing Cisco Unified CCX Scripts
	A Sample Cisco Unified CCX Script Template
	The Start Step (Creating a Script)
	Cisco Unified CCX Script Variables
	The Accept Step
	The Get Contact Info Step
	The Get Session Info Step
	The If Steps
	The First If Step
	The Second If Step
	The Third If Step
	The Fourth If Step
	The Play Prompt Step
	The Get Digit String Step
	The Session Steps
	Choosing a Language
	Recording a Name

	The Select Resource Step
	The Connected Output Branch
	The Queued Output Branch

	Using Default Scripts
	Variables for a Default Cisco Unified CCX Script
	Writing a Default Script

	Designing Cisco Unified Gateway Scripts
	Scripting on a Cisco Unified Gateway System
	Using Variables
	Defining Local Cisco Unified CCX Script Variables
	Using Cisco Pre-Defined Enterprise Call Variables
	Using Enterprise Expanded Call Context (ECC) Variables
	Defining ECC Variables in the Cisco Finesse Administration
	Defining ECC Variables in the Cisco Unified CCX Editor
	Configuring ECC Variables in a Cisco Unified CCX Script
	Defining ECC Variables for a Post Call Treatment Script

	Using Variables Multiple Times

	Example Cisco Unified Gateway Post-Routing Scripts
	A Sample Cisco Unified CCX Script that Selects a CSQ
	Script Variables Used in the PostRouteSelectCSQ.aef Script
	Script Flow for the PostRouteSelectCSQ.aef Script

	A Sample Cisco Unified CCX Script that Selects an Agent
	Script Variables Used in the PostRouteSelectAgent.aef Script
	Script Flow for the PostRouteSelectAgent.aef Script

	A Sample Cisco Unified CCX Script that Selects a Route Point
	Script Variables Used in the PostRouteSimple.aef Script
	Script Flow for the PostRouteSimple.aef Script

	A Summary Process for Defining Enterprise Variables

	Designing a Generic Recognition Script
	About the Generic Recognition Steps
	N-Best Recognition and Multiple Interpretations
	N-Best Recognition
	Multiple Interpretations

	The Script Flow for a Generic Recognition Script
	An Example Grammar Used With Generic Recognition
	An Example Script Algorithm Used With Generic Recognition

	An Example Script, GenericRecoExample.aef
	Script Variables Used in the Example Generic Recognition Script
	Getting a Collection of Results
	Getting All the Information for All the Results
	Getting Interpretations for Each Result and Prompting with Each

	Uninstallation of Unified CCX Editor
	A Brief Description of a VoiceXML Log File
	Excerpts from the Sample VoiceXML Log File
	Sample VoiceXML Log File Selection
	VoiceXML 2.0 Element Implementation
	VoiceXML Properties Implementation
	Standard Session Variables Implementation
	Built-in Type Implementation
	The <value> Data Format

